8.2消元(二)[下学期]

文档属性

名称 8.2消元(二)[下学期]
格式 rar
文件大小 72.2KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2006-01-15 17:59:00

文档简介

8.2 消元(二)(第二课时)
一、创设情境,导入新课
七年级(3)班在上体育课时,进行投篮比赛,体育老师做好记录,并统计了在规定时间内投进n个球的人数分布情况,体育委员在看统计表时,不慎将墨水沾到表格上(如下表).
进球数n 0 1 2 3 4 5
投进球的人数 1 2 7 ● ● 2
同时,已知进球3个和3个以上的人平均每人投进3.5个球;进球4个和4个以下的人平均每人投进2.5个球,你能把表格中投进3个球和投进4个球对应的人数补上吗
二、师生互动,课堂探究
(一)指出问题,引发讨论
你能不能用二元一次方程组,帮助体育委员把表格中的两个数字补上呢
(经过学生思考、讨论、交流)
(二)导入知识,解释疑难
1.例题讲解(见P109)
分析:如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦______公顷,3台大收割机和2台小收割机1小时收割小麦_______公顷.
解:设1台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷.根据两种工作方式中的相等关系,得方程组
去括号,得
②-①,得11x=4.4
解这个方程,得x=0.4
把x=0.4代入①,得y=0.2
这个方程组的解是
答:1台大收割机和1台小收割机1小时各收割小麦0.4公顷和0.2公顷.
2.上面解方程组的过程可以用下面的框图表示:
3.做一做
为了保护环境,某校环保小组成员收集废电池,第一天收集1号电池4节,5号电池5节,总重量为460克,第二天收集1号电池2节,5号电池3节,总重量为240克,试问1号电池和5号电池每节分别重多少克
分析:如果1号电池和5号电池每节分别重x克,y克,则4克1号电池和5节5号电池总重量为4x+5y克,2节1号电池和3节5号电池总重量为2x+3y克.
解:设1号电池每节重x克,5号电池每节重y克,根据题意可得
②×2-①,得y=20
把y=20代入②,得2x+3×20=240,x=90
所以这个方程组的解为
答:1号电池每节重90克,5号电池每节重20克.
4.练一练:P111练习第2、3题.
(三)归纳总结,知识回顾
这节课我们经历和体验了列方程组解决实际问题的过程,体会到方程组是刻画现实世界的有效模型,从而更进一步提高了我们应用数学的意识及解方程组的技能.
作业:
1.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了
44000元,其中种茄子每亩用了1700元,获纯利2400元,种西红柿每亩用了1800元,获纯利2600元,问王大伯一共获纯利多少元
2.一旅游者从下午2时步行到晚上7时,他先走平路,然后登山,到山顶后又沿原路下山回到出发点,已知他走平路时每小时走4千米,爬山时每小时走3千米,下坡时每小时走6千米,问旅游者一共走了多少路
参考答案
1.设王大析种了x亩茄子,y亩西红柿,根据题意得
解得
所以获纯利为10×2400+15×2600=63000元
2.旅游者一共走了20千米路.设平路长x千米,坡路长y千米,
依时间关系有=5 ,即(x+y)=5,2(x+y)=20.
①②
①②加减消元法课堂练习
1.用加减法解下列方程组较简便的消元方法是:将两个方程_______,消去未知数_______.毛
2.已知方程组 ,,用加减法消x的方法是__________;用加减法消y的方法是________.
3.用加减法解下列方程时,你认为先消哪个未知数较简单,填写消元的过程.
(1) 消元方法___________.
(2) 消元方法_____________.
4.方程组 的解_________.
5.方程=3的解是_________.
6.已知方程3-5=8是关于x、y的二元一次方程,则m=_____,n=_______.
7.二元一次方程组的解满足2x-ky=10,则k的值等于( )
A.4 B.-4 C.8 D.-8
8.解方程组比较简便的方法为( )
A.代入法 B.加减法 C.换元法 D.三种方法都一样
9.若二元一次方程2x+y=3,3x-y=2和2x-my=-1有公共解,则m取值为( )
A.-2 B.-1 C.3 D.4
10.已知方程组的解是,则m=________,n=________.
11.已知(3x+2y-5)2与│5x+3y-8│互为相反数,则x=______,y=________.
12.若方程组与的解相同,则a=________,b=_________.
13.甲、乙两人同求方程ax-by=7的整数解,甲正确的求出一个解为,乙把ax-by=7看成ax-by=1,求得一个解为,则a、b的值分别为( )
A. B. C. D.
14.解方程组:
(1) (2)
15.若方程组的解满足x+y=12,求m的值.
16.已知方程组和方程组的解相同,求(2a+b)2005的值.
17.已知方程组中,x、y的系数部已经模糊不清,但知道其中□表示同一个数,△也表示同一个数, 是这个方程组的解,你能求出原方程组吗
18.我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加
工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元.
当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可以加工6吨,但两种加工方式不能同时进行,受季节等条件限制,公司必须用15天的时间将这批蔬菜全部销售或加工完毕,因此,公司制定了三种可行方案:
方案一:将蔬菜全部进行精加工.
方案二:尽可能多的对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接出售.
方案三:将一部分蔬菜进行精加工,其余蔬菜进行精加工,并恰好用15天完成.
你认为选择哪种方案获利最多 为什么

