高中数学必修3人教A:全册〖精品〗教案+导学案(48份)

文档属性

名称 高中数学必修3人教A:全册〖精品〗教案+导学案(48份)
格式 zip
文件大小 2.3MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2013-11-07 20:14:53

文档简介

3. 3.1几何概型
教材分析:和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率.它也是一种等可能概型.教材首先通过实例对比概念给予描述,然后通过均匀随机数随机模拟的方法的介绍,给出了几何概型的一种常用计算方法.与本课开始介绍的P(A)的公式计算方法前后对应,使几何概型这一知识板块更加系统和完整.这节内容中的例题既通俗易懂,又具有代表性,有利于我们的教与学生的学.教学重点是几何概型的计算方法,尤其是设计模型运用随机模拟方法估计未知量;教学难点是突出用样本估计总体的统计思想,把求未知量的问题转化为几何概型求概率的问题.
教学目标:1. 通过这节内容学习,让学生了解几何概型,理解其基本计算方法并会运用.
2. 通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.
3. 通过学习,让学生体会试验结果的随机性与规律性,培养学生的科学思维方法,提高学生对自然界的认知水平.
教学重点与难点:是随机模拟部分.这节内容的教学需要一些实物模型作为教具,如教科书中的转盘模型、例2中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.
教学过程:
一、问题情境
如图,有两个转盘.甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.
问题:在下列两种情况下分别求甲获胜的概率.
二、建立模型
1. 提出问题
首先引导学生分析几何图形和甲获胜是否有关系,若有关系,和几何体图形的什么表面特征有关系?学生凭直觉,可能会指出甲获胜的概率与扇形弧长或面积有关.即:字母B所在扇形弧长(或面积)与整个圆弧长(或面积)的比.接着提出这样的问题:变换图中B与N的顺序,结果是否发生变化?(教师还可做出其他变换后的图形,以示决定几何概率的因素的确定性).
题中甲获胜的概率只与图中几何因素有关,我们就说它是几何概型.
注意:(1)这里“只”非常重要,如果没有“只”字,那么就意味着几何概型的概率可能还与其他因素有关,这是错误的.
(2)正确理解“几何因素”,一般说来指区域长度(或面积或体积).
2. 引导学生讨论归纳几何概型定义,教师明晰———抽象概括
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.
在几何概型中,事件A的概率的计算公式如下:
3. 再次提出问题,并组织学生讨论
(1)情境中两种情况下甲获胜的概率分别是多少?
(2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.
(3)某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10min的概率.
通过以上问题的研讨,进一步明确几何概型的意义及基本计算方法.
三、典型例题
1. 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.
分析:我们有两种方法计算事件的概率.
(1)利用几何概型的公式.
(2)利用随机模拟的方法.
解法1:如图,方形区域内任何一点的横坐标表示送报人送到报纸的时间,纵坐标表示父亲离开家去工作的时间.假设随机试验落在方形内任一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以
解法2:设X,Y是0~1之间的均匀随机数.X+6.5表示送报人送到报纸的时间,Y+7表示父亲离开家去工作的时间.如果Y+7>X+6.5,即Y>X-0.5,那么父亲在离开家前能得到报纸.用计算机做多次试验,即可得到P(A).
教师引导学生独立解答,充分调动学生自主设计随机模拟方法,并组织学生展示自己的解答过程,要求学生说明解答的依据.教师总结,并明晰用计算机(或计算器)产生随机数的模拟试验.强调:这里采用随机数模拟方法,是用频率去估计概率,因此,试验次数越多,频率越接近概率.
2. 如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.
解:随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,即
假设正方形的边长为2,则
由于落在每个区域的豆子数是可以数出来的,所以
这样就得到了π的近似值.
另外,我们也可以用计算器或计算机模拟,步骤如下:
(1)产生两组0~1区间的均匀随机数,a1=RAND,b1=RAND;
(2)经平移和伸缩变换,a=(a1-0.5)*2,b=(b1-0.5)*2;
(3)数出落在圆内a2+b2<1的豆子数N1,计算(N代表落在正方形中的豆子数).
可以发现,随着试验次数的增加,得到π的近似值的精度会越来越高.
本例启发我们,利用几何概型,并通过随机模拟法可以近似计算不规则图形的面积.
[练 习]
1. 如图30-4,如果你向靶子上射200镖,你期望多少镖落在黑色区域.
2. 利用随机模拟方法计算图30-5中阴影部分(y=1和y=x2围成的部分)的面积.
3. 画一椭圆,让学生设计方案,求此椭圆的面积.
作业:课本
3.3.1几何概型
课前预习学案
一、预习目标
1. 了解几何概型,理解其基本计算方法并会运用.
2. 通过对照前面学过的知识,让学生自主思考,寻找几何概型的随机模拟计算方法,设计估计未知量的方案,培养学生的实际操作能力.
二、预习内容
1. ,简称为几何概型.
2.在几何概型中,事件A的概率的计算公式如下:
3. 讨论:
(1)情境中两种情况下甲获胜的概率分别是多少?
( 2)在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,求发现草履虫的概率.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标:了解几何概型,理解其基本计算方法并会运用.
学习重点与难点:几何概型的计算方法.
二、学习过程:
例1. 假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,而你父亲离开家去工作的时间在早上7:00~8:00之间,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少.
分析:我们有两种方法计算事件的概率.
(1)利用几何概型的公式.
(2)利用随机模拟的方法.
解法1:
解法2:
例2. 如图,在正方形中随机撒一大把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比,并以此估计圆周率的值.
解:
用计算器或计算机模拟,步骤如下:
(1)
(2)
(3)
三、反思总结
1、数学知识:
2、数学思想方法:
四、当堂检测
一、选择题
1. 取一根长度为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长
都不小于1 m的概率是.
A. B. C. D.不确定
2. 已知地铁列车每10 min一班,在车站停1 min.则乘客到达站台立即乘上
车的概率是
A. B. C. D.
3. 在1万 km2的海域中有40 km2的大陆架贮藏着石油,假如在海域中任意
一点钻探,钻到油层面的概率是.
A. B. C. D.
二、填空题
1. 如下图,在一个边长为3 cm的正方形内部画一个边长为2 cm的正方形,
向大正方形内随机投点,则所投的点落入小正方形内的概率是________.
2. 如下图,在一个边长为a、b(a>b>0)的矩形内画一个梯形,梯形上、下底分别为a与a,高为b,向该矩形内随机投一点,则所投的点落在梯形内部的概率为________.
三解答题
1在等腰Rt△ABC中,在斜边AB上任取一点M,求AM的长小于AC的长的概率.
答案一、选择题
1. B 2. A 3. C
二、填空题
1. 2.
三、解答题 解:在AB上截取AC′=AC,于是P(AM<AC)=P(AM<)
=
答:AM的长小于AC的长的概率为.
课后练习与提高
1.两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m的概率是________.
2. 如下图,在直角坐标系内,射线OT落在60°的终边上,任作一条射线OA,则射线落在∠xOT内的概率是________.
3. 如下图,在半径为1的半圆内,放置一个边长为的正方形ABCD,向半圆内任投一点,该点落在正方形内的概率为_________.
4. 在1 L高产小麦种子中混入了一粒带麦锈病的种子,从中随机取出10 mL,含有麦锈病种子的概率是多少?
PAGE
71. 1.1 算法的概念
【教学目标】
1.了解算法的含义,体会算法的思想。
2.能够用自然语言叙述算法。
3.掌握正确的算法应满足的要求。
【重点与难点】
教学重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
教学难点:把自然语言转化为算法语言。
【教学过程】
1.情境导入:
算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。因此,算法其实是重要的数学对象。
2.探索研究
算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。
3.例题分析
例1. 任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。
解析:根据质数的定义判断
解:算法如下:
第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。
第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。
这是判断一个大于1的整数n是否为质数的最基本算法。
点评:通过例1明确算法具有两个主要特点:有限性和确定性。
变式训练1:一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法。
解:算法或步骤如下:
S1 人带两只狼过河;
S2 人自己返回;
S3 人带一只羚羊过河;
S4 人带两只狼返回;
S5 人带两只羚羊过河;
S6 人自己返回;
S7 人带两只狼过河;
S8 人自己返回;
S9 人带一只狼过河.
例2 给出求解方程组的一个算法.
解析:解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,在通过回代过程求出方程组的解)解线性方程组.
解:用消元法解这个方程组,步骤是:
第一步:方程①不动,将方程②中的系数除以方程①中的系数,得到乘数;
第二步:方程②减去乘以方程①,消去方程②中的项,得到

第三步:将上面的方程组自下而上回代求解,得到,.
所以原方程组的解为.
点评:通过例2再次明确算法特点:有限性和确定性
变式训练2:写出求过两点M(-2,-1)、N(2,3)的直线与坐标轴围成面积的一个算法。
解:算法:第一步:取x1=-2,y1=-1,x2=2,y2=3;
第二步:计算;
第三步:在第二步结果中令x=0得到y的值m,得直线与y轴交点(0,m);
第四步:在第二步结果中令y=0得到x的值n,得直线与x轴交点(n,0);
第五步:计算S=;
第六步:输出运算结果
例3 用二分法设计一个求解方程x2–2=0的近似根的算法。
算法分析:回顾二分法解方程的过程,并假设所求近似根与准确解的差的绝对值不超过0.005,则不难设计出以下步骤:
第一步:令f(x)=x2–2。因为f(1)<0,f(2)>0,所以设x1=1,x2=2。
第二步:令m=(x1+x2)/2,判断f(m)是否为0,若则,则m为所长;若否,则继续判断f(x1)·f(m)大于0还是小于0。
第三步:若f(x1)·f(m)>0,则令x1=m;否则,令x2=m。
第四步:判断|x1–x2|<0.005是否成立?若是,则x1、x2之间的任意取值均为满足条件的近似根;若否,则返回第二
点评:渗透循环的思想,为后面教学做铺垫。
变式训练3 给出求1+2+3+4+5的一个算法.
解: 算法1 按照逐一相加的程序进行.
第一步:计算1+2,得到3;
第二步:将第一步中的运算结果3与3相加,得到6;
第三步:将第二步中的运算结果6与4相加,得到10;
第四步:将第三步中的运算结果10与5相加,得到15.
算法2 运用公式直接计算.
第一步:取=5;
第二步:计算;
第三步:输出运算结果.
算法3 用循环方法求和.
第一步:使,;
第二步:使;
第三步:使;
第四步:使;
第五步:如果,则返回第三步,否则输出.
点评:一个问题的算法可能不唯一.
4.回顾小结
1.算法的概念:对一类问题的机械的、统一的求解方法.算法是由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题.
2.算法的重要特征:
(1)有限性:一个算法在执行有限步后必须结束;
(2)确定性:算法的每一个步骤和次序必须是确定的;
(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.
(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的
算法是毫无意义的.
5.课后作业
写出求的一个算法
解:第一步:使,;
第二步:使;
第三步:使;
第四步:使;
第五步:使;
第六步:如果,则返回第三步,否则输出.
1.1.1. 算法的概念
课前预习学案
一、预习目标:了解算法的含义,体会算法的思想。
二、预习内容:
1.算法的概念及其特点
2.判断一个数为质数的算法设计
三、提出疑惑:如何快速准确的写出一个问题的算法?
课内探究学案
一、学习目标:
1.了解算法的含义,体会算法的思想;
2.能够用自然语言叙述算法;
3.知道算法应满足的要求。
二、学习重点:算法的含义、判断一个数为质数的算法设计。
学习难点:把自然语言转化为算法语言。
三、学习过程:
(一)、自主学习:
1.算法的概念
2.算法的重要特征:
(二)、例题分析:
例1. 任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定
变式训练1:一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法。
例2 给出求解方程组的一个算法.
变式训练2:写出求过两点M(-2,-1)、N(2,3)的直线与坐标轴围成面积的一个算法。
例3 用二分法设计一个求解方程x2–2=0的近似根的算法。
变式训练3 给出求1+2+3+4+5的一个算法
(三)、回顾小结:
(1)算法的概念
(2)算法的重要特征
(四)、当堂检测:
写出求的一个算法
解:第一步:使,;
第二步:使;
第三步:使;
第四步:使;
第五步:使;
第六步:如果,则返回第三步,否则输出.
课后练习与提高:
1. 下列关于算法的说法中,正确的是( ).
   A. 算法就是某个问题的解题过程 B. 算法执行后可以不产生确定的结果
   C. 解决某类问题的算法不是惟一的 D. 算法可以无限地操作下去不停止
2.有一堆形状大小相同的珠子,其中只有一粒质量比其他的轻,某同学利用科学的算法,两次利用天平找出这粒最轻的珠子,则这堆珠子最多有多少粒( )
A. 4 B.5 C.7 D.9
3下列各式中的S值不可以用算法求解的是( )
A.S=1+2+3+4
B.S=1+2+3+4+….
C.S=
D.S=1+2+3+4+…+100
4.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99。求它的总分和平均分的一个算法为:
第一步:取A=89,B=99;
第二步:
第三步:
第四步:输出计算结果。
5.写出解方程2x+3=0的算法。
第一步:
第二步:
第三步:
6. 给出一个判断点P是否在直线y=x-1上的一个算法。
PAGE
5§1.1.1 算法的概念
学习目标
1、了解算法的含义,体会算法的思想,
2、掌握正确的算法应满足的要求。
重点难点
重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
难点:把自然语言转化为算法语言。
学法指导
算法是建立在解法基础上的操作过程,算法不一定要有运算结果,问题答案可以由计算机解决.设计一个解决某类问题的算法的核心内容是设计算法的步骤,它没有一个固定的模式,但有以下几个基本要求:
(1)符合运算规则,计算机能操作;
(2)每个步骤都有一个明确的计算任务;
(3)对重复操作步骤作返回处理;
(4)步骤个数尽可能少;
(5)每个步骤的语言描述要准确、简明。
问题探究
知识探究(一):算法的概念
思考1:在初中,对于解二元一次方程组你学过哪些方法?
思考2:用加减消元法解二元一次方程组
的具体步骤是什么?
第一步,①+②×2,得 5x=1 . ③
第二步,
第三步,
第四步,
第五步,
思考3:参照上述思路,一般地,解方程组
的基本步骤是什么?
第一步,
第二步,
第三步,
第四步,
第五步,
思考4:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”。我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?
思考5:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的。
你认为:
(1)这些步骤的个数是有限的还是无限的?
(2)每个步骤是否有明确的计算任务?
思考6:有人对哥德巴赫猜想“任何大于4的偶数都能写成两个质数之和”设计了如下操作步骤:
第一步,检验6=3+3,
第二步,检验8=3+5,
第三步,检验10=5+5,
……
利用计算机无穷地进行下去!
请问:这是一个算法吗?
思考7:根据上述分析,你能归纳出算法的概念吗?
知识探究(二):算法的步骤设计
思考1:如果让计算机判断7是否为质数,如何设计算法步骤?
第一步,用2除7,得到余数1,所以2不能整除7.
第二步,
第三步,
第四步,
第五步,
因此,7 质数。
思考2:如果让计算机判断35是否为质数,如何设计算法步骤?
第一步,
第二步,
第三步,
第四步,
第五步,
因此,35 质数。
思考3:整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?
思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤。
(1)用i表示2~88中的任意一个整数,并从2开始取数;
(2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i+1替代,再执行同样的操作;
(3)这个操作一直进行到i取88为止.
你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?
第一步,令i=2;
第二步,用 除89,得到余数r;
第三步,若r=0,则89 质数,结束算法;若r≠0,将i用i+1替代;
第四步,判断“i>88”是否成立?若是,则89 质数,结束算法;否则,返回第二步.
思考5:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?
第一步,给定一个大于2的整数n;
第二步,
第三步,
第四步,
第五步,
理论迁移
例 设函数f(x)的图象是一条连续不断的曲线,写出用“二分法”求方程 的一个近似解的算法。
第一步,取函数,给定精确度d.
第二步,确定区间[a,b],满足 .
第三步,
第四步,若,则含零点的区间为 ,否则,含零点的区间为 . 将新得到的含零点的区间仍记为[a,b];
第五步,
目标检测
下面的结论正确的是 ( )
一个程序的算法步骤是可逆的
一个算法可以无止境地运算下去的
完成一件事情的算法有且只有一种
设计算法要本着简单方便的原则
下面对算法描述正确的一项是 ( )
A.算法只能用自然语言来描述
B.算法只能用图形方式来表示
C.同一问题可以有不同的算法
D.同一问题的算法不同,结果必然不同
3、下面哪个不是算法的特征( )
A.抽象性 B.精确性
C.有穷性 D.唯一性
4、算法的有穷性是指 ( )
A.算法必须包含输出
B.算法中每个操作步骤都是可执行的
C.算法的步骤必须有限
D.以上说法均不正确
5、早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(10min)、听广播(8min)几个步骤,从下列选项中选最好的一种算法 ( )
A.S1洗脸刷牙、S2刷水壶 、S3烧水、S4泡面、S5吃饭、S6听广播
B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播
C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、
S4吃饭同时听广播
D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶
6、看下面的四段话,其中不是解决问题的算法是
( )
A.从济南到北京旅游,先坐火车,再坐飞机抵达
B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1
C.方程有两个实根
D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15
7、已知直角三角形两直角边长为,,求斜边长的一个算法分下列三步:
①计算;②输入直角三角形两直角边
长,的值;
③输出斜边长的值,其中正确的顺序是 ( )
A.①②③ B.②③①
C.①③② D.②①③
8、若在区间内单调,且,则在区间内 ( )
A.至多有一个根
B.至少有一个根
C.恰好有一个根
D.不确定
9、写出求1+2+3+4+5+6+…+100的一个算法.可运用公式1+2+3+…+=直接计算.
第一步______①_______;
第二步_______②________;
第三步 输出计算的结果.
10、写出1×2×3×4×5×6的一个算法.
纠错矫正
总结反思
※自我评价( )
A、课前自主学习认真,学案完成很好;
你真棒,继续坚持。
B、课前自主学习一般,学案完成良好;
下次争取做的更好。
C、课前自主学习较差,学案空白较多;
注意学习方法,提高学习效率。
PAGE
1§3.3.1 几何概型(一)
学习目标
(1)正确理解几何概型的概念;
(2)掌握几何概型的概率公式:

