(共36张PPT)
5.3.2 函数的极值与最大(小)值
第一课时 函数的极值
横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在
此山中.
在群山之中,各个山峰的顶端虽然不一定是群山之中的最高处,
但却是其附近的最高点;同样,各个谷底虽然不一定是山谷的最低处,但却是其附近的最低点.群山中的最高处是所有山峰的最高者的顶部,山谷中的最低处是所有谷底的最低者的底部.
问题 观察下图中的函数图象,指出其中是否有类似山峰、山谷的地方,如果有,应用什么数学语言来描述?
提示 有,应用函数的极大值和极小值来描述.
1.
(1)极小值点与极小值
如图,函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧_________,右侧_________,则把a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
f′(x)<0
f′(x)>0
极值点与极值的概念
极值与单调性一样,都是函数的局部性质
(2)极大值点与极大值
如图,函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b的左侧_________,右侧__________,则把b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.__________、__________统称为极值点,________和________统称为极值.
f′(x)>0
f′(x)<0
极大值点
极小值点
极大值
极小值
2.求函数y=f(x)的极值的方法
解方程f′(x)=0,当f′(x0)=0时:
(1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是________;
(2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是________.
极大值
极小值
[判断]
1.导数为0的点一定是极值点.( )
提示 反例:f(x)=x3,f′(x)=3x2,f′(0)=0,但x=0不是f(x)=x3的极值点.
2.函数的极大值一定大于极小值.( )
提示 反例:如图所示:
×
×
极大值f(x1)小于极小值f(x2).
3.函数y=f(x)一定有极大值和极小值.( )
提示 反例:f(x)=x3既没有极大值,也没有极小值.
×
[训练]
1.已知函数f(x)的导函数f′(x)的图象如图所示,则函数f(x)有( )
A.两个极大值,一个极小值
B.两个极大值,无极小值
C.一个极大值,一个极小值
D.一个极大值,两个极小值
解析 由图可知导函数f′(x)有三个零点,依次设为x1<0,x2=0,x3>0,当x0,所以函数f(x)在x=x1处取得极小值;当x10,当x20,所以函数f(x)在x=x2处无极值;当x>x3时,f′(x)<0,所以函数f(x)在x=x3处取得极大值,故选C.
答案 C
[思考]
1.对于可导函数f(x),“f(x)在x=x0处的导数f′(x0)=0”是“f(x)在x=x0处取得极值”的什么条件?
提示 必要不充分条件.
2.函数f(x)可以有多个极大值和极小值吗?
提示 可以,如函数f(x)=sin x,f(x)=cos x在R上有无数多个极大值和极小值.
解 (1)∵f(x)=(x3-1)2+1=x6-2x3+2,
∴f′(x)=6x5-6x2=6x2(x3-1).
令f′(x)=0,得x=0或x=1.
当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,0) 0 (0,1) 1 (1,+∞)
f′(x) - 0 - 0 +
f(x) ? 2 ? 1 ?
∴当x=1时,f(x)有极小值,为f(1)=1,f(x)无极大值.
令f′(x)=0,得x=1.
当x变化时,f′(x),f(x)的变化情况如下表:
x (0,1) 1 (1,+∞)
f′(x) - 0 +
f(x) ? 3 ?
从表中可以看出,当x=1时,函数f(x)有极小值,为f(1)=3,f(x)无极大值.
规律方法 求可导函数f(x)的极值的步骤
(1)确定函数的定义域,求导数f′(x);
(2)求方程f′(x)=0的根;
(3)用函数的导数为0的点,顺次将函数的定义域分成若干个小开区间,并列成表格.检测f′(x)在方程根左右两侧的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值.
【训练1】 求函数f(x)=x2e-x的极值.
解 函数f(x)的定义域为R,
f′(x)=2xe-x+x2·e-x·(-x)′=2xe-x-x2·e-x=x(2-x)e-x.
令f′(x)=0,得x(2-x)·e-x=0,解得x=0或x=2.
当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,0) 0 (0,2) 2 (2,+∞)
f′(x) - 0 + 0 -
f(x) ? 0 ? 4e-2 ?
因此当x=0时,f(x)取得极小值,且极小值为f(0)=0;
当x=2时,f(x)取得极大值,
解 f′(x)=[x2+(a+2)x-2a2+4a]ex.
令f′(x)=0,解得x=-2a或x=a-2,
分以下两种情况讨论:
当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,-2a) -2a (-2a,a-2) a-2 (a-2,+∞)
f′(x) + 0 - 0 +
f(x) ? 极大值 ? 极小值 ?
所以f(x)在(-∞,-2a),(a-2,+∞)上是增函数,在(-2a,a-2)上是减函数,函数f(x)在x=-2a处取得极大值f(-2a),且f(-2a)=3ae-2a,函数f(x)在x=a-2处取得极小值f(a-2),且f(a-2)=(4-3a)ea-2.