答案:
1.相加y 2.①×3-②×2,①×2+②×3 3.(1)①×2-②消y (2)①×2+②×3消n
4. 5. 6.-2、-1 7.A 8.B 9.C 10.1,4 11.1,1 12.22,8 13.B 14.(1) (2) 15.14 16.a=1,b=-1 17.
18.解:选择第三种方案获利最多.
方案一:因为每天粗加工16吨,140吨可以在15天内加工完,
总利润W1=4500×140=630000(元).
方案二:因为每天精加工6吨,15天可以加工90吨,其余50吨直接销售,
总利润W2=90×7500+50×1000=725000(元).
方案三:设15天内精加工蔬菜x吨,粗加工蔬菜y吨,
依题意得: ,解得,
总利润W3=60×7500+80×4500=810000(元),
因为W1①②
- 1 -8.2 消元(二)(第一课时)
一、知识与技能目标
1.用代入法、加减法解二元一次方程组.毛
2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.
3.会用二元一次方程组解决实际问题.
4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力.
5.将解方程组的技能训练与实际问题的解决融为一体,进一步提高解方程组的技能.
二、过程与方法目标
1.通过探索二元一次方程组的解法的过程,了解二元一次方程组的“消元”思想,培养学生良好的探索习惯.
2.通过对具体实际问题分解,组织学生自主交流、探索,去发现列方程建模的过程,培养学生用数学的意识.
三、情感态度与价值观目标
1.在学生了解二元一次方程组的“消元”思想,从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想中,享受学习数学的乐趣,增强学习数学的信息。
2.培养学生合作交流,自主探索的良好习惯。
3.体会方程组是刻画现实世界的有效数学模型,培养应用数学的意识。
4.在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣。
新授课:
一、创设情境,导入新课
甲、乙、丙三位同学是好朋友,平时互相帮助。甲借给乙10元钱,乙借给丙8元钱,丙又给甲12元钱,如果允许转帐,最后甲、乙、丙三同学最终谁欠谁的钱,欠多少?
二、师生互动,课堂探究
(一)提高问题,引发讨论
我们知道,对于方程组 , 可以用代入消元法求解。
这个方程组的两个方程中,y的系数有什么关系?利用这种关系你能发现新的消元方法吗?
(二)导入知识,解释疑难
1.问题的解决
上面的两个方程中未知数y的系数相同,②-①可消去未知数y,得(2x+y)-(x+y)=40-22 即x=18,把x=18代入①得y=4。另外,由①-②也能消去未知数y,得(x+y)-(2x+y)=22-40 即-x=-18,x=18,把x=18代入①得y=4.
2.想一想:联系上面的解法,想一想应怎样解方程组
分析:这两个方程中未知数y的系数互为相反数,因此由①+②可消去未知数y,从而求出未知数x的值。
解:由①+②得 19x=11.6 x=
把x=代入①得y=- ∴这个方程组的解为
3.加减消元法的概念
从上面两个方程组的解法可以发现,把两个二元一次方程的两边分别进行相加减,就可以消去一个未知数,得到一个一元一次方程。
两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
4.例题讲解
用加减法解方程组
分析:这两个方程中没有同一个未知数的系数相反或相同,直接加减两个方程不能消元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。
解:①×3,得 9x+12y=48 ③
②×2,得 10x-12y=66 ④
③+④,得 19x=114
x=6
把x=6代入①,得3×6+4y=16
4y=-2, y=-
所以,这个方程组的解是
议一议:本题如果用加减法消去x应如何解?解得结果与上面一样吗?
解:①×5,得 15x+20y=80 ③
②×3,得 15x-18=99 ④
③-④,得 38y=-19
y=-
把y=-代入①,得3x+4×(-)=16
3x=18
x=6
所以,这个方程组的解为
如果求出y=-后,把y=代入②也可以求出未知数x的值。
5.做一做
解方程组
分析:本题不能直接运用加减法求解,要进行化简整理后再求解。
解:化简方程组,得
③-④,得4x=36
x=9
把x=9代入④(也可代入③,但不佳),得
10×9-3y=48
-3y=-42
y=14
∴这个方程组的解为
点评:当方程组比较复杂时,应先化简,并整理成标准形式.本题还可以把2x+3y和2x-3y当成两个整体,用换元法,设2x+3y=A,2x-3y=B,转化为以A、B为未知数的二元一次方程组.
6.想一想
(1)加减消元法解二元一次方程组的基本思想是什么
(2)用加减消元法解二元一次方程组的主要步骤有哪些
师生共析:
(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”.
(2)用加减法解二元一次方程组的一般步骤:
第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.
第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.
第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.
(三)归纳总结,知识回顾
本节课,我们主要是学习了二元一次方程组的另一解法──加减法.通过把方程组中的两个方程进行相加或相减,消去一个未知数,化“二元”为“一元”.
作业:
1.用加减法解下面方程组时,你认为先消去哪个未知数较简单,填写消元的方法.
(1) ,消元方法_________.
(2) ,消元方法_________.
2.用加减法解下列方程组:
(1) (2)
(3) (4)
参考答案
1.(1)①×②-②消去y (2)①×2+②×3消去n
2.(1) (2) (3) (4)
①②
①②
①②
①②
①②
①②
①②