(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是
几何概型;
重点难点
重点: 几何概型的概念、公式及应用.
难点: 对几何概型的理解.
学法指导
几何概型概率求解过程:
①适当选择观察角度,确定几何度量的种类:长度(或面积,角度,体积);
②把基本事件空间转化为与之对应的区域;
③把事件A转化为与之对应的区域;
④如果事件A对应的区域不好处理,可以利用对立事件概率公式逆向思维;
⑤利用概率公式计算.
知识链接
1.基本事件的两个特点:(1)任何两个基本事件是互斥的。(2)任何事件(除不可能事件)都可以表示成基本事件的和.
2.古典概型有两个特征:有限性和等可能性.
问题探究
【提出问题】
在现实生活中,常常会遇到试验的所有可能结果是无穷多的情况,这时就不能用古典概型来计算事件发生的概率.对此,我们必须学习新的方法来解决这类问题.
【探究新知】(一):几何概型的概念
思考1:某班公交车到终点站的时间可能是11:30~12:00之间的任何一个时刻;往一个方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.这两个试验可能出现的结果是有限个,还是无限个?
若没有人为因素,每个试验结果出现的可能性是否相等?
思考2:有一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得的两段的长度都不小于1m的概率是多少?
分析:从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3m的绳子上除端点外的任意一点,记“剪得两段绳子长都不小于1m”事件A.
问题1 每一个基本事件是不是等可能发生的的?且能否看做线段上的一个点与其对应?
问题2 与每一个基本事件对应的这些点构成的几何区域D是什么?
问题3 事件A发生,剪刀应剪在什么位置?
问题4 事件A发生应与线段上什么样的点对应?这些点构成的几何区域d是什么?
问题5 几何区域D的长度?
问题6 d的长度占D的长度的几分之几?
结论:对于一个随机事件试验,我们将每一个基本事件理解为从某个特定的几何区域内任取一点(即找“对应点”),该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的一点,这里区域可以是线段、角、平面图形、立体图形等.用这种方法处理随机实验称为几何概型,
也即,如果 只 与 成比例,则称这样的概率模型为几何概型.
参照古典概型的特性,几何概型有哪两个基本特征?
(1)可能出现的结果有无限多个;
(2)每个结果发生的可能性相等.
思考5:某班公交车到终点站的时间等可能是11:30~12:00之间的任何一个时刻,那么“公交车在11:40~11:50到终点站”这个随机事件是几何概型吗?若是,怎样理解其几何意义?
【探究新知】(二):几何概型的概率
对于具有几何意义的随机事件,或可以化归为几何问题的随机事件,一般都有几何概型的特性,我们希望建立一个求几何概型的概率公式.
思考3:在玩转盘游戏中,对于下列两个转盘,甲获胜的概率分别是多少?你是怎样计算的?
思考4:在装有5升纯净水的容器中放入一个病毒,现从中随机取出1升水,那么这1升水中含有病毒的概率是多少?你是怎样计算的?
结论:一般地,在几何概型中试验的全部结果(即基本事件)所构成的区域记为D,记事件“该点落在其区域D内部一个区域d内”为事件A,则事件A发生的概率
思考5:向边长为1m的正方形内随机抛掷一粒芝麻,那么芝麻落在正方形中心和芝麻不落在正方形中心的概率分别是多少?(芝麻大小可忽略不计)由此能说明什么问题?
结论:概率为0的事件可能会发生,概率为1的事件不一定会发生,即.
【典型例题】 测量长度
对于两个平面区域d,D,且,区域D是线段或时间段时,记“该点落在区域d内” 为事件A,且事件A发生的概率只与线段或时间段的长度有关时,一般地有
例1 某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率.
分析:见课本P136下.
例2 某公共汽车站每隔10分钟有一辆汽车到达,乘客到达车站的时刻是任意的,求一个乘客候车时间不超过7分钟的概率.
分析:因为客车每10分钟一班,他在0到10分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关 ,这符合几何概型的条件.
拓展 某公共汽车站,每隔10分钟有一辆汽车出发,并且出发前在车站停靠3分钟,
⑴ 求乘客到站候车时间大于10分钟的概率;
⑵ 求乘客到站候车时间不超过10分钟的概率;
⑶ 求乘客到达车站立即上车的概率.
例3 在等腰中,在斜边上任取一点,求的概率.
分析:点随机地落在线段上,故线段为试验所有结果构成的区域.在上截取,则当点位于图2中线段内时,,故线段即为构成事件的区域.
总结:将此类几何概型问题 “长度”化是关键.
目标检测
1.在区间 [0,3]内随机地取一个数,则这个数大于2的概率是 ( )
A. B. C. D.
2.两地相距3m的木杆上系了一根拉直的绳子,并在绳子上挂一彩珠,则彩珠与两端距离都大于1m的概率是 ( )
A. B. C. D.
3.某路公共汽车5分钟一班准时到达某车站,任一人在该车站等车时间少于3分钟的概率是 ( )
A. B. C. D.
4.一个路口的红绿灯,红灯时间为30秒,黄灯时间为5秒,绿灯时间为40秒,当某人到达路口时看见红灯的概率是( )
A. B. C. D.
5.在长为12cm的线段AB上任取一点M,并以线段AM为边作正方形,则这个正方形的面积介于36cm2与81cm2之间的概率是
( )
A. B. C. D.
6.猪八戒每天早上7点至9点之间起床,它在7点半之前起床的概率______.(将问题转化为时间长度)
7. (选做)设p在[0,5]上随机地取值,求方程有实根的概率。
提示:点P在[0,5]上随机取值,故[0,5] 为试验所有结果构成的区域D,又一元二次方程有实数根,所以
【课堂小结】
1.几何概型是不同于古典概型的又一个最基本、最常见的概率模型,其概率计算原理通俗、简单,对应随机事件及试验结果的几何量可以是长度、角度、面积或体积.
2.如果一个随机试验可能出现的结果有无限多个,并且每个结果发生的可能性相等,那么该试验可以看作是几何概型.通过适当设置,将随机事件转化为几何问题,即可利用几何概型的概率公式求事件发生的概率.
3、使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例.
纠错矫正
总结反思
B
B
B
N
N
N
B
B
B
N
N
N
PAGE
1§1.3.2算法案例
————秦九韶算法
学习目标
1.了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。
2.理解数学算法与计算机算法的区别,理解计算机对数学的辅助作用。
重点难点
重点:理解秦九韶算法的思想。
难点:用循环结构表示算法的步骤。
学法指导
评价一个算法好坏的一个重要标志是运算的次数,如果一个算法从理论上需要超出计算机允许范围内的运算次数,那么这样的算法就只能是一个理论算法.在多项式求值的各种算法中,秦九韶算法是一个优秀算法.
问题探究
知识探究(一):秦九韶算法的基本思想
思考1:对于多项式,求的值. 若先计算各项的值,然后再相加,那么一共要做多少次乘法运算和多少次加法运算?
思考2:在上述问题中,若先计算的值,然后依次计算,,的值,这样每次都可以利用上一次计算的结果,那么一共做了多少次乘法运算和多少次加法运算?
小结:第二种做法和第一种做法相比,乘法的运算次数减少了,因而能提高运算效率。而且对于计算机来说,做一次乘法运算所需的时间比做一次加法运算需要的时间要长得多,因此第二种算法能更快的得到结果。
思考3:利用后一种算法求多项式的值,这个多项式应写成哪种形式?
思考4:对于由内向外逐层计算一次多项式的值,其算法步骤如何?
第一步,计算.
第二步,
第三步,