当x变化时,f′(x),f(x)的变化情况如下表:
x (-∞,a-2) a-2 (a-2,-2a) -2a (-2a,+∞)
f′(x) + 0 - 0 +
f(x) ? 极大值 ? 极小值 ?
所以f(x)在(-∞,a-2),(-2a,+∞)上是增函数,在(a-2,-2a)上是减函数,函数f(x)在x=a-2处取得极大值f(a-2),且f(a-2)=(4-3a)ea-2,函数f(x)在x=-2a处取得极小值f(-2a),且f(-2a)=3ae-2a.
规律方法 讨论参数应从f′(x)=0的两根x1,x2是否相等入手进行.
【训练2】 已知函数f(x)=x-aln x(a∈R).
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.
∴f(1)=1,f′(1)=-1,
∴y=f(x)在点A(1,f(1))处的切线方程为
y-1=-(x-1), 即x+y-2=0.
①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;
②当a>0时,由f′(x)=0,解得x=a;
∵x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,
∴f(x)在x=a处取得极小值,且极小值为f(a)=a-aln a,无极大值.
综上,当a≤0时,函数f(x)无极值;当a>0时,函数f(x)在x=a处取得极小值a-aln a,无极大值.
题型三 利用函数极值确定参数的值
【例3】 已知函数f(x)=ax3+bx2+cx(a≠0)在x=±1处取得极值,且f(1)=-1.
(1)求常数a,b,c的值;
(2)判断x=±1是函数的极大值点还是极小值点,试说明理由,并求出极值.
解 (1)f′(x)=3ax2+2bx+c.
∵x=±1是函数f(x)的极值点,
∴x=±1是方程f′(x)=3ax2+2bx+c=0的两根,
又f(1)=-1,∴a+b+c=-1. ③
当x<-1或x>1时,f′(x)>0,当-1∴函数f(x)在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数,
∴当x=-1时,函数取得极大值f(-1)=1,
当x=1时,函数取得极小值f(1)=-1.
规律方法 (1)利用函数的极值确定参数的值,常根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解.
(2)因为“导数值等于零”不是“此点为极值点”的充要条件,所以利用待定系数法求解后,必须验证根的合理性.
【训练3】 已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值.
当a=1,b=3时,f′(x)=3x2+6x+3=3(x+1)2≥0,
所以f(x)在R上为增函数,无极值,故舍去.
当a=2,b=9时,
f′(x)=3x2+12x+9=3(x+1)(x+3).
当x∈(-3,-1)时,f(x)为减函数;
当x∈(-∞,-3)和(-1,+∞)时,f(x)为增函数,
所以f(x)在x=-1时取得极小值,因此a=2,b=9.
一、素养落地
1.通过学习极值与极值点的概念,培养数学抽象素养,通过学习求函数的极值以及利用函数的极值求参数,提升数学运算素养.
2.函数的极值是函数的局部性质,可导函数f(x)在点x=x0处取得极值的充要条件是f′(x0)=0且在x=x0两侧f′(x)符号相反,所以求函数的极值时要严格按其步骤进行.
3.已知函数极值,确定函数解析式中的参数时,注意两点
(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;
(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证充分性.
二、素养训练
1.下列函数中存在极值的是( )
解析 对于y=x-ex,y′=1-ex,令y′=0,得x=0.
在区间(-∞,0)上,y′>0;
在区间(0,+∞)上,y′<0.
故x=0为函数y=x-ex的极大值点.
答案 B
2.函数f(x)的定义域为R,它的导函数y=f′(x)的部分图象如图所示,则下面结论错误的是( )
解析 根据导函数图象知,x∈(1,2)时,f′(x)>0,x∈(2,4)时,f′(x)<0,x∈(4,5)时,f′(x)>0.∴f(x)在(1,2),(4,5)上为增函数,在(2,4)上为减函数,x=2是f(x)在[1,5]上的极大值点,x=4是极小值点.故选D.
答案 D
3.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为( )
A.(-1,2) B.(-3,6)
C.(-∞,-1)∪(2,+∞) D.(-∞,-3)∪(6,+∞)
解析 f′(x)=3x2+2ax+a+6,
因为f(x)既有极大值又有极小值,
∴方程3x2+2ax+a+6=0有两个不相等的实数根,
那么Δ=(2a)2-4×3×(a+6)>0, 解得a>6或a<-3.
答案 D
4.函数f(x)=x3-6x+a的极大值为________,极小值为________.
5.设函数f(x)=6x3+3(a+2)x2+2ax.若f(x)的两个极值点为x1,x2,且x1x2=1,则实数a的值为________.
解析 f′(x)=18x2+6(a+2)x+2a.
所以a=9,经验证此时Δ>0,符合题意.
答案 9