首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教A版(2019)
必修 第一册
第三章 函数概念与性质
3.3 幂函数
课时分层作业25 指数函数的概念、图象与性质
文档属性
名称
课时分层作业25 指数函数的概念、图象与性质
格式
doc
文件大小
1.3MB
资源类型
试卷
版本资源
人教A版(2019)
科目
数学
更新时间
2022-10-12 16:21:06
点击下载
图片预览
1
2
3
4
文档简介
中小学教育资源及组卷应用平台
课时分层作业(二十五) 指数函数的概念、图象与性质
(建议用时:60分钟)
[合格基础练]
一、选择题
1.若函数y=(a2-4a+4)ax是指数函数,则a的值是( )
A.4 B.1或3
C.3 D.1
2.函数y=x(x≥8)的值域是( )
A.R B.
C. D.
3.函数y=的定义域是( )
A.(-∞,0) B.(-∞,0]
C.[0,+∞) D.(0,+∞)
4.当a>0,且a≠1时,函数f(x)=ax+1-1的图象一定过点( )
A.(0,1) B.(0,-1)
C.(-1,0) D.(1,0)
5.函数f(x)=ax与g(x)=-x+a的图象大致是( )
A B C D
二、填空题
6.函数f(x)=3的定义域为________.
7.已知函数f(x)=ax+b(a>0,且a≠1)经过点(-1,5),(0,4),则f(-2)的值为________.21·cn·jy·com
8.若函数f(x)=则函数f(x)的值域是________.
三、解答题
9.已知函数f(x)=ax-1(x≥0)的图象经过点,其中a>0且a≠1.
(1)求a的值;
(2)求函数y=f(x)(x≥0)的值域.
10.已知f(x)=9x-2×3x+4,x∈[-1,2].
(1)设t=3x,x∈[-1,2],求t的最大值与最小值;
(2)求f(x)的最大值与最小值.
[等级过关练]
1.函数y=a-|x|(0
A B C D
2.若a>1,-1
A.第一、二、三象限 B.第一、三、四象限
C.第二、三、四象限 D.第一、二、四象限
3.已知函数y=x在[-2,-1]上的最小值是m,最大值是n,则m+n的值为________.
4.函数f(x)=的值域是________.
5.已知函数f(x)=ax+b(a>0,a≠1).
(1)若f(x)的图象如图①所示,求a,b的取值范围;
(2)若f(x)的图象如图②所示,|f(x)|=m有且仅有一个实数解,求出m的范围.
答案与解析
[合格基础练]
一、选择题
1.若函数y=(a2-4a+4)ax是指数函数,则a的值是( )
A.4 B.1或3
C.3 D.1
C [由题意得解得a=3,故选C.]
2.函数y=x(x≥8)的值域是( )
A.R B.
C. D.
B [因为y=x在[8,+∞)上单调递减,所以0
3.函数y=的定义域是( )
A.(-∞,0) B.(-∞,0]
C.[0,+∞) D.(0,+∞)
C [由2x-1≥0得2x≥1,即x≥0,∴函数的定义域为[0,+∞),选C.]
4.当a>0,且a≠1时,函数f(x)=ax+1-1的图象一定过点( )
A.(0,1) B.(0,-1)
C.(-1,0) D.(1,0)
C [∵f(-1)=a-1+1-1=a0-1=0,∴函数必过点(-1,0).]
5.函数f(x)=ax与g(x)=-x+a的图象大致是( )
A B C D
A [当a>1时,函数f(x)=ax单调递增,当x=0时,g(0)=a>1,此时两函数的图象大致为选项A.]21教育网
二、填空题
6.函数f(x)=3的定义域为________.
[1,+∞) [由x-1≥0得x≥1,所以函数f(x)=3的定义域为[1,+∞).]
7.已知函数f(x)=ax+b(a>0,且a≠1)经过点(-1,5),(0,4),则f(-2)的值为________.21·cn·jy·com
7 [由已知得解得所以f(x)=x+3,所以f(-2)=-2+3=4+3=7.]