第步,计算
思考5:上述求多项式 的值的方法称为秦九韶算法,利用该算法求的值,一共需要多少次乘法运算,多少次加法运算?
思考6:在秦九韶算法中,记那么第步的算式是什么?
知识探究(二):秦九韶算法的程序设计
思考1:用秦九韶算法求多项式的值,可以用什么逻辑结构来构造算法?其算法步骤如何设计?
第一步,
第二步,
第三步,
第四步,
第五步,
思考2:该算法的程序框图如何表示?
思考3:该程序框图对应的程序如何表述?
理论迁移
例1 已知一个5次多项式为
用秦九韶算法求的值.
例2 阅读下列程序,说明它解决的实际问题是什么?
INPUT “x=”;a
n=0
y=0
WHLE n<5
y=y+(n+1)*a∧n
n=n+1
WEND
PRINT y
END
目标检测
1、利用秦九韶算法求多项式在的值时,在运算中下列哪个值用不到( )
A.164 B.3767
C.86652 D.85169
2、利用秦九韶算法计算多项式
当=4的值的时候,需要做乘法和加法的次数分别为( )
A.6,6 B.5,6
C.5,5 D.6,5
3、利用秦九韶算法求多项式在的值,写出详细步骤。
4、下图的框图是一古代数学家的一个算法的程序框图,它输出的结果s表示( )
A.的值
B.的值
C.的值
D.以上都不对
5、已知n次多项式
如果在一种算法中,计算(k=2,3,4,…,n)的值需要k-1次乘法,
(1)计算的值需要9次运算(6次乘法,3次加法),那么计算的值需要多少次运算?
(2)若采取秦九韶算法:
(k=0, 1,2,…,n-1),计算的值只需6次运算,那么计算的值共需要多少次运算?
(3)若采取秦九韶算法,设ai=i+1,i=0,1,…,n,求P5(2)(写出采取秦九韶算法的计算过程)
纠错矫正
总结反思
资料:秦九韶的生平
秦九韶(1202~1261年),字道古,南宋普州安岳(今四川省安岳县)人。
秦九韶的突出数学成就表现为四个方面:
(1)“大衍求一术”。
 即为一次同余式组解法。西方解决同类问题的理论是高斯于1801年建立的,比秦九韶晚了554年。他还把这种理论用于解决商功、利息、粟米、建筑等问题。
(2)线性方程组解法。
他在《数书九章》中解决了许多相当于线性方程组的问题,其中数字相当大,计算也很复杂。他在“均货推本”题草中,井然有序地写出厂解题过程,这种解法与高斯消元法本质相当,但比高斯早约600年。
(3)高次方程数值解法。
 他集秦汉以来“开方术”之大成,运用贾宪的“增乘开方法”,解决于数字高次方程有理数根和无理数根的近似值计算问题。他所设计的演算程序被称为“秦九韶方法”。  西方同类问题的探究始于19世纪,他比意大利的鲁菲尼、英国的霍纳要早五、六百年。
(4)“三斜求积”。
 他在《数书九章》中,依据分别为12、14、15的三边求出了相应的三角形面积,其方法具有一般性。这与西方的海伦公式是等价的。
※自我评价( )
A、课前自主学习认真,学案完成很好;
你真棒,继续坚持。
B、课前自主学习一般,学案完成良好;
下次争取做的更好。
C、课前自主学习较差,学案空白较多;
注意学习方法,提高学习效率。
开始
EMBED Equation.3 EMBED Equation.3
输入
输出S
结束
PAGE
12. 2.2 用样本的数字特征估计总体的数字特征
〖教学目标〗
1. 正确理解样本数据标准差的意义和作用,学会计算数据的标准差
2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释;
3. 会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识。
〖教学重难点〗
教学重点  用样本平均数和标准差估计总体的平均数与标准差。
教学难点  能应用相关知识解决简单的实际问题。
〖教学过程〗
一、复习回顾
作频率分布直方图分几个步骤?各步骤需要注意哪些问题?
二、创设情境
在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕
甲运动员﹕7,8,6,8,6,5,8,10,7,4;
乙运动员﹕9,5,7,8,7,6,8,6,7,7.
观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?上节课我们学习了用图表的方法来研究,为了从整体上更好地把握总体的规律,我们这节课要通过样本的数据对总体的数字特。
三、 新知探究
众数、中位数、平均数
众数—一组数中出现次数最多的数;在频率分布直方图中,我们取最高的那个小长方形横坐标的中点。
中位数——当一组数有奇数个时等于中间的数,当有偶数个时等于中间两数的平均数;在频率分布直方图中,是使图形左右两边面积相等的线所在的横坐标。
平均数——将所有数相加再除以这组数的个数;在频率分布直方图中,等于每个小长方形的面积乘以其底边中点的横坐标的和。
思考探究:
分别利用原始数据和频率分布直方图求出众数、中位数、平均数,观察所得的数据,你发现了什么
问题?为什么会这样呢?
你能说说这几个数据在描述样本信息时有什么特点吗?由此你有什么样的体会?
答:(1)从频率分布直方图得到的众数和中位数与从数据中得到的不一样,因为频率分布直方图损失了一部分样本信息,所以不如原始数据准确。
(2)众数和中位数不受极端值的影响,平均数反应样本总体的信息,容易受极端值的影响。
练一练:
假如你是一名交通部门的工作人员,你打算向市长报告国家对本市26个公路项目投资的平均资金数额,其中一条新公路的建设投资为2000万元人民币,另外25个项目的投资是20~100万元。中位数是25万元,平均数是100万元,众数是20万元。你会选择哪一种数字特征 来表示国家对每一个项目投资的平均金额?
解析:平均数。
标准差、方差
在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕
甲运动员﹕7,8,6,8,6,5,8,10,7,4;
乙运动员﹕9,5,7,8,7,6,8,6,7,7.
观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?
我们知道,。
两个人射击的平均成绩是一样的。那么,是否两个人就没有水平差距呢?(观察图2.2-7)直观上看,还是有差异的。很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据。
标准差
标准差是样本数据到平均数的一种平均距离,一般用s表示。
思考探究:
1、标准差的大小和数据的离散程度有什么关系?
2、标准差的取值范围是什么?标准差为0的样本数据有什么特点?
答:(1)显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小。
(2)从标准差的定义和计算公式都可以得出:。当时,意味着所有的样本数据
都等于样本平均数。
方差
在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差。
四、例题精析
例1:农场种植的甲乙两种水稻,在面积相等的两块稻田连续6年的年平均产量如下:
甲:900,920,900,850,910,920
乙:890,960,950,850,860,890
那种水稻的产量比较稳定?
[分析]采用求标准差的方法
解:
所以甲水稻的产量比较稳定。
点评:在平均值相等的情况下,比较方差或标准差。
变式训练:在某项体育比赛中,七位裁判为一选手打出的分数如下:
90 89 90 95 93 94 93
去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为
(A)92 , 2 (B) 92 , 2.8 (C) 93 , 2 (D) 93 , 2.8
【答案】B
【解析】由题意知,所剩数据为90,90,93,94,93,所以其平均值为
90+=92;方差为2.8,故选B。
例2、例1.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为
由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在
的人数是  .
(2)这20名工人中一天生产该产品数量的中位数  .
(3)这20名工人中一天生产该产品数量的平均数  .
点评:在直方图中估计中位数、平均数。
变式训练:
某医院急诊中心关于其病人等待急诊的时间记录如下:
等待时间(分钟)
人数 4 8 5 2 1
用上述分组资料计算得病人平均等待时间的估计值= ,病人等待时间的标准差的估计值=
五、反馈测评
1. 在一次知识竞赛中,抽取20名选手,成绩分布如下:
成绩 6 7 8 9 10
人数分布 1 2 4 6 7
则选手的平均成绩是 ( )
A.4 B.4.4 C.8 D.8.8
2.8名新生儿的身长(cm)分别为50,51,52,55,53,54,58,54,则新生儿平均身长的估计为 ,约有一半的新生儿身长大于等于 ,新生儿身长的最可能值是 .
3..样本的平均数为5,方差为7,则3的平均数、方差,标准差分别为
4.某工厂甲,乙两个车间包装同一产品,在自动包装传送带上每隔30min抽一包产品,称其重量是否合格,分别记录抽查数据如下:甲车间:102,101,99,103,98,99,98;乙车间:110,105,90,85,75,115,110.
(1)这样的抽样是何种抽样方法?
(2)估计甲、乙两车间的均值与方差,并说明哪个车间的产品较稳定.
六、课堂小结
1、在频率分布直方图中,如何求出众数、中位数、平均数?
2、标准差的公式;标准差的大小和数据的离散程度有什么关系?
〖板书设计〗
〖书面作业〗
课本 6 7
2.2.2 用样本的数字特征估计总体的数字特征
课前预习学案
一、预习目标:
通过预习,初步理解众数、中位数、平均数、标准差、方差的概念。
二、预习内容:
1、知识回顾:
作频率分布直方图分几个步骤?各步骤需要注意哪些问题?
2、众数、中位数、平均数的概念
众 数: ____________________________________________________________________
中位数:___________________________________________________________________
平均数:____________________________________________________________________
3.众数、中位数、平均数与频率分布直方图的关系:
众数在样本数据的频率分布直方图中,就是______________________________________
中位数左边和右边的直方图的________应该相等,由此可估计中位数的值。
平均数是直方图的___________.
4.标准差、方差
标准差 s=_________________________________________________________________
方 差s2=_________________________________________________________________
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标:
1. 能说出样本数据标准差的意义和作用,会计算数据的标准差
2. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释;
3. 会用样本的基本数字特征估计总体的基本数字特征,形成对数据处理过程进行初步评价的意识。
二、学习内容
1.众数、中位数、平均数
思考1:分别利用原始数据和频率分布直方图求出众数、中位数、平均数,观察所得的数据,你发现了什么问题?为什么会这样呢?
思考2: 你能说说这几个数据在描述样本信息时有什么特点吗?由此你有什么样的体会?
练一练:
假如你是一名交通部门的工作人员,你打算向市长报告国家对本市26个公路项目投资的平均资金数额,其中一条新公路的建设投资为2000万元人民币,另外25个项目的投资是20~100万元。中位数是25万元,平均数是100万元,众数是20万元。你会选择哪一种数字特征来表示国家对每一个项目投资的平均金额?
2. 标准差、方差
在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕
甲运动员﹕7,8,6,8,6,5,8,10,7,4;
乙运动员﹕9,5,7,8,7,6,8,6,7,7.
观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?
思考1:标准差的大小和数据的离散程度有什么关系?
思考2:标准差的取值范围是什么?标准差为0的样本数据有什么特点?
3、〖典型例题〗
例1.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为
由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在
的人数是  .
(2)这20名工人中一天生产该产品数量的中位数  .
(3)这20名工人中一天生产该产品数量的平均数  .
例2:农场种植的甲乙两种水稻,在面积相等的两块稻田连续6年的年平均产量如下:
甲:900,920,900,850,910,920
乙:890,960,950,850,860,890
那种水稻的产量比较稳定?
三、反思总结
1、 在频率分布直方图中,如何求出众数、中位数、平均数?
2、标准差的公式;标准差的大小和数据的离散程度有什么关系
四、当堂检测
在一次知识竞赛中,抽取20名选手,成绩分布如下:
成绩 6 7 8 9 10
人数分布 1 2 4 6 7
则选手的平均成绩是 ( )
A.4 B.4.4 C.8 D.8.8
2.8名新生儿的身长(cm)分别为50,51,52,55,53,54,58,54,则新生儿平均身长的估计为 ,约有一半的新生儿身长大于等于 ,新生儿身长的最可能值是 .
3.某医院急诊中心关于其病人等待急诊的时间记录如下:
等待时间(分钟)
人数 4 8 5 2 1
用上述分组资料计算得病人平均等待时间的估计值= ,病人等待时间的标准差的估计值=
4.样本的平均数为5,方差为7,则3的平均数、方差,标准差分别为
5.某工厂甲,乙两个车间包装同一产品,在自动包装传送带上每隔30min抽一包产品,称其重量是否合格,分别记录抽查数据如下:甲车间:102,101,99,103,98,99,98;乙车间:110,105,90,85,75,115,110.
(1)这样的抽样是何种抽样方法?
(2)估计甲、乙两车间的均值与方差,并说明哪个车间的产品较稳定.
课后练习与提高
1.某人5次上班途中所花的时间(单位:分钟)分别为已知这组数据的平均数为10,方差为2,则的值为( )
A.1 B.2 C.3 D.4
解:由平均数公式为10,得,则,又由于方差为2,则得
所以有,故选D.
2.某房间中10个人的平均身高为1.74米,身高为1.85米的第11个人,进入房间后,这11个人的平均身高是多少?
解:原来的10个人的身高之和为17.4米,所以,这11个人的平均身高为=1.75.即这11个人的平均身高为1075米
[例4]若有一个企业,70%的人年收入1万,25%的人年收入3万,5%的人年收入11万,求这个企业的年平均收入及年收入的中位数和众数
解:年平均收入为1(万);中位数和众数均为1万
3.下面是某快餐店所有工作人员的收入表:
老板 大厨 二厨 采购员 杂工 服务生 会计
3000元 450元 350元 400元 320元 320元 410元
(1)计算所有人员的月平均收入;
(2)这个平均收入能反映打工人员的月收入的一般水平吗?为什么?
(3)去掉老板的收入后,再计算平均收入,这能代表打工人员的月收入的水平吗?
(4)根据以上计算,以统计的观点对(3)的结果作出分析
一、众数、中位数、平均数
二、标准差、方差
例题讲解
练一练
小结
PAGE
2§1.3.1算法案例
————辗转相除法与更相减损术
学习目标
1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。
2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。
重点难点
重点:理解辗转相除法与更相减损术求最大公约数的方法。
难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。
学法指导
1.辗转相除法,就是对于给定的两个正整数,用较大的数除以较小的数,若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除法,直到大数被小数除尽为止,这时的较小的数即为原来两个数的最大公约数.
2. 更相减损术,就是对于给定的两个正整数,用较大的数减去较小的数,然后将差和较小的数构成新的一对数,继续上面的减法,直到差和较小的数相等,此时相等的两数即为原来两个数的最大公约数.
问题探究
知识探究(一):辗转相除法
思考1:18与30的最大公约数是多少?你是怎样得到的?
思考2:对于8251与6105这两个数,由于其公有的质因数较大,利用上述方法求最大公约数就比较困难.注意到8251=6105×1+2146,那么8251与6105这两个数的公约数和6105与2146的公约数有什么关系?
思考3:又6105=2146×2+1813,同理,6105与2146的公约数和2146与1813的公约数相等.重复上述操作,你能得到8251与6105这两个数的最大公约数吗?
思考4:上述求两个正整数的最大公约数的方法称为辗转相除法或欧几里得算法.一般地,用辗转相除法求两个正整数m,n的最大公约数,可以用什么逻辑结构来构造算法?其算法步骤如何设计?
第一步,给定两个正整数m,n(m>n).
第二步,
第三步,
第四步,
思考5:该算法的程序框图如何表示?
思考6:该程序框图对应的程序如何表述?
思考7:如果用当型循环结构构造算法,则用辗转相除法求两个正整数m,n的最大公约数的程序框图和程序分别如何表示?
知识探究(二):更相减损术
思考1:设两个正整数m>n,若m-n=k,则m与n的最大公约数和n与k的最大公约数相等.反复利用这个原理,可求得98与63的最大公约数为多少?
思考2:上述求两个正整数的最大公约数的方法称为更相减损术.一般地,用更相减损术求两个正整数m,n的最大公约数,可以用什么逻辑结构来构造算法?其算法步骤如何设计?
第一步,给定两个正整数m,n(m>n).
第二步,
第三步,
第四步,
思考3:该算法的程序框图如何表示?
思考4:该程序框图对应的程序如何表述?
知识探究(三):辗转相除法与更相减损术的区别
(1)都是求最大公约数的方法,计算上辗转相除法以 为主,更相减损术以 为主,计算次数上辗转相除法计算次数相对 ,特别当两个数字大小区别较大时计算次数的区别较明显。
(2)从结果体现形式来看,辗转相除法体现结果是 则得到,而更相减损术则以 相等而得到
理论迁移
例1 分别用辗转相除法和更相减损术求168与93的最大公约数.
辗转相除法:
更相减损术:
例2 求325,130,270三个数的最大公约数.
目标检测
1、在对16和12求最大公约数时,整个操作如下:(16,12)→(4,12)→(4,8)→(4,4),由此可以看出12和16的最大公约数是( )
A. 4 B. 12
C. 16 D. 8
2、下列各组关于最大公约数的说法中不正确的是( )
A.16和12的最大公约数是4
B.78和36的最大公约数是6
C.85和357的最大公约数是34
D.105和315的最大公约数是105
3、算法
S1  输入,x,y
S2  m=max{x,y}
S3  n=min{x,y}
S4  若m/n=[m/n]([x]表示x的整数部分)
则输出n,否则执行S5
S5  r=m-[m/n]*n
S6  m=n
S7  n=r
S8  执行S4
S9  输出n
上述算法的含义是         。
4、用辗转相除法求840与1785的最大公约数.
5、用更相减损术求612与468的最大公约数
6、分析算法,编出程序,求两个整数x(x≥0)和y(y>0)的整数商和余数(规定只能用加法和减法运算)。
纠错矫正
总结反思
※自我评价( )
A、课前自主学习认真,学案完成很好;
你真棒,继续坚持。
B、课前自主学习一般,学案完成良好;
下次争取做的更好。
C、课前自主学习较差,学案空白较多;
注意学习方法,提高学习效率。
PAGE
1§程序框图与算法的基本逻辑结构(一)
———顺序结构
学习目标
1、掌握程序框图的概念;
2、会用通用的图形符号表示算法;
3、掌握画程序框图的基本规则,能正确画出程序框图;
4、通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
重点难点
重点:程序框图的基本概念、基本图形符号和顺序结构
难点:教学综合运用框图知识正确地画出程序框图
学法指导
我们在学习这部分内容时,首先要弄清各种图形符号的意义,明确每个图形符号的使用环境,图形符号间的联结方式。例如“起止框”只能出现在整个流程图的首尾,它表示程序的开始或结束,其他图形符号也是如此,它们都有各自的使用环境和作用,这是我们在学习这部分知识时必须要注意的一个方面。
顺序结构的程序框图的基本特征:
(1)必须有两个起止框,穿插输入、输出框和处理框,没有判断框.
(2)各程序框从上到下用流程线依次连接.
(3)处理框按计算机执行顺序沿流程线依次排列.
知识链接
算法的概念和特征。
问题探究
知识探究(一):算法的程序框图
思考1:“判断整数n(n>2)是否为质数”的算法步骤如何?
第一步,给定一个大于2的整数n;
第二步,
第三步,
第四步,
第五步,
思考2:我们将上述算法用下面的图形表示:
上述表示算法的图形称为算法的程序框图又称 ,其中的多边形叫做 ,带方向箭头的线叫做 ,你能指出程序框图的含义吗?
用 、 及 来表示算法的图形.
思考3:在上述程序框图中,有4种程序框,2种流程线,它们分别有何特定的名称和功能? 试分别说明。
思考4:在逻辑结构上,“判断整数n(n>2)是否为质数”的程序框图由几部分组成?
知识探究(二):算法的顺序结构
思考1:任何一个算法各步骤之间都有明确的顺序性,在算法的程序框图中,由若干个 的步骤组成的逻辑结构,称为顺序结构,用程序框图可以表示为:
在顺序结构中可能会用到哪几种程序框和流程线?
思考2:若一个三角形的三条边长分别为, 令 ,
则三角形的面积
。你能利用这个公式设计一个计算三角形面积的算法步骤吗?
第一步,输入三角形三条边的边长
第二步,
第三步,
第四步,输出S.
思考3:上述算法的程序框图如何表示?
理论迁移
例 一个笼子里装有鸡和兔共m只,且鸡和兔共n只脚,设计一个计算鸡和兔各有多少只的算法,并画出程序框图表示.
目标检测
1.算法的三种基本结构是
A.顺序结构、条件结构、循环结构
B.顺序结构、流程结构、循环结构  
C.顺序结构、分支结构、流程结构
D.流程结构、循环结构、分支结构
2.程序框图中表示判断框的是
A.矩形框   B.菱形框
C.圆形框 D.椭圆形框
3.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是 ( )
A.一个算法只能含有一种逻辑结构
B.一个算法最多可以包含两种逻辑结构
C.一个算法必须含有上述三种逻辑结构
D.一个算法可以含有上述三种逻辑结构的任意组合
4、图中所示的是一个算法的流程图,已知,输出的,则的值是____________
5、 已知一个三角形的三边边长分别为2、3、4, 设计一个求它的面积算法,画出流程图。
6、某学生五门功课成绩为80、95、78、87、65。写出求平均成绩 的算法,画出流程图。
7、已知梯形的上底、下底和高分别为5、8、9,写出求梯形的面积的算法,画出流程图。
8、写出求1×3×5×7×9×11的算法,并画出流程图。
9、已知直角坐标系的两点A(-1,0),B(3,2),写出求直线AB的方程的一个算法,并画出流程图。
纠错矫正
总结反思
※自我评价( )
A、课前自主学习认真,学案完成很好;
你真棒,继续坚持。
B、课前自主学习一般,学案完成良好;
下次争取做的更好。
C、课前自主学习较差,学案空白较多;
注意学习方法,提高学习效率。
PAGE
1§2.1 抽样方法
目标检测
关于简单的随机抽样,下列说法中正确的是( )
简单随机抽样即随意抽取个体
B、研究者在简单随机抽样时应精心挑选个体,以使样本更具有代表性
C、遵循机会均等的原则从总体中抽取样本,使样本能较好地代表总体特征
D、为确保样本具有更好的代表性,样本量应越大越好
要完成下列两项调查:
①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户来调查社会购买力的某项指标;
②从某中学高一年级的12名体育特长生中选出3人来调查他们的学习负担情况。
分别应采用的抽样方法是 ( )
①用简单随机抽样②用系统抽样
B、①用分层抽样②用简单随机抽样
C、①用系统抽样②用分层抽样
D、①②都用分层抽样
3、某校一个年级有12个班,每个班有50名学生,每班的学号都是1~50。为了了解学生的课外兴趣爱好,要求对每班学号为15,20的学生进行问卷调查,那么这里采用的抽样方法是 ( )
A、抽签法 B、系统抽样法
C、分层抽样法 D、随机数表法
从某鱼池中捕得1200条鱼,做了记号之后,再放回池中。经过适当的时间后,再从池中捕得1000条鱼,检查其中有记号的鱼为100条。试估计鱼池中共有鱼的条数为 ( )
A、12000 B、10000 C、1300 D、13000
将序号①~⑩填入下表中:①总体中的个数较多②总体中的个数较少③总体中有差异明显的几部分组成④在起始部分抽样时采用简单随机抽样⑤将总体均分成几个部分,按事先规定的规则在各部分中抽取⑥从总体中逐个抽取⑦各层抽样时采用简单随机抽样⑧将总体均分成几个部分,分层进行抽取⑨抽样过程中每个个体被抽到的机会都相等⑩各层抽样时,采用系统抽样
类别 共同点 各自特点 相互联系 适应范围
简单随机抽样 不填
系统抽样
分层抽样
某单位有技工18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n的样本;如果采用系统抽样和分层抽样方法抽取,都不用剔出个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中剔出一个个体,则样本容量n为 。
将一个总体中的100个个体编号为1,2,3,…,100。从小到大依次平均分在10个小组,组号依次为0,1,2,…,9.要用系统抽样方法抽取一个容量为10的样本,规定如果在第0小组随机抽取的号码为m,那么第小组抽取号码的个位数为m+k或m+k-10(当),问:当m=6时,所取样本的第8个号码是多少
某校有高中生1600人,其中高一学生520人,高二学生500人,高三学生580人。如果想通过调查其中的80人来了解学生的消费情况,考虑到学生的年级高低消费情况有明显差别,而同一年级内消费情况差异较小,在这种情况下应选用哪种抽样方法?其中高三学生应抽查多少人?
某校高一年级有500名学生,第一次学段考试后,学校希望通过考试详细分析学生学习中存在的问题,计划抽取一个容量为20的样本,在这种情况下应选用哪种抽样方法?请你设计出具体操作步骤。
某地区有四所重点中学,四校共有20000名学生,且这四所学校的学生人数之比3:2.8:2.2:2.为了估计某次全市调研考试的数学平均成绩,现采用分层抽样的方法抽取一个容量为200的样本,且这四所学校各自抽取的学生的数学平均成绩分数分别为70,75,80,85,试估计该地区的数学平均成绩。3. 1.2概率的意义
一、教材分析
(1)正确理解概率的含义。
在概率定义的基础上,从以下两个方面帮助学生正确理解概率的含义,澄清日常生活中遇到的一些错误认识:
①试验:通过抛掷一枚质地均匀的硬币,解释正面朝上的概率为0.5含义,纠正“连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上”的错误认识;通过从盒子中摸球的试验,解释中奖概率为 的含义,纠正“如果中奖率为 ,那么买1000张彩票一定能中奖”的错误认识。
②随机性与规律性:解释每次试验结果的随机性,多次试验结果的规律性,进一步说明频率与概率之间的区别。
(2)了解概率在实际问题中的应用。
①概率与公平性的关系:利用概率解释游戏规则的公平性,判断实际生活中的一些现象是否合理。可以从正反两个方面举例让学生进行判断。
②概率与决策的关系:介绍统计中极大似然法思想的概率解释,并清楚它的概率基础:在一次试验中,概率大的事件发生的可能性大。这种思想是“风险与决策”中经常使用的。
③概率与预报的关系:通过天气预报、地震预报、股票预报等实例,让学生了解概率在预报中的作用。
二、教学目标
1.从频率稳定性的角度,了解概率的意义.
2.学生经历试验,统计,分析,归纳,总结,进而了解并感受概率的定义的过程,引导学生从数学的视角,观察客观世界;用数学的思维,思考客观世界;以数学的语言,描述客观世界.
3.学生经历试验,整理,分析,归纳,确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准,新颖,独特的思维方式所震撼..
三、教学重点难点
重点:概率的正确理解。
难点:用概率知识解决现实生活中的具体问题。
四、学情分析
回忆上节课有关概率的定义,通过试验解释概率的含义,纠正日常生活中的一些错误认识,介绍概率与公平性、概率与决策、概率与预报方面的实例。
五、教学方法
1.举例法
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:预习课本,初步把握概率的定义。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标。
1在条件S下进行n次重复实验,事件A出现的频数和频率的含义分别如何?
2.概率是反映随机事件发生的可能性大小的一个数据,概率与频率之间有什么联系和区别?它们的取值范围如何?
联系:概率是频率的稳定值;
区别:频率具有随机性,概率是一个确定的数;范围:[0,1].
3.大千世界充满了随机事件,生活中处处有概率.利用概率的理论意义,对各种实际问题
作出合理解释和正确决策,是我们学习概率的一个基本目的.
(三)合作探究、精讲点拨。
1.概率的正确理解
思考1:连续两次抛掷一枚硬币,可能会出现哪几种结果?
“两次正面朝上”,“两次反面朝上”,“一次正面朝上,一次反面朝上”.
思考2:抛掷—枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷
一枚硬币,一定是出现一次正面和一次反面吗?
探究:试验:全班同学各取一枚同样的硬币,连续抛掷两次,观察它落地后的朝向.
将全班同学的试验结果汇总,计算三种结果发生的频率.你有什么发现?随着试验次数的增多,三种结果发生的频率会有什么变化规律?
“两次正面朝上”的频率约为0.25,“两次反面朝上” 的频率约为0.25,
“一次正面朝上,一次反面朝上” 的频率约为0.5.
思考3:围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.
不一定.摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑子,也可能没有一次摸到黑子,摸到黑子的概率为1-0.910≈0.6513
思考4:如果某种彩票的中奖概率为 0.001,那么买1000张这种彩票一定能中奖吗?为什么?
不一定,理由同上. 买1 000张这种彩票的中奖概率约为1-0.9991000≈0.632,即有63.2%的可能性中奖,但不能肯定中奖.
2.游戏的公平性
在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?
裁判员拿出一个抽签器,它是-个像大硬币似的均匀塑料圆板,一面是红圈,一面是绿圈,然后随意指定一名运动员,要他猜上抛的抽签器落到球台上时,是红圈那面朝上还是绿圈那面朝上。如果他猜对了,就由他先发球,否则,由另一方先发球. 两个运动员取得发球权的概率都是0.5.
探究:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大?
(图参考课本115页)
不公平,因为各班被选中的概率不全相等,七班被选中的概率最大.
3.决策中的概率思想
思考:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?(参考课本115页)
这枚骰子的质地不均匀,标有6点的那面比较重,会使出现1点的概率最大,更有可能连续10次都出现1点. 如果这枚骰子的质地均匀,那么抛掷一次出现1点的概率为,连续10次都出现1点的概率为 这是一个小概率事件,几乎不可能发生.
如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.
4.天气预报的概率解释
思考:某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释中哪一个能代表气象局的观点?
明天本地有70%的区域下雨,30%的区域不下雨?
明天本地下雨的机会是70%
降水概率≠降水区域;明天本地下雨的可能性为70%.
答案参考课本117页
思考:天气预报说昨天的降水概率为 90%,结果昨天根本没下雨,能否认为这次天气预报不准确?如何根据频率与概率的关系判断这个天气预报是否正确?
不能,概率为90%的事件发生的可能性很大,但“明天下雨”是随即事件,也有可能不发生.收集近50年同日的天气情况,考察这一天下雨的频率是否为90%左右.
5试验与发现
奥地利遗传学家孟德尔从1856年开始用豌豆作试验,他把黄色和绿色的豌豆杂交,第一年收获的豌豆都是黄色的.第二年,他把第一年收获的黄色豌豆再种下,收获的豌豆既有黄色的又有绿色的.同样他把圆形和皱皮豌豆杂交,第一年收获的豌豆都是圆形的.第二年,他把第一年收获的圆形豌豆再种下,收获的豌豆却既有圆形豌豆,又有皱皮豌豆.类似地,他把长茎的豌豆与短茎的豌豆杂交,第一年长出来的都是长茎的豌豆. 第二年,他把这种杂交长茎豌豆再种下,得到的却既有长茎豌豆,又有短茎豌豆.试验的具体数据如下:
豌豆杂交试验的子二代结果
性状 显性 显性 隐性 隐性
子叶的颜色 黄色 6022 绿色 2001
种子的性状 圆形 5474 皱皮 1850
茎的高度 长茎 787 短茎 277
你能从这些数据中发现什么规律吗?
孟德尔的豌豆实验表明,外表完全相同的豌豆会长出不同的后代,并且每次试验的显性与隐性之比都接近3︰1,这种现象是偶然的,还是必然的?我们希望用概率思想作出合理解释.
6.遗传机理中的统计规律
在遗传学中有下列原理:
(1)纯黄色和纯绿色的豌豆均由两个特征因子组成,下一代是从父母辈中各随机地选取一个特征组成自己的两个特征.
(2)用符号AA代表纯黄色豌豆的两个特征,符号BB代表纯绿色豌豆的两个特征.
(3)当这两种豌豆杂交时,第一年收获的豌豆特征为:AB.把第一代杂交豌豆再种下时,第二年收获的豌豆特征为: AA,AB,BB.
(4)对于豌豆的颜色来说.A是显性因子,B是隐性因子.当显性因子与隐性因子组合时,表现显性因子的特性,即AA,AB都呈黄色;当两个隐性因子组合时才表现隐性因子的特性,即BB呈绿色.
在第二代中AA,AB,BB出现的概率分别是多少?黄色豌豆与绿色豌豆的数量比约为多少?
P(AA)=0.5×0.5=0.25 p(BB)=0.5×0.5=0.25
P(AB)=1-0.25-0.25=0.5
黄色豌豆(AA,AB)︰绿色豌豆(BB)≈3︰1
(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(五)发导学案、布置预习。
我们已经学习了概率的意义,那么,概率还具有那些性质呢?在下一节课我们一起来学习概率的基本性质。这节课后大家可以先预习这一部分,如何得出恰当的结论的。并完成本节的课后练习及课后延伸拓展作业。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计
1.概率的正确理解
2.游戏的公平性
3.决策中的概率思想
4.天气预报的概率解释
5试验与发现
十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.
2.孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,
这是一种科学的研究方法,我们应认真体会和借鉴.
3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
十一、学案设计(见下页)
3.1.2概率的意义
课前预习学案
一、预习目标
1.从频率稳定性的角度,了解概率的意义.
2.怎样从数量上刻画一个随机事件发生的可能性的大小.
二、预习内容
知识生成:
1.概率的正确理解:概率是描述随机事件发生的 的度量,
事件A的概率P(A)越大,其发生的可能性就越 ;
概率P(A)越小,事件A发生的可能性就越 .
2.概率的实际应用:知道随机事件的概率的大小,有利我们做出正确的 ,
还可以 某些决策或规则的正确性与公平性.
3.游戏的公平性: 应使参与游戏的各方的机会为等可能的, 即各方的 相等,
根据这一要求确定游戏规则才是 的.
4.决策中的概率思想:以使得样本出现的 最大为决策的准则.
5.天气预报的概率解释:降水的概率是指降水的这个随机事件出现的 ,
而不是指某些区域有降水或能不能降水.
6.遗传机理中的统计规律: (看书P118)
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1.概率的正确理解;
2.概率思想的实际应用.
二、学习重难点:
重点:概率的正确理解
难点:用概率知识解决现实生活中的具体问题。
三、学习过程
1、概率的正确理解
问题1:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两 次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。你认为这种想法正确吗?
试验:让我们做一个抛掷硬币的试验,观察它落地时的情况。
每人各取一枚同样的硬币,连续两次抛掷,观察它落地后的朝向,并记录下结果,填入下表。重复上面的过程10次,把全班同学试验结果汇总,计算三种结果发生的频率。
姓名 试验次数 两次正面朝上的次数、比例 两次反面朝上的次数、比例 一次正面朝上,一次反面朝上的次数、比例
事实上, “两次均反面朝上”的概率为 , “两次均反面朝上”的概率也为 , “正面朝上、反面朝上各一次”的概率为 。
问题2:有人说,中奖率为 1/1000的彩票,买1000张一定中奖,这种理解对吗
2.游戏的公平性
在一场乒乓球比赛前,必须要决定由谁先发球,并保证具有公平性,你知道
裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?
探究:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大?
3.决策中的概率思想
思考:如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?(参考课本115页)
4.天气预报的概率解释
思考:某地气象局预报说,明天本地降水概率为70%,你认为下面两个解释中哪一个能代表气象局的观点?明天本地有70%的区域下雨,30%的区域不下雨?明天本地下雨的机会是70%
5.试验与发现
你能从课本上这些数据中发现什么规律吗?
6遗传机理中的统计规律
四、反思总结
1.概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.
2.孟德尔通过试验、观察、猜想、论证,从豌豆实验中发现遗传规律是一种统计规律,这是一种科学的研究方法,我们应认真体会和借鉴.
3.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养
五、当堂检测
1.生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%,结果根本一点雨都没下,天气预报也太不准确了。”学了概率后,你能给出解释吗?
2. 围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再
放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.
3.“一个骰子掷一次得到2的概率是1/6,这说明一个骰子掷6次会出现一次2”,这种说法对吗?说说你的理由。
4.某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?
参考答案:
1. 天气预报的“降水”是一个随机事件,概率为90%指明了“降水”这个随机事件发生的概率,我们知道:在一次试验中,概率为90%的事件也可能不出现,因此,“昨天没有下雨”并不说明“昨天的降水概率为90%”的天气预报是错误的。
2. 不一定.摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,
所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑子,也可能
没有一次摸到黑子,摸到黑子的概率为1-0.910≈0.6513
3. 这种说法是错误的,因为掷骰子一次得到2是一个随机事件,在依次实验中他可能发生也可能不发生,掷6次骰子就是做6次实验,每次实验的结果都是随机的,可能出现2也可能不出现2,所以6次实验中有可能一次2都不出现,也可能出现1次,2次。。。。6次。
4. 此人中靶的概率约为0.9;此人射击1次,中靶的概率为0.9;同理, 中10环的概率约为0.2. 。
课后练习与提高
1.一对夫妇前三胎生的都是女孩,则第四胎生一个男孩的概率是 ( )
A.0 B.0.5 C.0.25 D.1
2.某气象局预报说,明天本地降雪概率为90%,则下列解释中正确的是 ( )
A.明天本地有90%的区域下雪,10%的区域不下雪
B.明天下雪的可能性是90%
C.明天本地全天有90%的时间下雪,10%的时间不下雪
D.明天本地一定下雪
3.某位同学在做四选一的12道选择题时,他全不会做,只好在各题中随机选一个答案,若每道题选对得5分,选错得0分,你认为他大约得多少分 ( )
A.30分 B.0分 C.15分 D.20分
4.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是 。
5.在一个试验中。一种血清被注射到500只豚鼠体内。最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞。被注射这种血清之后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠全部被感染。根据试验结果,估计具有下列类型的细胞的豚鼠被这种血清感染的概率:(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞。
PAGE
8§3.3.2 几何概型的应用与均匀随机数的产生
学习目标
1.理解并掌握几何概型的概率公式和其应用解题的关键;
2.掌握利用计算器(计算机)产生均匀随机数的方法;
3.会利用均匀随机数解决具体的有关概率的问题.
重点难点
重点: 1.应用几何概型概率公式解决几何概型问题;
2.掌握利用计算器(计算机)产生均匀随机数的方法
难点: 利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.
学法指导
通过例题和练习在应用中巩固几何概型概率公式解题的关键(即时刻明确构成事件A的基本要素是“点”,而试验的全部结果是一个几何图形);通过模拟试验,感知应用数字解决问题的方法。
知识链接
几何概型的定义,以及相关的古典概型中的随机模拟方法.
问题探究
【提出问题】
1.随机试验的结果有无限多个,当再满足
时,
我们称这样的概率模型为几何概型.
2.几何概型中,事件A的概率计算公式为:
P(A)=.
【巩固提高】
例1 如图1所示,平面上画了一些彼此相距的平行线,把一枚半径的硬币任意掷在这个平面上,求硬币不与任一条平行相碰的概率.
分析:硬币不与直线相碰,可以看作硬币的中心到直线的距离,这样就可以把问题转化为中心到较近的一条直线的距离满足的
概率问题。因为硬币是任意掷在平面上的,所以硬币中心到较近一条直线的距离在到之间是等可能的任意一个值,所以这符合几何概型的条件。
注:解决本题的关键是把硬币与直线的关系转化为硬币中心到直线的距离,从而转化为长度型的几何概率问题.
例2 在区间上随机取两个数,求关于的一元二次方程有实根的概率.
分析:题目中有两个随机变量,这时一般构造二维几何模型(即利用直角坐标系),将问题转化为面积型的几何概率问题求解.
注:要注意对“等可能”的理解.
【探究新知】
我们可以利用计算器或计算机产生整数值随机数,还可以通过随机模拟方法求古典概型的概率近似值,对于几何概型,我们也可以进行上述工作.
一个人到单位的时间可能是8:00~9:00之间的任何一个时刻,若设定他到单位的时间为8点过X分种,则X可以是0~60之间的任何一刻,并且是等可能的.我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.
思考1:一般地,X为[a,b]上的均匀随机数的含义如何?X的取值是离散的,还是连续的?
我们常用的是[0,1]上的均匀随机数,可以利用计算器产生(见教材P137).
思考2:如何利用计算机产生0~1之间的均匀随机数?
计算机只能产生[0,1]上的均匀随机数,如果试验的结果是区间[a,b]上等可能出现的任何一个值,那么就需要产生[a,b]上的均匀随机数.
思考3:请问你有什么好办法利用计算机来产生[2,6]上的均匀随机数?[a,b]上的均匀随机数又如何产生呢?(行胜于言,试一试吧!)
【理论迁移】
认真阅读思考教材例2的解析,尤其是方法二.
例3 在正方形中随机撒一把豆子,如何用随机模拟的方法估计圆周率的值.
提示:每个豆子落在正方形内任何一点是等可能的,那么落在每个区域的豆子数就与这个区域的面积成正比,这样出现了一个关键的等量关系.
例4 利用随机模拟方法计算由y=1和y=x2 所围成的图形的面积.
提示:面积比等于落在其中点的个数比.
例题要点:
1.利用几何概型的概率公式,结合随机模拟试验,可以解决求概率、面积、参数值等一系列问题,体现了数学知识的应用价值.
2.用随机模拟试验不规则图形的面积的基本思想是,构造一个包含这个图形的规则图形作为参照,通过计算机产生某区间内的均匀随机数,再利用两个图形的面积之比近似等于分别落在这两个图形区域内的均匀随机点的个数之比来解决.
【课堂小结】
1.在区间[a,b]上的均匀随机数与整数值随机数的共同点都是等可能取值,不同点是均匀随机数可以取区间内的任意一个实数,整数值随机数只取区间内的整数.
2.利用计算机和线性变换Y=X*(b-a)+a,可以产生任意区间[a,b]上的均匀随机数,其操作方法要通过上机实习才能掌握.
目标检测
1.设A为圆周上一定点,在圆周上等可能地任取一点与A连结,则弦长超过半径和半径倍的概率分分别为 .
2.(选做)已知半圆O的直径AB=2R,作平行于AB的弦MN,则MN3.有一个半径为5的圆,现将一枚半径为1的硬币向圆投去,如果不考虑硬币完全落在圆外的情况,则硬币完全落在圆内的概率是 .
4.将[0,1]内的均匀随机数转化为[-2,6]内的均匀随机数,需实施的变换为( )
A. B.
C. D.
5.在图的正方形中随机撒一把芝麻, 用随机模拟的方法来估计圆周率的值.如果撒了1000个芝麻,落在圆内的芝麻总数是776颗,那么这次模拟中的估计值是_________.(精确0.001)
6. (选做) 若过正三角形的顶点任作一条直线,则与线段相交的概率为 .
7.例4 随机地向半圆内掷一点,点落在半圆内任何区域的概率均与该区域的面积成正比,求该点与原点连线与x轴的夹角小于的概率 .
8.教材第4题.
纠错矫正
总结反思
2
图1
r
M
O
60
20
60
20
x
0
y
例3图
例4图
例4图
PAGE
12. 1.3分层抽样教案
【教学目标】
1.通过实例知道分层抽样的概念,意义及分层抽样适用的情景.
2.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.
3.知道分层抽样过程中总体中的各个个体被抽取的机会相等.
4.区分简单随机抽样 系统抽样和分层抽样,并选择适当正确的方法进行抽样.
【教学重难点】
教学重点: 正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题.
教学难点:应用分层抽样解决实际问题, 并恰当的选择三种抽样方法解决现实生活中的
抽样问题.
【教学过程】
复习回顾.
系统抽样有什么优缺点 它的一般步骤是什么
答:优点是比简单随机抽样更易操,缺点是系统抽样有规律性,样本有可能代表性很差;
(1)将总体的N个个体编号
(2)确定分段间隔k,对编号进行分段,当(n是样本容量)是整数,取k=; 不是整数时,先从总体中随机的剔除几个个体,使得总体中剩余的个体数能被样本
容量整除.
(3)在第一段用简单随机抽样确定起始个体的编号L(L≤k)
(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体编号L+k,
再加上k得到第3个个体编号L+2k,这样继续下去,直到获取整个样本.
二.创设情境.
假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本
答: 高中生2400×1%=24人,初中生10900×1%=109人,小学生11000×1%=110人,作为样本.这样,如果从学生人数这个角度来看,按照这种抽样方法所获得样本结构与这一地区全体中小学生的结构是基本相同的.
三.探究新知.
(一)分层抽样的定义.
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样
【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:
(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复 不遗漏的原则
(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等,即保持样本结构与总体结构一致性
(二)分层抽样的步骤:
(1)分层:按某种特征将总体分成若干部分
(2)按比例确定每层抽取个体的个数
(3)各层分别按简单随机抽样或系统抽样的方法抽取
(4)综合每层抽样,组成样本
【说明】
(1)分层需遵循不重复 不遗漏的原则
(2)抽取比例由每层个体占总体的比例确定
(3)各层抽样按简单随机抽样或系统抽样的方法进行
探究交流
(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行 ( )
A 每层等可能抽样
B 每层不等可能抽样
C 所有层按同一抽样比等可能抽样
(2)如果采用分层抽样,从个体数为N的总体中抽取一个容量为n
样本,那么每个个体被抽到的可能性为 ( )
A. B. C. D.
点拨:
(1)保证每个个体等可能入样是简单随机抽样 系统抽样 分层抽样共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的,故此选C
(2)根据每个个体都等可能入样,所以其可能性本容量与总体容量比,故此题选C
(三) 简单随机抽样 系统抽样 分层抽样的比较
类 别 共同点 各自特点 联 系 适用范围
简单随机抽样 (1)抽样过程中每个个体被抽到的可能性相等(2)每次抽出个体后不再将它放回,即不放回抽样 从总体中逐个抽取 总体个数较少
系统抽样 将总体均分成几部 分,按预先制定的规则在各部分抽取 在起始部分样时采用简随机抽样 总体个数较多
分层抽样 将总体分成几层,分层进行抽取 分层抽样时采用简单随机抽样或系统抽样 总体由差异明显的几部分组成
【例题精析】
例1某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为
A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20
[分析]因为300:200:400=3:2:4,于是将45分成3:2:4的三部分。设三部分各抽取的个体数分别为3x,2x,4x,由3x+2x+4x=45,得x=5,故高一、高二、高三各年级抽取的人数分别为15,10,20,故选D。
例2:一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法 并写出具体过程
[分析]采用分层抽样的方法
解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:
(1)将3万人分为5层,其中一个乡镇为一层
(2)按照样本容量的比例随机抽取各乡镇应抽取的样本
300×3/15=60(人),300×2/15=100(人),300×2/15=40(人),300×2/15=60(人),
因此各乡镇抽取人数分别为60人 40人 100人 40人 60 人
(3)将300人组到一起,即得到一个样本
【说明】若整除不尽采用四舍五入计算.
练一练:
一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从运动员中抽出一个容量为28的样本
解析:男:女=4:3,由,男生抽取4×4=16(人),女生抽取4×3=12(人)
【课堂练习】见导学案
【课堂小结】
1、分层抽样是当总体由差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:
(1)、分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异
要小,面层之间的样本差异要大,且互不重叠。
(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样。
(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样。
2、分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法。
【作业布置】导学案
板书设计
一.复习回顾. (三) 简单随机抽样 系统抽样 分层抽样的比较系统抽样有什么优缺点 例题精析它的一般步骤是什么 例1例2创设情境. 课堂小结三.探究新知. 作业布置(一)分层抽样的定义.【说明】(二)分层抽样的步骤:【说明】探究交流点拨
三中数学组 编写人:耿华丽 审稿人: 郭振宇 李怀奎
2.1.3分层抽样
课前预习学案
一.预习目标
1.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.
2. 区分简单随机抽样 系统抽样和分层抽样,并选择适当正确的方法进行抽样.
二.预习内容
三. 完成下列问题:
1.什么情况下进行分层抽样 应遵循什么要求 步骤有哪些
2.对于简单随机抽样 系统抽样 分层抽样你能找出哪些异同
课内探究学案
学习目标
1.通过实例知道分层抽样的概念,意义及分层抽样适用的情景.
2.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.
3.知道分层抽样过程中总体中的各个个体被抽取的机会相等.
4.区分简单随机抽样 系统抽样和分层抽样,并选择适当正确的方法进行抽样.
重点:灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题.
难点:灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题.
学习过程
一、复习回顾.
系统抽样有什么优缺点 它的一般步骤是什么
二.创设情境.
假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本
三.自主学习
(一)分层抽样的定义.
一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样
【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:
(二)分层抽样的步骤:
探究交流
(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行 ( )
A 每层等可能抽样
B 每层不等可能抽样
C 所有层按同一抽样比等可能抽样
(2)如果采用分层抽样,从个体数为N的总体中抽取一个容量为n
样本,那么每个个体被抽到的可能性为 ( )
A. B. C. D.
反思:
(三) 简单随机抽样 系统抽样 分层抽样的比较
类 别 共同点 各自特点 联 系 适用范围
简单随机抽样
系统抽样
分层抽样
四.典型例题
例1某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,
现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为
A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20
反思:
例2:一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法 并写出具体过程
反思:
练一练:
一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从运动员中抽出一个容量为28的样本
五.当堂检测
1.一个公司共有500名员工,下设一些部门,要采用分层抽样的方法从全体员工中抽取一个容量为50人的样本,已知某部门有员工100人,则该部门抽取的员工人数为( )
A.50人 B. 10人 C. 25人 C.5人
2.总体数为M个,其中带有标记的是N,要从中抽取K个入样,用随机抽样的方法进行抽取,则抽取的样本中带有标记的应为( )个
A. NK∕M B.KM∕N C.MN∕K D.N
3.在某班元旦晚会上,现场的一个游戏要求从观众中选出5人参与,下列抽样方法最合适的是(  )
A.分层抽样  B.系统抽样  C.抽签法  D.随机数法
4.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体情况,需从他们中抽取一个容量为36的样本,则适合的抽取方法是 ( )
A.简单随机抽样
B.系统抽样
C.分层抽样
D.先从老人中剔除1人,然后再分层抽样
5.一个年级有12个班,每个班同学从1~50排学号,为了交流学习经验,要求每班学号为14的同学参加交流活动,这里运用的是什么抽样方法( )
A.分层抽样 B.抽签法 C.随机数法  D.系统抽样
6.某校有500名学生,其中O型血的有200人,A型血的人有125人,B型血的有125人,AB型血的有50人,为了研究血型与色弱的关系,要从中抽取一个20人的样本,按分层抽样,O型血应抽取的人数为 人,A型血应抽取的人数为 人,B型血应抽取的人数为 人,AB型血应抽取的人数为 人.
7.某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n=
六.反思总结
课后练习与提高
1.下列问题与方法配对正确的是( )
问题⑴某社会团体有500个家庭,其中高收入家庭125个,中等收入家庭280个,低
收入家庭95个,为了了解社会购买力的某项指标,要从中抽取一个容量为100的样本.
问题(2)从10名同学中抽取3人参加座谈会.
方法Ⅰ: 简单随机抽样方法
方法Ⅱ: 系统抽样方法
方法Ⅲ: 分层抽样方法
A(1) Ⅲ,(2)Ⅰ B (1)Ⅰ,(2)Ⅱ C (1)Ⅱ,(2)Ⅲ D(1)Ⅲ,(2)Ⅱ
2.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上的人,用分层抽样的方法从中抽取20人,各年龄阶段各抽取多少人( )
A.7,5,8 B.9,5,6 C.6,5,9 D.8,5,7
3.某班有30名男生。现调查平均身高,已知男女身高有明显不同,用分层抽样法抽出男生3人,女生有2人,则该班女生有( )人
A.15 B.5 C.20 D.10
4.有A,B,C三种零件,分别为a个,300个,b个.采用分层抽样法抽取一个容量为45的样本,A种零件被抽取20个,C种零件被抽取10个,这三种零件共( )个
A.900 B.850 C.800 D.750
15.计划从三个街道20000人中抽取一个200人的样本,现已知三个街道人数之比为2:3:5,采用分层抽样的方法抽取,应分别抽取( )人
A.20,30,150 B.30,35,135 C.40,60,80 D. 40,60,100
6.调查某单位职工健康情况,已知青年人为300,中年人为K,老年人为100,用分层抽样抽取容量为22的样本,已知抽取的青年与老年的人数分别为12和4,那么中年人数K为
7.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样方法抽出一个容量为n的样本,样本中型号产品有16件,那么此样本的容量n=
8.某单位有老年人28人,中年人54人,青年人81人,为调查身体健康状况,需要从中抽取一个容量为36的样本,用分层抽样法应分别从老年人,中年人,青年人中各抽取
人, 人, 人。
9.一批产品中,有一级品100个,二级品60个,三级品40个,分别用系统抽样法和分层抽样法,从这批产品中抽取一个容量为20的样本。
10.对某单位1000名职工进行某项专门调查,调查的项目与职工任职年限有关,人事部门提供了如下资料:
任职年限 5年以下 5年至10年 10年以上
人数 300 500 200
试利用上述资料设计一个抽样比为1/10的抽样方法。
当堂检测 B A C D A 8 5 5 2 360
课后练习与提高
D B C A D 150 80 6 12 18;
9. 系统抽样法:将200件产品编号为1~200,然后将编号分为20个部分,在第1部分中用简单随机抽样法取一件产品.如抽到5号,那么得到的20个编号为5号,15号,25号,…,195号的样本.分层抽样法:因为100+60+40=200,20/200=1/10,所以100×1/10=10,60×1/10=6,40×1/10=4.因此在一,二.三级品中分别抽取10件,6件,4件,即得到所需样本.
10.在这个问题中,总体是某单位的1000名职工,并且已经知道人数的总体分布情况,可以用分层抽样法抽取样本。把总体分三层,任职5年以下抽取个体数300/10=30,任职5-10年的抽取个体500/10=50,任职10年以上的抽取个体200/10=20,用系统抽样方法或简单随机抽样方法在各层中抽取以上数目的样本。
PAGE
41. 2.3循环语句
【教学目标】:
1.正确理解循环语句的概念,并掌握其结构。
2.会应用循环语句编写程序。
【教学重难点】:
教学重点:两种循环语句的表示方法、结构和用法,用循环语句表示算法。
教学难点:理解循环语句的表示方法、结构和用法,会编写程序中的循环语句。
教学过程: 算法中的循环结构是由循环语句来实现的。对应于程序框图中的两种循环结构,一般程序设计语言中也有当型(WHILE型)和直到型(UNTIL型)两种语句结构。即WHILE语句和UNTIL语句。
WHILE语句
(1)WHILE语句的一般格式是 对应的程序框图是
(2)当计算机遇到WHILE语句时,先判断条件的真假,如果条件符合,就执行WHILE与WEND之间的循环体;然后再检查上述条件,如果条件仍符合,再次执行循环体,这个过程反复进行,直到某一次条件不符合为止。这时,计算机将不执行循环体,直接跳到WEND语句后,接着执行WEND之后的语句。因此,当型循环有时也称为“前测试型”循环。
UNTIL语句
(1)UNTIL语句的一般格式是 对应的程序框图是
(2)直到型循环又称为“后测试型”循环,从UNTIL型循环结构分析,计算机执行该语句时,先执行一次循环体,然后进行条件的判断,如果条件不满足,继续返回执行循环体,然后再进行条件的判断,这个过程反复进行,直到某一次条件满足时,不再执行循环体,跳到LOOP UNTIL语句后执行其他语句,是先执行循环体后进行条件判断的循环语句。
分析:当型循环与直到型循环的区别:(先由学生讨论再归纳)
当型循环先判断后执行,直到型循环先执行后判断;
在WHILE语句中,是当条件满足时执行循环体,在UNTIL语句中,是当条件不满足时执行循环体。
例1:编写程序,计算自然数1+2+3+……+99+100的和。
分析:这是一个累加问题。我们可以用WHILE型语句,也可以用UNTIL型语句。
程序(WHILE语句):
i=1
sum=0
WHILE i<=100
sum=sum+i
i=i+1
WEND
PRINT sum
END
程序(UNTIL语句):
i=1
sum=0
DO
sum=sum+i
i=i+1
LOOP UNTIL i>100
PRINT sum
END
变式训练1.编写一个程序,输入正整数n,计算它的阶乘n!(n!=n*(n-1)*…*3*2*1)
解:t=1
i=1
INPUT "请输入n的值:";n
DO
t=t*i
i=i+1
LOOP UNTIL i>n
PRINT "这个数的阶乘为:";t
END
例2.编写程序,计算函数f(x)=x2-3x+5当x=1,2,3,…,20时的函数值。
解:x=1
WHILE x<=20
y=x^2 -3*x+5
PRINT "x=";x
PRINT "y=";y
x=x+1
WEND
END
变式训练2设计一个算法:求满足1+2 + 3 + … + n>10000的最小正整数n,并写出相应的程序。
解:i = 0
sum = 0
DO
i = i + 1
sum = sum + i
LOOP UNTIL sum>10000
PRINT i
END
小结1、循环语句的两种不同形式:WHILE语句和UNTIL语句,掌握它们的一般格式。2、在用WHILE语句和UNTIL语句编写程序解决问题时,一定要注意它们的格式及条件的表述方法。WHILE语句中是当条件满足时执行循环体,而UNTIL语句中是当条件不满足时执行循环体。3、循环语句主要用来实现算法中的循环结构,在处理一些需要反复执行的运算任务。如累加求和,累乘求积等问题中常用到。
【作业布置】:
设计一个算法:逐个输出12,22,32,……,n2,并写出相应的程序。
解:INPUT n INPUT n
i = 0 i = 0
DO WHILE i < n
i = i + 1 i = i + 1
t = i ^ 2 t = i ^ 2
PRINT t PRINT t
LOOP UNTIL i > = n WEND
END END
【板书设计】:
1.2.3循环语句
课前预习学案
一、预习目标
1、充分地感知、体验应用计算机解决数学问题的方法;
2、正确理解循环语句的概念,并掌握其结构;
3、能初步操作、模仿, 应用循环语句编写程序。
二、预习内容
1. 在一些算法中,从某处开始,按照一定条件,反复执行某一处理步骤的情况,这
就是 反复执行的处理步骤称为 。
2. 算法中的循环结构是由 来实现的。对应于程序框图中的两种循环结构,
一般程序设计语言中也有当型( 型)和直到型( 型)两种语句结构。即
语句和 语句。
提出疑惑
1、两种循环结构有什么差别?
2、参照当型循环结构,说说计算机是按怎样的顺序执行WHILE语句的?
3、参照直到型循环结构,说说计算机是按怎样的顺序执行UNTIL语句的?
课内探究学案
学习目标
1.正确理解循环语句的概念,并掌握其结构。
2.会应用循环语句编写程序。
二、学习重难点:两种循环语句的表示方法、结构和用法,用循环语句表示算法,会编写程序中的循环语句。
三、学习过程
循环结构有两种----- 型与 型.
10 循环结构(当条件满足时反复执行循环体); 20 型循环结构(反复执行循环体直
到条件满足).
所以, 循环语句的两种不同形式:WHILE语句和UNTIL语句
10 WHILE语句: (WEND——朝……方向行走);20 UNTIL语句(LOOP UNTIL—绕环回线走, 直到达到某种条件为止)
探究:当型和直到型各自的特点
当型:
直到型:
(二)精讲点拨:
例1.编写程序,计算自然数1+2+3+……+99+100的和。
变式训练1.编写一个程序,输入正整数n,计算它的阶乘n!(n!=n*(n-1)*…*3*2*1)
解:
例2.编写程序,计算函数f(x)=x2-3x+5当x=1,2,3,…,20时的函数值。
解:
变式训练2设计一个算法:求满足1+2 + 3 + … + n>10000的最小正整数n,并写出相应的程序。
解:
(三)反思总结:
(四)当堂检测:
1、编写程序,输入正整数n,计算它的阶乘。
2、编写程序,计算下面n个数的和:。
3、某牛奶厂2002年初有资金1000万元,由于引进了先进的设备,资金年平均增长
率可达到50%。请你设计一个程序,计算这家牛奶厂2008年底的资金总额。
课后练习与提高
一、选择题
1.某程序框图如图所示,该程序运行后输出的的值是 ( )
A. B. C. D.
2. 如图,下边(左)程序框图所进行的求和运算是( )
A. + + + … + B.1 + + + … +
C. 1 + + + … + D. + + + … +
二、填空题
3.执行右边的程序框图,若p=0.8,则输出的n=     .
4.阅读下图(右)程序框图,该程序输出的结果是 .
满足条件?
循环体