8.若函数f(x)=则函数f(x)的值域是________.
(-1,0)∪(0,1) [由x<0,得0<2x<1;由x>0,
∴-x<0,0<2-x<1,
∴-1<-2-x<0.
∴函数f(x)的值域为(-1,0)∪(0,1).]
三、解答题
9.已知函数f(x)=ax-1(x≥0)的图象经过点,其中a>0且a≠1.
(1)求a的值;
(2)求函数y=f(x)(x≥0)的值域.
[解] (1)因为函数图象经过点,
所以a2-1=,则a=.
(2)由(1)知函数为f(x)=x-1(x≥0),由x≥0,得x-1≥-1.于是0
所以函数的值域为(0,2].
10.已知f(x)=9x-2×3x+4,x∈[-1,2].
(1)设t=3x,x∈[-1,2],求t的最大值与最小值;
(2)求f(x)的最大值与最小值.
[解] (1)设t=3x,∵x∈[-1,2],函数t=3x在[-1,2]上是增函数,故有≤t≤9,故t的最大值为9,t的最小值为.2·1·c·n·j·y
(2)由f(x)=9x-2×3x+4=t2-2t+4=(t-1)2+3,可得此二次函数的对称轴为t=1,且≤t≤9,【来源:21·世纪·教育·网】
故当t=1时,函数f(x)有最小值为3,当t=9时,函数f(x)有最大值为67.
[等级过关练]
1.函数y=a-|x|(0
A B C D
A [y=a-|x|=|x|,易知函数为偶 ( http: / / www.21cnjy.com )函数,∵0
1,故当x>0时,函数为增函数,当x<0时,函数为减函数,当x=0时,函数有最小值,最小值为1,且指数函数为凹函数,故选A.]21cnjy.com
2.若a>1,-1
A.第一、二、三象限 B.第一、三、四象限
C.第二、三、四象限 D.第一、二、四象限
A [∵a>1,且-1
]
3.已知函数y=x在[-2,-1]上的最小值是m,最大值是n,则m+n的值为________.
12 [∵y=x在R上为减函数,∴m=-1=3,n=-2=9,故m+n=12.]
4.函数f(x)=的值域是________.
(0,1) [函数y=f(x)=,即有3x=,由于3x>0,则>0,解得0<y<1,值域为(0,1).]21世纪教育网版权所有
5.已知函数f(x)=ax+b(a>0,a≠1).
(1)若f(x)的图象如图①所示,求a,b的取值范围;
(2)若f(x)的图象如图②所示,|f(x)|=m有且仅有一个实数解,求出m的范围.
[解] (1)由f(x)为减函数可知a的取值范围为(0,1),
又f(0)=1+b<0,所以b的取值范围为(-∞,-1).
(2)由图②可知,y=|f(x)|的图象如图所示.
由图象可知使|f(x)|=m有且仅有一解的m值为m=0或m≥3.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
点击下载
同课章节目录
第一章 集合与常用逻辑用语
1.1 集合的概念
1.2 集合间的基本关系
1.3 集合的基本运算
1.4 充分条件与必要条件
1.5 全称量词与存在量词
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
2.2 基本不等式
2.3 二次函数与一元二次方程、不等式
第三章 函数概念与性质
3.1 函数的概念及其表示
3.2 函数的基本性质
3.3 幂函数
3.4 函数的应用(一)
第四章 指数函数与对数函数
4.1 指数
4.2 指数函数
4.3 对数
4.4 对数函数
4.5 函数的应用(二)
第五章 三角函数
5.1 任意角和弧度制
5.2 三角函数的概念
5.3 诱导公式
5.4 三角函数的图象与性质
5.5 三角恒等变换
5.6 函数 y=Asin( ωx + φ)
5.7 三角函数的应用
点击下载
VIP下载