WHILE 条件
循环体
WEND
满足条件?
循环体


DO
循环体
LOOP UNTIL 条件
1.2.3循环语句一、WHILE语句
二、UNTIL语句
三、当型循环与直到型循环的区别:
例题讲解
例题1
例题2
练一练
变式训练1
变式训练2
小结
作业
开始
s = 0,n = 2
n < 21


s = s + EQ \F(1,n)
n = n + 2
输出s
结束
PAGE
82. 1.2系统抽样
【教学目标】:
1. 正确理解系统抽样的概念.
2. 掌握系统抽样的一般步骤.
【教学重难点】:
教学重点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题.
教学难点:灵活应用系统抽样的方法解决统计问题.
【教学过程】:
复习回顾:
随机抽样有什么优缺点?
答:优点是简单易行;缺点是当样本容量较大时工作量大且不易实现“搅拌均匀”.
情境导入:
某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?
新知探究:
一、系统抽样的定义:
一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干
部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样
的方法叫做系统抽样。
【说明】由系统抽样的定义可知系统抽样有以下特证:
(1)当总体容量N较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此, 系统抽样又称等距抽样,这时间隔一般为k=[].
(3)预先制定的规则指的是:在第1段内采用简单随机抽样确定一个起始编号,此编号
基础上加上分段间隔的整倍数即为抽样编号.
练一练:
(1)你能举几个系统抽样的例子吗?
(2)下列抽样中不是系统抽样的是( )
A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,
随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样
B、工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分
钟抽一件产品检验
C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的
调查人数为止
D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下
来座谈
解析:(2)c不是系统抽样,因为事先不知道总体,抽样方法不能保证每个个体按事先规定的概率入样。
二、系统抽样的一般步骤:
(1)采用随机抽样的方法将总体中的N个个编号。
(2)将整体按编号进行分段,确定分段间隔k,k=[].
(3)在第一段用简单随机抽样确定起始个体的编号L(L∈N,L≤k)。
(4)按照一定的规则抽取样本,通常是将起始编号L加上间隔k得到第2个个体
编号L+k,再加上k得到第3个个体编号L+2k,这样继续下去,直到获取整个样本。
【说明】(1)从系统抽样的步骤可以看出,系统抽样是把一个问题划分成若干部分分
块解决,从而把复杂问题简单化,体现了数学转化思想。
(2)如果遇到不是整数的情况,可以先从总体中随机的剔除几个个体,使得总体中剩余的个体数能被样本容量整除。
【精讲精练】:
例1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学
习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。
解析:按1:5分段,每段5人,共分59段,每段抽取一人,关键是确定第1个编号。
解:按照1:5的比例,应该抽取的样本容量为295÷5=59,我们把259名同学分成
59组,每组5人,第一组是编号为1~5的5名学生,第2组是编号为6~10的5名学生, 依次下去,59组是编号为291~295的5名学生。采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为k(1≤k≤5),那么抽取的学生编号为k+5L(L=0,1,2,……,58),得到59个个体作为样本,如当k=3时的样本编号为3,8,13,……,288,293。
点评:注意分清分段间隔及分段数.
变式训练1、为了了解某大学一年级新生英语学习的情况,拟从503名大学生中抽取50名作为样本,请用系统抽样地方法进行抽取,并写出过程。
[分析]总体个数503不能被50整除,所以应首先从503名学生中随机的剔除3人,再按照系统抽样的方法进行抽样。
解:略
【反馈测评】:
(1)设某校共有118名教师,为了支援西部的教育事业,现要从中随机的抽出16名教师组成暑期西部讲师团,请用系统抽样法选出讲师团成员。
(2)有人说,我们可以借用居民身份证号码(18位)来进行中央电视台春节联欢晚会的收视率调查;在1~999中抽取一个随机数,比如这个数是632,那么身份证后三位是632的观众就是我要调查的对象。请问这样所获得的样本有代表性吗?为什么?
解析:(1)118不能被16整除,余6,所以先从118名教师中随机的剔除6个人,再按系统抽样的方法进行抽样。
(2)身份证倒数第二位表示性别,后2位是632的观众全是男性,所以没有代表性。
【板书设计】:
【作业布置】:
优化丛书 体验成功2.1.2
2.1.2系统抽样
课前预习学案
一、预习目标
预习系统抽样的概念,初步了解系统抽样的一般步骤.
预习内容
一般地,要从容量为N的总体中抽取容量为n的样本,可将总体 ,然后按照 ,从每一部分抽取 ,得到所需要的样本,这种抽样的方法叫做 .
提出疑惑
1、当总体有什么特征时适合用系统抽样
2、系统抽样的一般步骤是什么?
课内探究学案
学习目标
1. 正确理解系统抽样的概念.
2. 掌握系统抽样的一般步骤.
学习重难点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问
题,灵活应用系统抽样的方法解决统计问题.
学习过程
(一)合作探究
探究一:系统抽样的定义:
练一练:下列抽样中不是系统抽样的是( )
A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,
随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样
B、工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分
钟抽一件产品检验
C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的
调查人数为止
D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下
来座谈
探究二:系统抽样的特点:
(1)当 时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此, 系统抽样又称等距抽样,这时间隔一般为k= .
(3)预先制定的规则指的是:在第1段内采用 确定一个 , 在
此编号基础上加上分段间隔的整倍数即为抽样编号.
探究三:系统抽样的一般步骤:
1.
2.
3.
4.
思考:如果遇到不是整数的情况时怎么办?
(二)精讲点拨:
例1、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学
习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。
变式训练1、为了了解某大学一年级新生英语学习的情况,拟从503名大学生中抽取50名作为样本,请用系统抽样地方法进行抽取,并写出过程。
(三)反思总结:
(四)当堂检测:
(1)设某校共有118名教师,为了支援西部的教育事业,现要从中随机的抽出16名教师组成暑期西部讲师团,请用系统抽样法选出讲师团成员。
(2)有人说,我们可以借用居民身份证号码(18位)来进行中央电视台春节联欢晚会的收视率调查;在1~999中抽取一个随机数,比如这个数是632,那么身份证后三位是632的观众就是我要调查的对象。请问这样所获得的样本有代表性吗?为什么?
课后练习与提高
一、选择题
1、为了了解1200名学生对学校教改实验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段间隔为( )
A.40 B. 30 C.20 D.12
2、系统抽样适用的总体应是( )
A.容量较少的总体 B.总体容量较多
C.个体数较多但均衡的总体 D.任何总体
3.有40件产品,编号从1到40,先从中抽取4件检验,用系统抽样方法确定所抽的编号为( )
A.5,10,15,20 B.2,12,22,32
C.2,14,26,38 D.5,8,31,36
二、填空题
4、 某影片首映的首场,请座号是第一个入场的观众座号的观众留下做观感调查,这里运用了 抽样.
在1000个有机会中奖的号码(编号为000~999)中,在公证部门监督下按照随机抽
取的方法确定后两位为88的号码为中奖号码,这是运用 抽样方法来确定中奖号码的,依次写出这10个中奖号码:
三、解答题
6、体育彩票000001~100000编号中,凡彩票号码后三位是345的中一等奖,采用的是系统抽样方法吗?为什么?
一、系统抽样的定义
二、系统抽样的一般步骤
例题讲解
练一练
小结
PAGE
63. 2.2古典概型及随机数的产生
一、教学目标:
1、知识与技能:(1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;
(2)掌握古典概型的概率计算公式:P(A)=
(3)了解随机数的概念;
(4)利用计算机产生随机数,并能直接统计出频数与频率。
二、重点与难点:1、正确理解掌握古典概型及其概率公式;
2、正确理解随机数的概念,并能应用计算机产生随机数.
三、学法与教学用具:1、与学生共同探讨,应用数学解决现实问题;2、通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.
四、教学过程:
1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的结果,即标号为1,2,3…,10。
师生共同探讨:根据上述情况,你能发现它们有什么共同特点?
2、基本概念:
(1)基本事件、古典概率模型、随机数、伪随机数的概念见课本P121~126;
(2)古典概型的概率计算公式:P(A)=.
3、例题分析:
例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
解:这个试验的基本事件共有6个,即(出现1点)、(出现2点)……、(出现6点)
所以基本事件数n=6,事件A=(掷得奇数点)=(出现1点,出现3点,出现5点),
其包含的基本事件数m=3
所以,P(A)====0.5
例2 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]
事件A由4个基本事件组成,因而,P(A)==。
例3 现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率.
分析:(1)为返回抽样;(2)为不返回抽样.
解:(1)有放回地抽取3次,按抽取顺序(x,y,z)记录结果,则x,y,z都有10种可能,所以试验结果有10×10×10=103种;设事件A为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P(A)= =0.512.
(2)解法1:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x,y,z),则x有10种可能,y有9种可能,z有8种可能,所以试验的所有结果为10×9×8=720种.设事件B为“3件都是正品”,则事件B包含的基本事件总数为8×7×6=336, 所以P(B)= ≈0.467.
解法2:可以看作不放回3次无顺序抽样,先按抽取顺序(x,y,z)记录结果,则x有10种可能,y有9种可能,z有8种可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B包含的基本事件个数为8×7×6÷6=56,因此P(B)= ≈0.467.
例4 利用计算器产生10个1~100之间的取整数值的随机数。
解:具体操作如下:
键入
反复操作10次即可得之
例5 某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?
分析:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%。
解:我们通过设计模拟试验的方法来解决问题,利用计算机或计算器可以生产0到9之间的取整数值的随机数。
我们用1,2,3,4表示投中,用5,6,7,8,9,0表示未投中,这样可以体现投中的概率是40%。因为是投篮三次,所以每三个随机数作为一组。
例如:产生20组随机数:
812,932,569,683,271,989,730,537,925,
907,113,966,191,431,257,393,027,556.
这就相当于做了20次试验,在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两次投中,它们分别是812,932,271,191,393,即共有5个数,我们得到了三次投篮中恰有两次投中的概率近似为=25%。
例6 你还知道哪些产生随机数的函数?请列举出来。
解:(1)每次按SHIFT RNA# 键都会产生一个0~1之间的随机数,而且出现0~1内任何一个数的可能性是相同的。
(2)还可以使用计算机软件来产生随机数,如Scilab中产生随机数的方法。Scilab中用rand()函数来产生0~1之间的随机数,每周用一次rand()函数,就产生一个随机数,如果要产生a~b之间的随机数,可以使用变换rand()*(b-a)+a得到.
4、课堂小结:本节主要研究了古典概型的概率求法,解题时要注意两点:
(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;
①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式P(A)=
(3)随机数量具有广泛的应用,可以帮助我们安排和模拟一些试验,这样可以代替我们自己做大量重复试验,比如现在很多城市的重要考试采用产生随机数的方法把考生分配到各个考场中。
5课堂练习:
1.在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是( )
A. B. C. D.以上都不对
2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是
A. B. C. D.
3.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 。
4.抛掷2颗质地均匀的骰子,求点数和为8的概率。
5.利用计算器生产10个1到20之间的取整数值的随机数。
6.用0表示反面朝上,1表正面朝上,请用计算器做模拟掷硬币试验。
6、课堂练习答案:
1.B[提示:在40根纤维中,有12根的长度超过30mm,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为,因此选B.]
2.C[提示:(方法1)从盒中任取一个铁钉包含基本事件总数为10,其中抽到合格铁订(记为事件A)包含8个基本事件,所以,所求概率为P(A)==.(方法2)本题还可以用对立事件的概率公式求解,因为从盒中任取一个铁钉,取到合格品(记为事件A)与取到不合格品(记为事件B)恰为对立事件,因此,P(A)=1-P(B)=1-=.]
3.[提示;记大小相同的5个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红1,白1),(红1,白2)(红1,白3),(红2,白3),共10个,其中至少有一个红球的事件包括7个基本事件,所以,所求事件的概率为.本题还可以利用“对立事件的概率和为1”来求解,对于求“至多”“至少”等事件的概率头问题,常采用间接法,即求其对立事件的概率P(A),然后利用P(A)1-P(A)求解]。
4.解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,…,6点6种不同的结果,我们把两颗骰子标上记号1,2以便区分,由于1号骰子的一个结果,因此同时掷两颗骰子的结果共有6×6=36种,在上面的所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2)5种,所以,所求事件的概率为.
5.解:具体操作如下
键入
反复按 键10次即可得到。
6.解:具体操作如下:
键入
7、作业:根据情况安排
8板书设计:
3.2.2古典概型及随机数的产生
基本概念: 例3 例5
例1 例4 例6
例2
3.2.2古典概型及随机数的产生
课前预习学案
一、预习目标:
1、正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;
2、掌握古典概型的概率计算公式:P(A)=
3、了解随机数的概念;
二、预习内容:1、基本事件
2、古典概率模型
3、随机数
4、伪随机数的概念
5、古典概型的概率计算公式:P(A)= .
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标:(1)正确理解古典概型的两大特点
(2)掌握古典概型的概率计算公式:P(A)=
(3)了解随机数的概念
二、重点与难点:1、正确理解掌握古典概型及其概率公式;
2、正确理解随机数的概念,并能应用计算机产生随机数.
三、学习过程:
1、创设情境:(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件。
(2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,…,10,从中任取一球,只有10种不同的结果,即标号为1,2,3…,10。
根据上述情况,你能发现它们有什么共同特点?
2、例题:
例1 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
解:
例2 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。
解:
例3 现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率.
解:
例4 利用计算器产生10个1~100之间的取整数值的随机数。

例5 某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?
解:
例6 你还知道哪些产生随机数的函数?请列举出来。
解:
3、反思总结
(1)、数学知识:
(2)、数学思想方法:
4、当堂检测:
一、选择题
1.在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是( )
A. B. C. D.以上都不对
2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是
A. B. C. D.
3将骰子抛2次,其中向上的数之和是5的概率是( )
A、 B、 C、 D、9
二、填空题
4在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 。
5.抛掷2颗质地均匀的骰子,则点数和为8的概率为 。
三、解答题
6.用0表示反面朝上,1表正面朝上,请用计算器做模拟掷硬币试验。
4.[提示;记大小相同的5个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红1,白1),(红1,白2)(红1,白3),(红2,白3),共10个,其中至少有一个红球的事件包括7个基本事件,所以,所求事件的概率为.本题还可以利用“对立事件的概率和为1”来求解,对于求“至多”“至少”等事件的概率头问题,常采用间接法,即求其对立事件的概率P(A),然后利用P(A)1-P(A)求解]。
5.解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,…,6点6种不同的结果,我们把两颗骰子标上记号1,2以便区分,由于1号骰子的一个结果,因此同时掷两颗骰子的结果共有6×6=36种,在上面的所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2)5种,所以,所求事件的概率为.
6.解:具体操作如下:
键入
课后练习与提高
一、选择题
1、从长度为1,3,5,7,9五条线段中任取三条能构成三角形的概率是( )
A、 B、 C、 D、
2、将8个参赛队伍通过抽签分成A、B两组,每组4队,其中甲、乙两队恰好不在同组的概率为( )
A、 B、 C、 D、
3、袋中有白球5只,黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为( )
A、 B、 C、 D、
二、填空题
4、接连三次掷一硬币,正反面轮流出现的概率等于 ,
5、在100个产品中,有10个是次品,若从这100个产品中任取5个,其中恰有2个次品的概率等于 。
三、解答题
6在第1,3,5,8路公共汽车都要停靠的一个站(假定这个站只能停靠一辆汽车),有1位乘客等候第1路或第3路汽车、假定当时各路汽车首先到站的可能性相等,求首先到站正好是这位乘客所要乘的汽车的概率、
答案
一、选择题
1、B 2、A 3、D
二、填空题
4、
5、
三解答题解:记“首先到站的汽车正好是这位乘客所要乘的汽车”为事件A,则事件A的概率P(A)=
答:首先到站正好是这位乘客所要乘的汽车的概率为
PRB
RAND RANDI
STAT DEC
ENTER
RANDI(1,100)
STAT DEG
ENTER
RAND (1,100)
3.
STAT DEC
PRB
PAND RANDI
STAT DEG
ENTER
PANDI(1,20)
STAT DEG
ENTER
PANDI(1,20)
3.
STAT DEG
ENTER
PRB
PAND RANDI
STAT DEG
ENTER
PANDI(0,1)
STAT DEG
ENTER
PANDI(0,1)
0
STAT DEG
PRB
PAND RANDI
STAT DEG
ENTER
PANDI(0,1)
STAT DEG
ENTER
PANDI(0,1)
0
STAT DEG
PAGE
17§3.3.1 几何概型(二)
学习目标
(1)正确理解几何概型的概念;
(2)掌握几何概型的概率公式:

(3)会把相应的几何概型问题“角度”化、“面积”化、“体积”化.
重点难点
重点: 几何概型的概念及应用.
难点: 对几何概型的理解,将问题“角度”化、“面积”化、“体积”化.
学法指导
处理几何概型的主要思路是问题“长度”化、 “面积”化、“角度”化或“体积”化.
知识链接
几何概型的概率公式及其应用.
问题探究
【典型例题】 测量面积
一般的对于两个平面区域d,D,且,点落在区域D内每一点上都是等可能的,当D是个平面图形,记“点P落在区域d内” 为事件A,且事件A发生的概率只与d的面积有关时,一般有
例1 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?
分析:石油在1万平方千米的海域大陆架的分布可以看作是等可能的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率。
练习:如图1是一个边长为1米的正方形木板,上面画着一个边界不规则的地图和板上被雨点打上的痕迹,则这个地图的面积为______平方米.
分析:雨点落在地图
上的概率问题是几何
概型,用面积比计算.
雨点打在地图和板上
是随机的,地图上有
9个雨点痕迹,板上
其他位置有18个雨点
痕迹,由此计算雨点落在地图上的概率,反过来推导地图面积.
例2假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间在早上7:00~8:00之间,如果把“你父亲在离开家之前能得到报纸”称为事件A,那么事件A是哪种类型的事件?
分析:送报人到达的时刻与父亲离开家的时刻是相互独立且是等可能的,所以应该引入两个变量来求解.
设送报人到达的时间为x(6.5≤x≤7.5),父亲离开家的时刻为y(7≤y≤8)事件A对应于不等关系“y≥x”.怎样建立x与y之间的关系才能解决这一不等关系呢?
自然我们就想到建立二维平面直角坐标系,将x与y之间的关系向点(x, y)转化,用点来解决(参看课本p138图3.3-2)。试验全部结果所构成的区域
,面积,事件A所构成的区域
,这是一个几何概型.
练习 从开区间中随机取两个数,求下列情况下的概率:
⑴ 两数之和小于;
⑵两数平方和小于.
【典型例题】 测量角度
对于两个平面区域d,D,且,当D为平面图形时,如果点P在整个平面图形上或线段长度上分布不是等可能的,注意观察角度是否等可能,若只与角度有关,则可以选择角度作为事件A所构成的区域.
例3 如图3,在平面直角坐标系内,射线落在角的终边上,任作一条射线,求射线落在内的概率.
分析:以为起点作射线是随机的,因而射线落在任何位置都是等可能的.落在内的概率只与的大小有关,符合几何概型的条件.
例4 在等腰中,过直角顶点C在内部任做一条射线CM,与线段AB交于点M,求|AM|<|AC|的概率。
分析:因为过一点 例4图
作射线是均匀的,
所以基本事件“射线
CM落在
内任一处”是
等可能的,
且对应于角
.所
以使|AM|<|AC|的概率只与(点在线段AB上,且|AC|=|A|)的大小有关系,这符合几何概型的条件.
注 对比§3.3.1 几何概型(一)例3你会发现此类题目容易与长度型的几何概率问题混淆。解决本题的关键是找准基本事件的对应点,保证所给概率问题的等可能性,才能得出与原题对应的正确解答。
【典型例题】 测量体积
对于两个区域d,D,且,当D为三维空间时,当点P落在D每一处都是等可能的,记“点P落在区域d内” 为事件A,且事件A发生的概率只与d的体积有关时,可以选择体积作为事件A所构成的区域.
例5 在1升高产小麦种子中混入了一个带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。
目标检测
1.向面积为的内任投一点,则的面积小于的概率为( )
A. B. C. D.
2. (选做)A是圆上固定的一定点,在圆上其他位置任取一点B,连接A、B两点,得到弦AB,它的长度大于等于半径长度的概率为 ( )
A. B. C. D.
3.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是( )
A.0.5 B.0.4
C.0.004 D.不能确定
4.(选做)在矩形ABCD中,AB=5,BC=7.现在向该矩形内随机投一点P,则时的概率是 .
5.在棱长为1的正方体中做四棱锥,使四棱锥的体积小于的概率是 .
6.在区间(0,1)中随机地取出两个数,这两个数的和小于的概率是 .
【能力提升】
7.如图,,,,在线段上任取一点,试求:(1)为钝角三角形的概率;
(2)为锐角三角形的概率.
8.(会面问题)甲乙两人相约上午8点到9点在某地会面,先到者等候另一人20分钟,过时离去,求甲乙两人能会面的概率.(见下图所示)
9. (选做) 在长度为10的线段内任取两点将线段分为三段,求这三段可以构成三角形的概率.
纠错矫正
总结反思
B
A
C
M

x-y=-20
x-y=20
20
20
练习
5
5
10
10
xy
O
PAGE
11. 2.1输入、输出语句和赋值语句
【教学目标】
1.正确理解输入语句、输出语句、赋值语句的结构。
2.会写一些简单的程序。
3.掌握赋值语句中的“=”的作用
【重点与难点】
教学重点:正确理解输入语句、输出语句、赋值语句的作用。
教学难点:准确写出输入语句、输出语句、赋值语句。
【教学过程】
1.情境导入
在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具,如:听MP3,看
电影,玩游戏,打字排版,画卡通画,处理数据等等,那么,计算机是怎样工作的呢?
计算机完成任何一项任务都需要算法,但是,我们用自然语言或程序框图描述的算法,
计算机是无法“看得懂,听得见”的。因此还需要将算法用计算机能够理解的程序设计语言(programming language)翻译成计算机程序。
程序设计语言有很多种。为了实现算法中的三种基本的逻辑结构:顺序结构、条件结构、
和循环结构,各种程序设计语言中都包含下列基本的算法语句:
输入语句 输出语句 赋值语句 条件语句 循环语句
2..探究新知
我们知道,顺序结构是任何一个算法都离不开的基本结构。
输入、输出语句和赋值语句基本上对应于算法中的顺序结构。(如右图)计算机从上而下按照语句排列的顺序执行这些语句。
输入语句和输出语句分别用来实现算法的输入信息,
输出结果的功能。
用描点法作函数的图象时,需要求
出自变量与函数的一组对应值。编写程序,分别计算当时的函数值。
程序:
(一)输入语句
在该程序中的第1行中的INPUT语句就是输入语句。这个语句的一般格式是:
INPUT语句不但可以给单个变量赋值,还可以给多个变量赋值,其格式为:
例如,输入一个学生数学,语文,英语三门课的成绩,可以写成:
INPUT “数学,语文,英语”;a,b,c
注:①“提示内容”与变量之间必须用分号“;”隔开。
②各“提示内容”之间以及各变量之间必须用逗号“,”隔开。但最后的变量的后面不需要。
(二)输出语句
在该程序中,第3行和第4行中的PRINT语句是输出语句。它的一般格式是:
输出语句的用途:
(1)输出常量,变量的值和系统信息。(2)输出数值计算的结果。
(三)赋值语句
用来表明赋给某一个变量一个具体的确定值的语句。
除了输入语句,在该程序中第2行的赋值语句也可以给变量提供初值。它的一般格式是:
赋值语句中的“=”叫做赋值号。
赋值语句的作用:先计算出赋值号右边表达式的值,然后把这个值赋给赋值号左边的变
量,使该变量的值等于表达式的值。
注:①赋值号左边只能是变量名字,而不能是表达式。如:2=X是错误的。
②赋值号左右不能对换。如“A=B”“B=A”的含义运行结果是不同的。
③不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)
④赋值号“=”与数学中的等号意义不同。
3.例题分析
例1:编写程序,计算一个学生数学、语文、英语三门课的平均成绩。
分析:先写出算法,画出程序框图,再进行编程。
算法: 程序:
例2:给一个变量重复赋值。
程序:
变式:在此程序的基础上,设计一个程序,要求最后A的输出值是30。
程序:
例3:交换两个变量A和B的值,并输出交换前后的值。
分析:引入一个中间变量X,将A的值赋予X,又将B的值赋予A,再将X的值赋予B,
从而达到交换A,B的值。(比如交换装满水的两个水桶里的水需要再找一个空桶)
程序:
变式:编写一个程序,要求输入一个圆的半径,便能输出该圆的周长和面积。( 取3.14)
分析:设圆的半径为R,则圆的周长为,面积为,可以利用顺序结构中的INPUT语句,PRINT语句和赋值语句设计程序。
程序:
4.回顾小结
本节课介绍了输入语句、输出语句和赋值语句的结构特点及联系。掌握并应用输入语句,输出语句,赋值语句编写一些简单的程序解决数学问题,特别是掌握赋值语句中“=”的作用及应用。编程一般的步骤:先写出算法,再进行编程。我们要养成良好的习惯,也有助于数学逻辑思维的形成。
【课堂精练】
P15 练习 1. 2. 3
【评价设计】
1.P23 习题1.2 A组 1(2)、2
2.试对生活中某个简单问题或是常见数学问题,利用所学基本算法语句等知识来解决自己所提出的问题。要求写出算法,画程序框图,并写出程序设计。
1.2.1输入、输出语句和赋值语句
课前预习学案
一、预习目标
通过预习知道输入语句、输出语句、赋值语句的一般结构。
预习内容
什么是输入语句,它的一般格式是什么?
什么是输入语句,它的一般格式是什么?
什么是输入语句,它的一般格式是什么?
提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
【学习目标】
1.正确理解输入语句、输出语句、赋值语句的结构。
2.会写一些简单的程序。
3.掌握赋值语句中的“=”的作用
【重点与难点】
教学重点:正确理解输入语句、输出语句、赋值语句的作用。
教学难点:准确写出输入语句、输出语句、赋值语句。
【学习过程】
1..探究新知
用描点法作函数的图象时,需要求出自变量与函数的一组对
应值。编写程序,分别计算当时的函数值。
观察程序:
(一)输入语句
在该程序中的第1行中的INPUT语句就是输入语句。这个语句的一般格式是:
INPUT语句不但可以给单个变量赋值,还可以给多个变量赋值,其格式为:
(二)输出语句
在该程序中,第3行和第4行中的PRINT语句是输出语句。它的一般格式是:
输出语句的用途:
(1)输出常量,变量的值和系统信息。(2)输出数值计算的结果。
(三)赋值语句
用来表明赋给某一个变量一个具体的确定值的语句。
除了输入语句,在该程序中第2行的赋值语句也可以给变量提供初值。它的一般格式是:
赋值语句中的“=”叫做赋值号。
赋值语句的作用:先计算出赋值号右边表达式的值,然后把这个值赋给赋值号左边的变量,使该变量的值等于表达式的值。
3.例题分析
例1:编写程序,计算一个学生数学、语文、英语三门课的平均成绩。
分析:先写出算法,画出程序框图,再进行编程。
例2:求下列变量A的值。
程序:
变式:在此程序的基础上,设计一个程序,要求最后A的输出值是30。
例3:交换两个变量A和B的值,并输出交换前后的值。
分析:引入一个中间变量X,将A的值赋予X,又将B的值赋予A,再将X的值赋予B,
从而达到交换A,B的值。(比如交换装满水的两个水桶里的水需要再找一个空桶)
程序:
例4:编写一个程序,要求输入一个圆的半径,便能输出该圆的周长和面积。( 取3.14)
4.回顾小结
本节课介绍了输入语句、输出语句和赋值语句的结构特点及联系。掌握并应用输入语句,输出语句,赋值语句编写一些简单的程序解决数学问题,特别是掌握赋值语句中“=”的作用及应用。编程一般的步骤:先写出算法,再进行编程。我们要养成良好的习惯,也有助于数学逻辑思维的形成。
课后练习与提高
1、 在程序语言中,下列符号分别表示什么运算 * ;\ ;∧ ;SQR( ) ;ABS( )?
, , ,
, 。
2、下列程序运行后,a,b,c的值各等于什么?
(1) a=3 (2) a=3
b=-5 b=-5
c=8 c=8
a=b a=b
b=c b=c
PRINT a,b,c c=a
END PRINT a,b,c
END
(1)________________________
(2)________________________
3、. 指出下列语句的错误,并改正:
(1)A=B=50
(2)x=1,y=2,z=3
(3)INPUT “How old are you” x
(4)INPUT ,x
(5)PRINT A+B=;C
(6)PRINT Good-bye!
4.将两个数交换,使,下面语句正确一组是 ( )
A. B C D
5. 计算机执行下面的程序段后,输出的结果是( )
PRINT ,
A B C D
6 下列给出的赋值语句中正确的是( )
A B C D
7 对赋值语句的描述正确的是 ( )
①可以给变量提供初值 ②将表达式的值赋给变量
③可以给一个变量重复赋值 ④不能给同一变量重复赋值
A ①②③ B ①② C ②③④ D ①②④
8、已知f(x)=x3-3x2+2x+1,写出任意一个x的值对应的函数值f(x)的求法程序.
9.已知华氏温度和摄氏温度的转化公式为:
编写一个程序,输入一个华氏温度,输出其相应的摄氏温度。
10.春节到了,糖果店的售货员忙极了。已知水果糖每千克10.4元,奶糖每千克15.6元,果仁巧克力每千克25.2元,那么依次购买这三种果糖千克,应收取多少钱?请你设计一个程序,帮售货员算账。
11.编写一个程序,输入梯形的上底、下底和高的值,计算并输出其面积。
12.编写一个程序,交换两个变量a 、b的值,并输出交换前后的值。
参考答案
4、B 5、B 6、B 7、A
8、解:(方法一)INPUT “请输入自变量x的值:”;x
A=x∧3
B=3*x∧2
C=2*x
D=A-B+C+1
PRINT “x=”;x
PRINT “f(x)=”;D
END
(方法二)INPUT “请输入自变量x的值:”;x
m=x*(x-3)
n=x*(m+2)
y=n+1
PRINT “x=”;x
PRINT “f(x)=”;y
END
9、程序:
INPUT F
C=(F-32)*5/9
PRINT C
10、INPUT a,b,c
y=10.4*a+15.6*b+25.2*c
PRINT y
11、INPUT a,b,h
  S=(a+b)*h/2
PRINT S
12、INPUT a,b
PRINT a,b
t=a
a=b
b=t
PRINT a,b
语句n+1
语句n
INPUT “x=”;x
y=x^3+3*x^2-24*x+30
PRINT x
PRINT y
END
INPUT “提示内容”;变量
INPUT “提示内容1,提示内容2,提示内容3,…”;变量1,变量2,变量3,…
PRINT “提示内容”;表达式
变量=表达式
开始
输入a,b,c
结束
输出y
INPUT “数学=”;a
INPUT “语文=”;b
INPUT “英语=”;c
y=(a+b+c)/3
PRINT “The average=”;y
END
A=10
A=A+10
PRINT A
END
A=10
A=A+15
PRINT A
A=A+5
PRINT A
END
INPUT A
INPUT B
PRINT A,B
X=A
A=B
B=X
PRINT A,B
END
INPUT “半径为R=”;R
C=2*3.14*R
S=3.14*R^2
PRINT “该圆的周长为:”;C
PRINT “该圆的面积为:”;S
END
INPUT “x=”;x
y=x^3+3*x^2-24*x+30
PRINT x
END
INPUT “提示内容”;变量
INPUT “提示内容1,提示内容2,提示内容3,…”;变量1,变量2,变量3,…
PRINT “提示内容”;表达式
变量=表达式
A=10
A=A+10
PRINT A
END
a=c
c=b
b=a
b=a
a=b
c=b
b=a
a=c
a=b
b=a
PAGE
10§1.2.1 输入语句、输出语句和赋值语句
学习目标
1、正确理解输入语句、输出语句、赋值语句的结构.
2、让学生充分地感知、体验应用计算机解决数学问题的方法;并能初步操作、模仿.
3、通过实例使学生理解3种基本的算法语句(输入语句、输出语句和赋值语句)的表示方法、结构和用法,能用这三种基本的算法语句表示算法,进一步体会算法的基本思想.
重点难点
重点:会用输入语句、输出语句、赋值语句.
难点:正确理解输入语句、输出语句、赋值语句的作用.
学法指导
计算机完成任何一项任务都需要算法,但是,用自然语言或程序框图表示的算法,计算机是无法“理解”的. 因此我们还需要将算法用计算机能够理解的程序设计语言来表示.
1.利用输入语句、输出语句和赋值语句可以写出任何一个顺序结构的算法程序.
2. 输入语句和输出语句中的“提示内容”有时可以省略.
问题探究
知识探究(一):输入语句和输出语句
思考1:在每个程序框图中,输入框与输出框是两个必要的程序框,我们用什么图形表示这个程序框?其功能作用如何?
思考2:已知函数y=x3+3x2-24x+30,求自变量x对应的函数值的算法步骤如何设计?
第一步,输入
第二步,计算
第三步,输出 。
思考3:该算法是什么逻辑结构?其程序框图如何?
思考4:我们将该程序框图中第一个程序框省略,后四个程序框中的内容依次写成算法语句,就得到该算法的计算机程序(仿照课本写下来):
你能理解这个程序的含义吗?
这个程序由4个语句行组成,计算机按语句行排列的顺序依次执行程序中的语句,最后一行的END语句表示程序到此结束.
思考5:在这个程序中,第1行中的INPUT语句称为输入语句,其一般格式是:
其中,“提示内容”一般是提示用户输入什么样的信息,它可以用字母、符号、文字等来表述. 变量是指程序在运行时其值是可以变化的量,一般用字母表示,若输入多个变量,变量与变量之间用逗号隔开. 提示内容加引号,提示内容与变量之间用分号隔开.据此,输入框 转化为输入语句可以怎样表述?
注:①“提示内容”与变量之间必须用分号“;”隔开。
②各变量之间必须用逗号“,”隔开。但最后的变量的后面不需要。
思考6:在这个程序中,第3行中的PRINT语句称为输出语句,其一般格式是:
其中,“提示内容”一般是提示用户输出什么样的信息,它通常是常量或变量的值;表达式一般是表示输出信息所对应的字母或代数式.PRINT语句可以在计算机的屏幕上输出运算结果和系统信息.据此,在计算a与b的和S时,输出框
转化为输出语句可以怎样表述?
知识探究(二):赋值语句
思考1:在算法的程序框图中,处理框是一个常用的程序框,我们用什么图形表示这个程序框?其功能作用如何?
思考2:在上述求函数值的程序中,第二行中的语句称为赋值语句,其一般格式是:
其基本含义是将表达式所代表的值赋给变量,赋值语句中的“=”叫做赋值号.计算机在执行赋值语句时,先计算“=”右边表达式的值,然后把这个值赋给“=”左边的变量.据此,执行框
转化为赋值语句可以怎样表述?
注:①赋值号左边只能是变量名字,而不能是表达式。如:2=X是错误的。
②赋值号左右不能对换。如“A=B”“B=A”的含义运行结果是不同的。
③不能利用赋值语句进行代数式的演算。(如化简、因式分解、解方程等)
④赋值号“=”与数学中的等号意义不同。
思考3:考察给一个变量重复赋值的程序: A=10
A=A+15
PRINT A
END
那么,A的输出值是多少?
理论迁移
例1 写出计算一个学生语文、数学、英语三门课的平均成绩的算法、程序框图和程序.
例2 写出“交换两个变量A和B的值,并输出交换前后的值”的程序.
目标检测
1、判断下列结出的输入语句、输出语句和赋值语句是否正确?为什么?
⑴输出语句INPUT ;;
(2)输入语句INPUT =3
(3)输出语句PRINT A=4
(4)输出语句PRINT 20.32
(5)赋值语句3=B
(6)赋值语句 +=0
(7)赋值语句A=B=2
(8)赋值语句
2、将两个数=8,=7交换,使=7,=8,使用赋值语句正确的一组 ( )
A. =,=
B. =,=,=
C. =,=
D. =,=,=
3、分析下面程序执行的结果
1) A=-1000
A=A+100
PRINT “A=”;A
END
则输出结果为:____________
2)INPUT “A,B=”;A,B
B=A+B
A=B-A
B=B-A
PRINT “A,B=”;A,B
END
(运行时从键盘输入3,7)
输出结果为:____________________
4、读下列两个程序,回答问题:
(1) =3
=4
=
PRINT
END
运行结果是______________;
(2)=2
=3
=4
=
=+2
=+4
PRINT “=”;d
运行结果为___________.
5、阅读下列程序,指出当时的计算结果:(其中、的值为5,-3)
(1)输入, (2) 输入, (3) 输入,
=+ =+ =+
=- =- =-
=/2 =- =-
=/2 =(+)/2 =(-)/2
=/2 =(-)/2 =(+)/2
输出, 输出, 输出,
=____,=____ =____,=_____ =____,=_____
6、编写一个程序,要求输入一个圆的半径,便能输出该圆的周长和面积。( 取3.14)
纠错矫正
总结反思
※自我评价( )
A、课前自主学习认真,学案完成很好;你真棒,继续坚持。
B、课前自主学习一般,学案完成良好;下次争取做的更好。
C、课前自主学习较差,学案空白较多;注意学习方法,提高学习效率。
输入a,b,c
输出S
PAGE
1§3.2.1 古典概型(二)
学习目标
通过典型例题,较为深入地理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.
重点难点
重点: 理解基本事件的概念、理解古典概型及其概率计算公式.
难点: 古典概型是等可能事件概率.
学法指导
对于条件中含有“至少”等字眼的古典概型,它包含的互斥事件或基本事件的个数往往较多,计数比较麻烦,这时,可考虑其对立事件,减少计算量;
灵活构造等概样本空间,简化运算;
区别对待“不放回”与“有放回”抽样问题。
知识链接
随机事件,基本事件,对立事件,互斥事件和概率加法公式
【例题讲评】
例1 一盒中装有质地相同的各色球12只,其中5红、4黑、2白、1绿,从中取1球。求:
(1)取出球的颜色是红或黑的概率;
(2)取出球的颜色是红或黑或白的概率.
例2 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.
例3 从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求下列两个事件的概率:
(1)事件A:取出的两件产品都是正品;
(2)事件B:取出的两件产品中恰有一件次品。
变形:从含有两件正品a1,a2和一件次品b1的三件产品中,一次取两件,求下列两个事件的概率:
(1)事件A:取出的两件产品都是正品;
(2)事件B:取出的两件产品中恰有一件次品。
例4 掷一颗骰子,观察掷出的点数,求掷得奇数点的概率。
解法一分析:掷骰子有6个基本事件,具有有限性和等可能性,因此是古典概型。
解法二分析:也可以把试验的所有可能结果取为{点数是奇数}和{点数为偶数}两个样本事件,它们互为对立事件,并且组成等概样本空间。
变形:一次掷两颗骰子,观察掷出的点数,求掷得点数和是奇数的概率。
例5 现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率.
分析:(1)为返回抽样;(2)为不返回抽样.
小结:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.
例6 盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一个;
(3)取到的2只中至少有一只次品。
目标检测
1 、先后抛掷2枚均匀的硬币.
①一共可能出现多少种不同的结果?
②出现“1枚正面,1枚反面”的结果有多少种?
③出现“1枚正面,1枚反面”的概率是多少?
④有人说:“一共可能出现‘2枚正面’、‘2枚反面’、‘1枚正面,1枚反面’这3种结果,因此出现‘1枚正面,1枚反面’的概率是.”这种说法对不对?
2、从标有1,2,3,4,5,6,7,8,9 的9张纸片中任取2张,那么这2 张纸片数字之积为偶数的概率为( )
A. B. C. D.
3、把10卡片分别写上0,1,2,3,4,5,6,7,8,9后,任意搅乱放入一纸箱内,从中任取一张,则所抽取的卡片上数字不小于3的概率为( )
A. B. C. D.
4、掷两个面上分别记有数字1至6的正方体玩具,设事件A为“点数之和恰好为6”,则事件A所包含的基本事件个数为 ( )
A. 2个 B. 3个
C. 4个 D. 5个
5、从1,2,3,4中任取两个数,组成没有重复数字的两位数,则这个两位数大于21的概率是______。
6、从1,2,3,4,5这5个数中任取两个,则这两个数正好相差1的概率是________。
7、在5件产品中,有三件是一级品,二件是二级品,从中任取二件,其中至少有一件为二级品的概率是___ .
【能力提升】
8、某小组共有10名学生,其中女生3名,现选举2名代表, 至少有1名女生当选的概率 ( )
A. B. C. D. 1
9、某单位36人的血型类别是:A型偶12人,B型10人,AB型8人,O型6人。现在从这36人任取2人,求2人血型不同的概率.
10、若以连续投掷两次骰子分别得到的点数作为的坐标,则
(1)点落在圆内的概率是多少?
(2)点落在圆外的概率是多少?
11、7名学生站成一排,试求下列事件的概率:
(1)甲站在排头;
(2)甲站在排头或排尾;
(3)甲不站在排头;
(4)甲和乙都站在排头或排尾;
(5)甲和乙都不站在排头或排尾;
(6)甲或乙站在排头或排尾.
纠错矫正
总结反思
PAGE
1§第一章 算法初步单元小结
学习目标
1.明确算法的含义,熟悉算法的三种基本结构:顺序、条件和循环,以及基本的算法语句。
2.能熟练运用辗转相除法与更相减损术、秦九韶算法、进位制等典型的算法知识解决同类问题。
重点难点
重点:算法的基本知识与算法对应的程序框图的设计
难点:与算法对应的程序框图的设计及算法程序的编写
学法指导
在复习旧知识的过程中把知识系统化,通过模仿、操作、探索,经历设计程序框图表达解决问题的过程。在具体问题的解决过程中进一步理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
知识链接
算法的三种基本结构:顺序、条件和循环
基本的算法语句
辗转相除法与更相减损术、秦九韶算法、进位制等典型的算法案例
问题探究
一.本章的知识结构
二.知识梳理
(1)四种基本的程序框及其含义、作用。
(2)三种基本逻辑结构
(3)五个基本算法语句
输入语句
输出语句
赋值语句
条件语句
①IF-THEN-ELSE格式
②IF-THEN格式
循环语句
①WHILE语句格式
②UNTIL语句格式
(4)算法案例
案例1 辗转相除法与更相减损术
案例2 秦九韶算法
案例3 进位制
三.典型例题
(一)、编写算法程序习题分析
例1 设计一个从输入的10个数中选出最大值和最小值的程序框图,并写出程序.
例2 一个球从100m高处自由落下,每次着地后又跳回到原高度的一半再落下.编写程序,求当它第10次着地时,
(1)第10次着地后反弹多高
(2)向下的运动共经过多少米
(3)全程共经过多少米
例3 高一某班有50名学生,编写程序,统计该班数学单元测试优秀人数(不低于80分)、及格人数和班级平均分.
(记学生成绩为x,优秀人数为m,及格人数为a,班级总分为s,平均成绩为p.)
例4 《张邱建算经》云:今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱买百鸡,问鸡翁、母、雏各几何?编写程序解决上述问题.
(二)、算法案例的应用习题分析
例1 阅读下列程序:若输入的两个数m=428,n=284,求计算机输出的数.
例2 利用辗转相除法求324,243,270三个数的最大公约数与最小公倍数。
例3 已用秦九韶算法求的值.
例5 把十进制数104化为三进制数.
例6 把八进制数2376(8)化为五进制数.
例7 在等式 3×6528=3 ×8256中,方框内是同一个一位数,编写一个程序,判断该数是否存在,若存在,输出x的值.
纠错矫正
总结反思
※自我评价( )
A、课前自主学习认真,学案完成很好;
你真棒,继续坚持。
B、课前自主学习一般,学案完成良好;
下次争取做的更好。
C、课前自主学习较差,学案空白较多;
注意学习方法,提高学习效率。
高度
100
50
25
1
2
3
4
10
着地次数
0
INPUT m,n
DO
r=m MODn
m=n
n=r
LOOP UNTIL r=0
PRINT m
END
PAGE§3.2.1 古典概型(一)
学习目标
通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.
重点难点
重点: 理解基本事件的概念、理解古典概型及其概率计算公式.
难点: 古典概型是等可能事件概率.
学法指导
1、基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A可以是基本事件,也可以是有几个基本事件组合而成的.
2、基本事件数的探求方法:
(1)列举法(2)树状图法:(3)列表法(4)排列组合
3、本节主要研究了古典概型的概率求法,解题时要注意两点:
(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;
①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式
P(A)=此公式只对古典概型适用.
知识链接
随机事件,基本事件的概率值和概率加法公式.
问题探究
通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.
【探究新知】(一):基本事件
思考1:连续抛掷两枚质地均匀的硬币,可能结果有 ;
连续抛掷三枚质地均匀的硬币,可能结果
.
思考2:上述试验中的每一个结果都是随机事件,我们把这类试验中不能再分的最简单的,且其他事件可以用它们来描述的随机事件事件称为基本事件,通俗地叫试验结果. 在一次试验中,任何两个基本事件是___ 关系.
所有基本事件构成的集合成为基本事件空间。基本事件空间常用大些字母表示.
例1:试验“连续抛掷两枚质地均匀的硬币”的基本事件空间
.
思考3:在连续抛掷三枚质地均匀的硬币的试验中,随机事件“出现两次正面和一次反面”,“至少出现两次正面”分别由哪些基本事件组成?
思考4:综上分析,基本事件的两个特征是:
(1) 任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
【探究新知】(二):古典概型
思考1:抛掷一枚质地均匀的骰子有 ________ 基本事件.每个基本事件出现的可能性相等吗?
思考2:抛掷一枚质地不均匀的硬币有________ 基本事件?每个基本事件出现的可能性相等吗?
思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?
思考4:如果一次试验中所有可能出现的基本事件只有有限个(有限性),且每个基本事件出现的可能性相等(等可能性),则具有这两个特点的概率模型称为古典概型.
例2:下列事件中哪些是古典概型:
明天是否下雨
射击运动员在一次比赛中能否击中10环
某时间内路段是否发生交通事故
抛掷一枚骰子朝上的点数是奇数.
思考5:随机抛掷一枚质地均匀的骰子是古典概型吗?
每个基本事件出现的概率是多少?
你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?
思考6:一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验中发生的概率为多少?为什么呢?
思考7:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶
数点”的概率如何计算?“出现不小于2点” 的
概率如何计算?
思考8:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?
思考9:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?

思考10:从集合的观点分析,如果在一次试验中,等可能出现的所有n个基本事件组成全集U,事件A包含的m个基本事件组成子集A,那么事件A发生的概率 P(A)等于什么?特别地,当A=U,A=Ф时,P(A)等于什么?
重要结论:一般地,对于古典概型,基本事件共有n个,随机事件A包含的基本事件是m.由互斥事件的概率加法公式可得, 所以在古典概型中
这一定义被成为概率的古典定义,其中该公式称为古典概型的概率计算公式.
【例题讲评】
例1 从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
这些基本事件构成的基本事件空间是什么?
事件“取到字母a”是哪些基本事件的和?
例2 单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
例3: 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
例4 同时掷两个不同的骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
目标检测
在下列试验中,哪些试验给 出的随机事件是等可能的? ( )
投掷一枚均匀的硬币,“出现正面”与“出现反面”
一个盘子中有三个大小完全相同的球,其中红球、黄球、黑球各一个,从中任取一个球,“取出的是红球”,“取出的是黄球”,“取出的是黑球”
一个盒子中有四个大小完全相同的球,其中红球、黄球各一个,黑球两个,从中任取一球, “取出的是红球”,“取出的是黄球”,“取出的是黑球”。
2、从一副扑克牌(54张)中抽到牌“K”的概率是( )
A. B. C. D.
3、将一枚硬币抛两次,恰好出现一次正面的概率是 ( )
A. B. C. D.
4、从教室到逸夫楼有A1,A2,A3,A4共4条路线,从逸夫楼到礼堂有B1,B2共两条路线,其中A2B1是从教室到礼堂的最短路线,某同学任选一条从教室到礼堂的路线,此路线正好是最短路线的概率是 ( )
A. B. C. D.
5、从A,B,C三个同学中选2名代表学校到省里参加奥林匹克数学竞赛,A被选中的概率是
( )
A. B. C. D.1
6、在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是 ( )
A. B. C. D.以上都不对
7.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是 ( )
A. B. C. D.
8、抛掷一枚质地均匀的正方体骰子,若前三次连续抛到“6点朝上”,则对于第四次抛掷结果的预测,下列说法中正确的是 ( )
A.出现“6点朝上”的概率大 于;
B.出现“6点朝上”的概率等于;
C.一定出现“6点朝上”;
D.无法预测“6点朝上”的概率.
9、做试验“从0,1,2 这三个数字中,不放回地取两次,每次取一个,构成有序实数对( x, y),x为第一次取到的数字,y为第二次取到的数字”.
(1)写出这个试验的基本事件;
(2)求这个试验基本事件的总数;
(3)写出“第一次取出的数字是2”这一事件,并求其发生的概率。
10、抛掷2颗质地均匀的骰子,求点数和为8的概率。
纠错矫正
总结反思
PAGE
12. 2.1 用样本的频率分布估计总体分布
【教学目标】
1. 通过实例体会分布的意义和作用;
2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图;
3. 通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。
【教学重难点】
教学重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图
教学难点:能通过样本的频率分布估计总体的分布
教学过程:
【复习回顾】
说一说简单随机抽样、系统抽样、分层抽样各自的特点、操作步骤和适用的范围。
类 别 共同点 各自特点 联 系 适用范围
简单随机抽样 (1)抽样过程中每个个体被抽到的可能性相等(2)每次抽出个体后不再将它放回,即不放回抽样 从总体中逐个抽取 总体个数较少
系统抽样 将总体均分成几部 分,按预先制定的规则在各部分抽取 在起始部分样时采用简随机抽样 总体个数较多
分层抽样 将总体分成几层,分层进行抽取 分层抽样时采用简单随机抽样或系统抽样 总体由差异明显的几部分组成
【引入】
在统计中,为了考察一个总体的情况,通常是从总体中抽取一个样本,用样本的有关情况去估计总体的相应情况。这种估计大体分为两类,一类是用样本频率分布估计总体分布,一类是用样本的某种数字特征(例如平均数、方差等)去估计总体的相应数字特征。下面我们先通过案例来介绍总体分布的估计。
【新知探究】
我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢 ?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?
为了制定一个较为合理的标准a,必须先了解全市居民日常用水量的分布情况,比如月均用水量在哪个范围的居民最多,他们占全市居民的百分比情况等。因此采用抽样调查的方式,通过分析样本数据来估计全市居民用水量的分布情况。(见课本表2-1)
分析数据的一种基本方法是用图将它们画出来,或者用紧凑的表格改变数据的排列方式,作图可以达到两个目的,一是从数据中提取信息,二是利用图形传递信息。表格则是通过改变数据的构成形式,为我们提供解释数据的新方式
下面我们学习的频率分布表和频率分布图,则是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律。可以让我们更清楚的看到整个样本数据的频率分布情况。
一、频率分布直方图
频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率分布直方图反映样本的频率分布。其一般步骤为:
(1)计算一组数据中最大值与最小值的差,即求极差
(2)决定组距与组数,
(3)将数据分组
(4)列频率分布表
(5)画频率分布直方图
以课本制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图。
频率分布直方图的特征:
(1)从频率分布直方图可以清楚的看出数据分布的总体趋势。
(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了。
思考探究:
(1)在频率分布直方图中,各小长方形的面积表示什么?它们的总和是多少?
(2)同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?
(3)如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-1和频率分布直方图2.2-1,(见课本)你能对制定月用水量标准提出建议吗?
二、频率分布折线图、总体密度曲线
1.频率分布折线图的定义:
连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图。
2.总体密度曲线的定义:
在样本频率分布直方图中,随着样本容量的增加,所分组数的增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线。它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息。(见课本)
思考探究:
(1)对于任何一个总体,它的密度曲线是不是一定存在?为什么?
(2)对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?
答:实际上,尽管有些总体密度曲线是客观存在的,但一般很难想函数图象那样准确地画出来,我们只能用样本的频率分布对它进行估计,一般来说,样本容量越大,这种估计就越精确。
三.茎叶图
1.茎叶图的概念:
当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。(见课本例子)
2.茎叶图的特征:
(1)用茎叶图表示数据的优点:一是既可以看出样本的分布情况又能看到原始数据;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示。
(2)茎叶图只便于表示两位有效数字的数据,而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰。
【例题精析】
例1、下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm)
(1)列出样本频率分布表;
(2)画出频率分布直方图;
(3)画出频率分布折线图;
(4)估计身高小于134cm的人数占总人数的百分比.。
分析:根据样本频率分布表、频率分布直方图的一般步骤解题。
解:(1)样本频率分布表如下:
(2、3)其频率分布直方图如下:
(4)由样本频率分布表可知身高小于134cm 的男孩出现的频率为0.04+0.07+0.08=0.19,所以我们估计身高小于134cm的人数占总人数的19%.
变式训练:
为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
第二小组的频率是多少?样本容量是多少?
若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。
解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,
因此第二小组的频率为:
由频率=,得
(2)由图可估计该学校高一学生的达标率
约为
(3)由已知可得各小组的频数依次为6,12,
51,45,27,9,所以前三组的频数之
和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内。
例2、从两个班中各随机的抽取10名学生,他们的数学成绩如下:
甲班:76,74,82,96,66,76,78,72,52,68
乙班:86,84,62,76,78,92,82,74,88,85
画出茎叶图并分析两个班学生的数学学习情况。
解析:
由茎叶图可知,乙班的成绩较好,而且较稳定。
【课堂小结】
1、制作频率分布直方图分几个步骤?各步骤需要注意哪些问题?
2、频率分布直方图和茎叶图相比有什么特点?
答:1、步骤:
(1)计算一组数据中最大值与最小值的差,即求极差
(2)决定组距与组数,(组距是人为决定的)
(3)将数据分组
(4)列频率分布表(必须包括分组、频数、频率三部分)
(5)画频率分布直方图(注意纵坐标表示什么,各小长方形是连在一起的)
3、频率分布直方图无法看到原始数据,而茎叶图能看出原始数据;但频率分布直方图所体现的内容比茎叶图多。
【书面作业】导学案课后练习与提高
【板书设计】
2.2.1 用样本的频率分布估计总体分布
课前预习学案
一、预习目标:在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图;
二、预习内容:阅读课本~
三.完成下列问题:
1. 一般用频率分布直方图反映样本的频率分布。其一般步骤有哪些 频率分布直方图的特征是什么
2.茎叶图的特征是什么
课内探究学案
学习目标
1. 通过实例体会分布的意义和作用;
2. 在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图;
3. 通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。
重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图
难点:能通过样本的频率分布估计总体的分布
学习过程
【复习回顾】
说一说简单随机抽样、系统抽样、分层抽样各自的特点、操作步骤和适用的范围。
类 别 共同点 各自特点 联 系 适用范围
简单随机抽样 (1)抽样过程中每个个体被抽到的可能性相等(2)每次抽出个体后不再将它放回,即不放回抽样 从总体中逐个抽取 总体个数较少
系统抽样 将总体均分成几部 分,按预先制定的规则在各部分抽取 在起始部分样时采用简随机抽样 总体个数较多
分层抽样 将总体分成几层,分层进行抽取 分层抽样时采用简单随机抽样或系统抽样 总体由差异明显的几部分组成
【新知探究】
我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费。如果希望大部分居民的日常生活不受影响,那么标准a定为多少比较合理呢 ?你认为,为了了较为合理地确定出这个标准,需要做哪些工作?
【自主学习】
一、频率分布直方图
1.频率分布是指一个样本数据在各个小范围内所占比例的大小。一般用频率分布直方图反映样本的频率分布。其一般步骤为:
2.以课本制定居民用水标准问题为例,经过以上几个步骤画出频率分布直方图。
3.频率分布直方图的特征:
思考探究:
(1)在频率分布直方图中,各小长方形的面积表示什么?它们的总和是多少?
(2)同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断,分别以0.1和1为组距重新作图,然后谈谈你对图的印象?
(3)如果当地政府希望使85%以上的居民每月的用水量不超出标准,根据频率分布表2-1和频率分布直方图2.2-1,(见课本)你能对制定月用水量标准提出建议吗?
二、频率分布折线图、总体密度曲线
1.频率分布折线图的定义:
2.总体密度曲线的定义:
在样本频率分布直方图中,随着样本容量的增加,所分组数的增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线。它能够精确地反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息。(见课本)
思考探究:
(1)对于任何一个总体,它的密度曲线是不是一定存在?为什么?
(2)对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?
三.茎叶图
1.茎叶图的概念:
当数据是两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。(见课本例子)
2.茎叶图的特征:
典型例题
例1、下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm)
(1)列出样本频率分布表;
(2)画出频率分布直方图;
(3)画出频率分布折线图;
(4)估计身高小于134cm的人数占总人数的百分比.。
变式训练:
为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
第二小组的频率是多少?样本容量是多少?
若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
例2、从两个班中各随机的抽取10名学生,他们的数学成绩如下:
甲班:76,74,82,96,66,76,78,72,52,68
乙班:86,84,62,76,78,92,82,74,88,85
画出茎叶图并分析两个班学生的数学学习情况。
当堂检测
1.为了解一批数据在各个范围内所占的比例大小,将这批数据分组,落在各个小组里的
数据个数叫做 ( )
A、频数 B、样本容量 C、频率 D、频数累计
2.在频率分布直方图中,各个小长方形的面积表示 ( )
A、落在相应各组的数据的频数 B、相应各组的频率
C、该样本所分成的组数 D、该样本的容量
3.列样本频率分布表时,决定组数的正确方法是 ( )
A、任意确定 B、一般分为5—12组
C、由组距和组数决定 D、根据经验法则,灵活掌握
4.一个容量为n的样本,分成若干组,已知某组的频数和频率分别为40,0、125,则n的值为( )
A、640 B、320 C、240 D、160
5.为考察某种皮鞋的各种尺码的销售情况,以某天销售40双皮鞋为一个样本,把它按尺码分成5组,第3组的频率为0、25,第1,2,4组的频率分别为6,7,9,若第5组表示的是40—42码的皮鞋,则售出的200双皮鞋中含40—42码的皮鞋为( )
A、50 B、40 C、20 D、30
6.一个容量为20 的样本数据,分组后组距与频数如下:
(10,20],2;(20,30],3;(30,40],4;(40,50],4;(60,70],2。则样本在区间(-,50]上的频率是( )
A、5% B、25% C、50% D、70%
7.将一批数据分成5组列出频率分布表,其中第1组的频率是0、1,第4组与 第5组的频率之和是0、3,那么第2组与第3组的频率之和是 。
反思总结
课后练习与提高
1.从一群学生中收取一个一定容量的样本对他们的学习成绩进行分析,前三组是不超过80分的人,其频数之和为20人,其频率之和(又称累积频率)为0、4,则所抽取的样本的容量是 ( )
A、100 B、80 C、40 D、50
2.下列叙述中正确的是 ( )
A、从频率分布表可以看出样本数据对于平均数的波动大小
B、频数是指落在各个小组内的数据
C、每小组的频数与样本容量之比是这个小组的频率
D、组数是样本平均数除以组距
3.有一个数据为50的样本数据分组,以及各组的频数如下,根据累积频率分布,估计小于30的数据大约占多少( )
[12、5,15、5),3;[15、5,18、5),8;[18、5,21、5),9;[21、5,24、5),11;[24、5,27、5),10;[30、5,33、5),4
A、10% B、92% C、5% D、30%
4.在抽查某产品尺寸的过程中,将其尺寸分成若干组,[a,b]是其中一组,抽查出的个体数在该组上的频率为m,该组上的直方图的高是h,则,[a-b]等于( )
A、hm B、 C、 D、 与m,h无关
5.已知一个样本75,71,73,75,77,79,75,78,80,79,76,74,75,77,76,72,74,75,76,78。在列频率分布表时,如果组距取为2,那么应分成 组,第一组的分点应是 — ,74、5—76、5这组的频数应为 ,频率应为 。
6.在求频率分布时,把数据分为5组,若已知其中的前四组频率分别为0、1,0、3,0、3,0、1,则第五组的频率是 ,这五组的频数之比为 。
7.为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组及频率如下表:
分组 频数 频率
[10、75,10、85) 3
[10、85,10、95) 9
[10、95,11、05) 13
[11、05,11、15) 16
[11、15,11、25) 26
[11、25,11、35) 20
[11、35,11、45) 7
[11、45,11、55) 4
[11、55,11、65) 2
合计 100
完成上面的频率分布表;
根据上表画出频率分布直方图;
根据上表和图,估计数据落在[10、95,11、35)范围内的概率约是多少?
数据小于11、20的概率约是多少?
90
100
110
120
130
140
150
次数
o
0.004
0.008
0.012
0.016
0.020
0.024
0.028
频率/组距
0.032
0.036
一、频率分布直方图的步骤
二、频率分布折线图和总体密度曲线
三、茎叶图
例题讲解
例1
变式训练
例2
小结
PAGE
11§1.3.3算法案例
——进位制
学习目标
了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之间的转换。
学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除去余法,并理解其中的数学规律。
重点难点
重点:各进位制表示数的方法及各进位制之间的转换
难点:除取余法的理解以及各进位制之间转换的程序框图的设计
学法指导
1. k进制数使用0~(k-1)共个数字,但左侧第一个数位上的数字(首位数字)不为0.
2.用 表示进制数,其中称为基数,十进制数一般不标注基数
3.利用除取余法,可以把任何一个十进制数化为进制数,并且操作简单、实用.
4.通过进制数与十进制数的转化,我们也可以将一个进制数转化为另一个不同基数的进制数.
问题探究
知识探究(一):进位制的概念
思考1:进位制是为了计数和运算方便而约定的记数系统,如逢十进一,就是十进制;每七天为一周,就是七进制;每十二个月为一年,就是十二进制,每六十秒为一分钟,每六十分钟为一个小时,就是六十进制;等等.一般地,“满进一”就是进制,其中称为进制的基数.那么是一个什么范围内的数?
思考2:十进制使用0~9十个数字,那么二进制、五进制、七进制分别使用哪些数字?
思考3:在十进制中10表示十,在二进制中10表示2.一般地,若是一个大于1的整数,则以为基数的进制数可以表示为一串数字连写在一起的形式:其中各个数位上的数字 , ,…,,的取值范围如何?
思考4:十进制数4528表示的数可以写成,依此类比,二进制数,八进制数 分别可以写成什么式子?
思考5:一般地,如何将进制数 写成各数位上的数字与基数的幂的乘积之和的形式?
思考6:在二进制中,0+0,0+1,1+0,1+1的值分别是多少?
知识探究(二): 进制化十进制的算法
思考1:二进制数110011(2)化为十进制数是什么数?
思考2:二进制数右数第i位数字化为十进制数是什么数?
思考3:运用循环结构,把二进制数 化为十进制数b的算法步骤如何设计?
第一步,
第二步,
第三步
第四步,
思考4:按照上述思路,把进制数 化为十进制数b的算法步骤如何设计?
第一步,输入a,k和n的值.
第二步,
第三步
第四步,
思考5:上述把进制数化为十进制数b的算法的程序框图如何表示?
思考6:该程序框图对应的程序如何表述?
理论迁移
例1 将下列各进制数化为十进制数.
(1) ; (2)
例2 已知求数字的值.
知识探究(三):除取余法
思考1:二进制数101101(2)化为十进制数是什么数?十进制数89化为二进制数是什么数?
思考2:上述化十进制数为二进制数的算法叫做除2取余法,转化过程有些复杂,观察下面的算式你有什么发现吗?
思考3:上述方法也可以推广为把十进制数化为进制数的算法,称为除取余法,那么十进制数191化为五进制数是什么数?
思考4:若十进制数a除以2所得的商是q0,余数是r0,即a=2·q0+ r0;
q0除以2所得的商是q1,余数是r1, 即q0=2·q1+ r1; …… qn-1除以2所得的商是0,余数是rn,那么十进制数a化为二进制数是什么数?
思考2:根据上面分析,利用除取余法,将十进制数a化为进制数的算法步骤如何设计?
第一步,输入十进制数a和基数的值.
第二步,
第三步,
第四步,
思考3:将除取余法的算法步骤用程序框图如何表示?
思考4:该程序框图对应的程序如何表述?
理论迁移
例1 将十进制数458分别转化为四进制数和六进制数.
例2 将五进制数3241(5)转化为七进制数.
目标检测
1、以下给出的各数中不可能是八进制数的是( )
A.312 B.10110 C.82 D.7457
2、下列各数中最小的数是( )
A. B.
C. D.
3、将389化成四进位制数的末位是 ( )
A. 1 B. 2 C. 3 D. 0
4、将二进制数化为十进制结果为___________;再将该数化为八进制数,结果为________________.
5、若六进数化为十进数为12710,则,把12710化为八进数为____________.
6、完成下列进位制之间的转化.
=_________=_______
=_________=__________
=_________
6、已知=,求r.
总结反思
纠错矫正
※自我评价( )
A、课前自主学习认真,学案完成很好;
你真棒,继续坚持。
B、课前自主学习一般,学案完成良好;
下次争取做的更好。
C、课前自主学习较差,学案空白较多;
注意学习方法,提高学习效率。
2
1
2
2
2
5
0
2
11
2
22
2
44
2
89
1
0
0
1
1
0
1
余数
PAGE
12. 1.1简单随机抽样
【教学目标】:
1.正确理解随机抽样的概念,会描述抽签法、随机数表法的一般步骤.
2.能够根据样本的具体情况选择适当的方法进行抽样.
【教学重难点】:
教学重点:正确理解简单随机抽样的概念,会描述抽签法及随机数法的步骤,能灵活应用相关知识从总体中抽取样本.
教学难点:简单随机抽样的概念,抽签法及随机数法的步骤.
【教学过程】:
情境导入:
1.根据国务院的决定,我国于2000年11月1日进行了第五次全国人口普查的登记工作。近千万普查工作人员投入到了艰苦繁重的工作中,结果显示至普查日期为止我国人口总数为129533万。
上面的例子是一个统计上的典型事例,它用到了什么统计方法?它有什么优缺点?你有什么其他的办法吗?发表一下你的观点?
(答:用到了普查的统计方法;优点是全面准确,缺点是工作量大,在绝大部分的统计案例中无法实现(检查具有破坏性);随机抽查的方法。)
2.课本P55阅读
你认为在该故事中预测结果出错的原因是什么?
(答:所选样本没有代表性。)
3.假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?
显然,你只能从中抽取一定数量的饼干作为检验的样本。(为什么?)那么,应当怎样获取样本呢?
新知探究:
一、简单随机抽样的概念:
一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
思考:简单随机抽样的每个个体入样的可能性为多少?(n/N)
二、抽签法和随机数法:
1、抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
抽签法的一般步骤:
(1)将总体的个体编号;
(2)连续抽签获取样本号码.
思考:你认为抽签法有什么优点和缺点;当总体中的个体数很多时,用抽签法方 便吗?
解析:操作简便易行,当总体个数较多时工作量大,也很难做到“搅拌均匀”
2、随机数法
利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法.
怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的 500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。
第一步,先将800袋牛奶编号,可以编为000,001,…,799。
第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明, 下面摘取了附表1的第6行至第10行)。
16 22 77 94 39 49 54 43 54 82 17 37 93 23 78
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38
57 60 86 32 44 09 47 27 96 54 49 17 46 09 62
87 35 20 96 43 84 26 34 91 64
21 76 33 50 25 83 92 12 06 76
12 86 73 58 07 44 39 52 38 79
15 51 00 13 42 99 66 02 79 54
90 52 84 77 27 08 02 73 43 28
第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。
随机数表法的步骤:
(1)将总体的个体编号;
(2)在随机数表中选择开始数字;
(3)读数获取样本号码.
思考:结合自己的体会说说随机数法有什么优缺点?
解析:相对于抽签法有效地避免了搅拌不均匀的弊端,但读数和计数时容易出错.
精讲精练:
例1.下列抽取样本的方式是否属于简单随机抽样 说明理由.
(1)从无限多个个体中抽取100个个体作为样本;
(2)盒子中共有80个零件,从中选出5个零件进行质量检验,在进行操作时,从中任意抽出一个零件进行质量检验后把它放回盒子里;
(3)某班45名同学,指定个子最高的5人参加某活动;
(4)从20个零件中一次性抽出3个进行质量检测.
[解析] 根据简单随机抽样的特点进行判断,考查学生对简单随机抽样的理解;
[解] (1)不是简单随机抽样,由于被抽取的样本的总体个数是无限的;
(2)不是简单随机抽样,由于它是放回抽样;
(3)不是简单随机抽样,因为不是等可能性抽样;
(4)不是简单随机抽样,因为不是逐个抽样.
[点评]判断所给抽样是不是简单随机抽样,关键是看它们是否符合简单随机抽样的四个特点.
[变式训练1] 下列问题中,最适合用简单随机抽样方法抽样的是 ( )
A. 某电影有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了观
报告会结束以后听取观众的意见,要留下32名观众进行座谈
B. 从十台冰箱中抽取3台进行质量检验
C. 某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部
门为了解大家对学校机构改革的意见,要从中抽取容量为20的样本
D. 某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田 480 亩估计全乡农田平均产量
例2. 某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?
[解析] 简单随机抽样一般采用两种方法:抽签法和随机数表法.
[解] 解法1:(抽签法)将100件轴编号为1,2,…,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10个号签,然后测量这个10个号签对应的轴的直径.
解法2:(随机数表法)将100件轴编号为00,01,…99,在随机数表中选定一个起始位置,如取第21行第1个数开始,选取10个为68,34,30,13,70,55,74,77,40,44,这10件即为所要抽取的样本.
[点评] (1)抽签法和随机数表法是常见的两种简单的随机抽样方法,具体问题要灵活运用这两种方法.
(2)在应用随机数表时,将100个个体编号为00,01,02,…99而非0,1,2,…99,是为了便于使用随机数表.此外,将起始号码选为00而非01,可使100个号码都用两位数字号码表示.
[变式训练2] 某企业有150名职工,要从中随机的抽取20人去参观学习,请用抽签法和随机数表法进行抽取,写出过程.
反馈测评:
1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是
A.总体是240 B、个体是每一个学生
C、样本是40名学生 D、样本容量是40
2、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是 ( )
A、总体 B、个体是每一个学生
C、总体的一个样本 D、样本容量
3、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体a被抽到的可能性是 ,a在第10次被抽到的可能性是
【板书设计】:
【作业布置】:
优化丛书 体验成功2.1.1.
2.1.1简单随机抽样
课前预习学案
一、预习目标
预习简单随机抽样的概念,初步了解抽签法、随机数表法的一般步骤。
二、预习内容
1.一般地,设一个总体含有N个个体,从中 地抽取n个个体作为 (n≤N),如果每次抽取时总体内的各个个体 ,就把这种抽样方法叫做
2.一般地,抽签法就是把总体中的N个个体 ,把号码写在 上,将号签放在一个容器中, ,每次从中抽取一个号签, n次就得到一个容量为n的样本
3.利用 或计算机产生的随机数进行抽样,叫随机数表法.
提出疑惑
抽签法有什么优点和缺点
随机数表法有什么优点和缺点?
如何灵活运用这两种方法?
课内探究学案
一、学习目标
1.正确理解随机抽样的概念,会描述抽签法、随机数表法的一般步骤.
2.能够根据样本的具体情况选择适当的方法进行抽样.
二、学习重难点:正确理解简单随机抽样的概念,会描述抽签法及随机数法的步骤,能灵活应用相关知识从总体中抽取样本.
三、学习过程
(一)合作探究
简单随机抽样的概念:
探究一:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?
探究二:简单随机抽样的定义
探究三:简单随机抽样的特点:
(1)简单随机抽样要求被抽取的样本的总体个数N是
(2)简单随机样本是从总体中逐个 抽取的
(3)简单随机抽样的每个个体入样的可能性均为
抽签法
探究四:抽签法的一般步骤:
1.
2.
探究五:抽签法的优点和缺点
优点:
缺点:
随机数法
探究六:随机数法的一般步骤:
1.
2.
3.
探究七:随机数法的优点和缺点
优点:
缺点:
(二)精讲点拨:
例1.下列抽取样本的方式是否属于简单随机抽样 说明理由.
(1)从无限多个个体中抽取100个个体作为样本;
(2)盒子中共有80个零件,从中选出5个零件进行质量检验,在进行操作时,从中任 意抽出一个零件进行质量检验后把它放回盒子里;
(3)某班45名同学,指定个子最高的5人参加某活动;
(4)从20个零件中一次性抽出3个进行质量检测.
[变式训练1] 下列问题中,最适合用简单随机抽样方法抽样的是 ( )
A. 某电影有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了观
报告会结束以后听取观众的意见,要留下32名观众进行座谈
B. 从十台冰箱中抽取3台进行质量检验
C. 某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教
育部门为了解大家对学校机构改革的意见,要从中抽取容量为20的样本
D. 某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农
田 480 亩估计全乡农田平均产量
例2. 某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?
[变式训练2] 某企业有150名职工,要从中随机的抽取20人去参观学习,请用抽签法和随机数表法进行抽取,写出过程.
(三)反思总结:
(四)当堂检测:
1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是
A.总体是240 B、个体是每一个学生
C、样本是40名学生 D、样本容量是40
2、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是 ( )
A、总体 B、个体是每一个学生
C、总体的一个样本 D、样本容量
3、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体a被抽到的可能性是 ,a在第10次被抽到的可能性是
课后练习与提高
选择题
1.对于简单随机抽样,个体被抽到的机会( )
A. 相等 B.不相等
C.不确定 D.与抽取的次数有关
2.抽签法中确保样本代表性的关键是 ( )
A.制签 B.均匀搅拌
C.注意抽取 D.抽样不放回
3.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男生被抽到的概率是( )
B. C. D.
填空题
4.从50个产品中抽取10个进行检查,则总体个数为 ,样本容量为
5.福利彩票的中奖号码是由1~36个号码中,选出7个号码来按规则确定中奖情况,这种从36个选7个号的抽取方法是 .
解答题
6.某中学高一年级400人,高二年级有320人,高三年级有280人,以每人被抽取的概率为0.2,向该中学抽取一个容量为n的样本,求n的值.
一、简单随机抽样
二、抽签法和随机数法
1、抽签法
2、随机数法
例题讲解
练一练
小结
PAGE
8§2.2.1用样本的频率分布估计总体分布习题
典例分析:
身高区间 [122,126) [126,130) [130,134)
人 数 2 8 9
身高区间 [134,138) [138,142) [142,146)
人 数 18 28 15
身高区间 [146,150) [150,154) [154,158)
人 数 10 6 4
例1 在某小学500名学生中随机抽样得到100人的身高如下表(单位cm) :
(1)列出样本频率分布表;
(2)画出频率分布直方图;
(3)估计该校学生身高小于134cm的人数约为多少?
例2:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
第二小组的频率是多少?样本容量是多少?
若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
目标检测
1.一个容量为10的样本的最大值140,最小值是51,组距为10,则可分成      组。
2.一个容量为n的样本,分成若干组,已知某组的频数和频率分别是50和0.25,则n=        .  
3.设样本容量为40,把数据分成四组,若第一小组的频率为0.1,则第二小组的频率为0.4;第四小组的频率为0.2,则第三小组的频数是 。
4.200辆汽车通过某一段公路时的时速频率分布直方图如下图所示,则时速在的汽车大约有________辆.
5.如下图是总体的一个样本频率分布直方图,且在[15,18)内的频数为8.
(1)求样本的容量;
(2)若在[12,15)内小矩形面积为0.06,求样本在内[12,15)的频数;
(3)求样本在[18,33)内的频率.
6.下图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知( )
A.甲运动员的成绩好于乙运动员
B.乙运动员的成绩好于甲运动员
C.甲、乙两名运动员的成绩没有明显的差异
D.甲运动员的最低得分为0分
7.有一种鱼的身体吸收汞,汞的含量超过体重的1.00ppm(即百分之一)时就会对人体产生危害,在30条鱼的样本中发现汞的含量是:
0.07,0.24,0.95,0.98,1.02,0.98,1.37,1.40,0.39,1.02,1.44,1.58,0.54,1.08,0.61,0.72,1.20,1.14,1.62,1.68,1.85,1.20,0.81,0.82,0.84,1.29,1.26,2.10,0.91,1.31
(1)用前两位数作为茎,画出样本数据的茎叶图;
(2)描述一下汞含量的分布特点;
§2.2.2用样本的数字特征估计总体的数字特征习题
例5 有20种不同的零食,它们的热量含量如下:
110 120 123 165 432 190 174 235 428 318 249 280 162 146 210 120 123 120 150 140
(1)以上20个数据组成总体,求总体平均数与总体标准差;
(2)设计一个适当的随机抽样方法,从总体中抽取一个容量为7的样本,计算样本的平均数和标准差.
目标检测
1、下列刻画一组数据离散程度的是 ( )
平均数 B.方差 C.中位数 D.众数
2、下列说法错误的是 ( )
A.一个样本的众数、中位数、平均数不可能是同一个数
B统计中,我们可以用样本平均数去估计总体平均数
C.样本平均数既不可能大于,也不可能小于这个数中的所有数据
D.众数、中位数、平均数从不同的角度描述了一组数据的集中趋势
若m个数的平均数是x,n个数的平均数是y,则这m+n个数的平均数是 ( )
A. B.
C. D.
4、某同学历次数学考试成绩是95,98,92,83,91和92,则他取得的数学成绩的平均数、中位数、众数、极差和标准差分别是 ( )
A.91.8,92,92,15,4.60 B.92,92,92,15,5.60
C.91.8,91,92,15,4.60 D.91,92,92,18,4.60
5、某校高一年级进行一次数学测试,抽取40人,算出平均成绩为80分,为准确起见,后来又抽取50人,算出其平均成绩为83分。通过两次抽样结果,估计这次数学测验成绩为
( )
A、81.7分 B、81.5分
C、 80分 D、83分
6、在一次歌手大奖赛上,五位评委为某歌手打出的分数如下:9.4,8.4,9.9,9.6,9.5,去掉一个最高分和一个最低分后,所剩数据的平均值和标准差分别为 ( )
A.9.4, 0.1 B.9.4,0.01
C.9.5, 0.1 D.9.5,0.01
7、甲、乙两台机器同时生产 一种零件,现要检验它们的运行情况,统计10天中两台机器每天出次品数分别是甲:0,1,0,2,2,0,3,1,2,4;乙:2,3,1,1,0,2,1,1,0,1.则出次品数较少的为 ( )
A.甲 B.乙
C.相同 D.不能确定
8、.已知一组数的平均数是2,方差是,那么另一组数据的平均数和方差分别是 ( )
A.2, B.2,1
C.4, D.4,3
9、计算:(1)1,2,3,4,5,6,7,8,9的方差 = 标准差s= ;
( 2 )10,20,30,40,50,60,70,8 0,90的方差= ,标准差s= . 试比较两组数据的计算结果,得到的一般结论是
10、已知样本101,100,99,x,y的平均数为100,方差为2,这个样本中的数据x和y的值分别是 ,
11、(选做)如果5个从小到大的整数所组成的数组的中位数是4,这个组唯一的众数是6,那么这个数组全体数字的和的最大值为 。
12、某班50位同学的身高分成如下三层:
层数 身高/cm 人数
1 155~165 15
2 165~175 27
3 175~185 8
(1)画出频数分布直方图,并据此估计全班同学的平均身高;(2)现自第一层中抽取三个样本,分别为154,160,163;自第二层中抽取五个样本,分别为171,168,166,174,171;自第三层中抽取两个样本,分别为175,179,估计全班同学之平均身高;(3)比较(1)和(2)的结果,你有什么体会?
13、甲、乙两种玉米苗中各抽 10 株,分别测得它们的株高如下(单位:cm):
甲:25 41 40 37 22 14 19 39 21 42
乙:27 16 44 27 44 16 40 40 16 40
问:(1)哪种玉米的苗长得高?
(2)哪种玉米的苗长得齐?
14、在某高中篮球联赛中,甲、乙两名运动员的得分如下.
甲的得分:14,17,25,26,30,3l,35.37,38,39,44,48,51,53,54;
乙的得分:6,15,17,18,2l,27,28,33,35,38,40,44,56.
(1)用茎叶图表示上面的样本数据,并找出样本数据的中位数;(2)根据(1)中所求的数据分析甲、乙两名运动员哪一位发挥得更加稳定.
纠错矫正
收获与体会
100
90
110
120
140
150
次数
o
0.004
0.008
0.012
0.016
0.020
0.024
0.028
频率/组距
0.032
0.036
40 50 60 70 80 时速
频率/组距
0.04
0.03
0.02
0.01
0
第4题
12
15
18
21
24
27
0
EMBED Equation.DSMT4 0
33
30
数据
频率/组距

0
1
2
3
4
5

8
247
199
36
2
50
32
875421
944
1
第5 题
PAGE
11. 1.2程序框图与算法的基本逻辑结构(二)
———条件结构和循环结构
学习目标
1、更进一步理解算法,
2、掌握算法的条件结构和循环结构,
3、掌握画程序框图的基本规则,能正确画出程序框图.学会灵活、正确地画程序框图。
重点难点
重点:条件结构和循环结构的应用。
难点:综合运用这些知识正确地画出程序框图。
学法指导
顺序结构是任何一个算法都离不开的基本逻辑结构,在一些算法中,有些步骤只有在一定条件下才会被执行,有些步骤在一定条件下会被重复执行,这需要我们对算法的逻辑结构作进一步探究.
条件结构和循环结构的基本特征:
(1)程序框图中必须有两个起止框,穿插输入、输出框和处理框,一定有判断框.
(2)循环结构中包含条件结构,条件结构中不含循环结构.
(3)条件结构和循环结构的程序框图各有两种形式,相互对立统一.
知识链接
基本程序框图的画法与含义。
问题探究
知识探究(一):算法的条件结构
思考1:在某些问题的算法中,有些步骤只有在一定条件下才会被执行,算法的流程因条件是否成立而变化.在算法的程序框图中,由若干个在一定条件下才会被执行的步骤组成的逻辑结构,称为 ,用程序框图可以表示为下面两种形式:
你如何理解这两种程序框图的共性和个性?
思考2:判断“以任意给定的3个正实数为三条边边长的三角形是否存在”的算法步骤如何设计?
第一步,
第二步,
思考3:你能画出这个算法的程序框图吗?
知识探究(二):算法的循环结构
思考1:在算法的程序框图中,由按照一定的条件反复执行的某些步骤组成的逻辑结构,称为 ,反复执行的步骤称为 ,那么循环结构中一定包含条件结构吗?
思考2: 直到型循环结构用程序框图可以表示为:
你能指出直到型循环结构的特征吗?
在 后,对条件进行判断,如果 ,就 ,直到 时终止循环。
思考3:当型循环结构用程序框图可以表示为:
你能指出当型循环结构的特征吗?
在 前,对条件进行判断,如果 ,就 ,否则终止循环。
思考4:计算1+2+3+…+100的值可按如下过程进行:
第1步,0+1=1.
第2步,1+2=3.
第3步,3+3=6.
第4步,6+4=10.
……
第100步,4950+100=5050.
我们用一个 变量S表示每一步的计算结果,即把S+i的结果仍记为S,从而把第i步表示为 ,其中S的初始值为 ,i依次取1,2,…,100,通过重复操作,上述问题的算法如何设计?
第一步,令i=1,S=0.
第二步,
第三步,
第四步,
思考5:用直到型循环结构和当型循环结构,程序框图中判断的条件分别为:
思考6:右面的程序框图中:
将步骤A和步骤B交换位置,结果会怎样?能达到预期结果吗?为什么?要达到预期结果,还需要做怎样的修改?
理论迁移
例1 设计一个求解一元二次方程ax2+bx+c=0的算法,并画出程序框图表示.
算法分析:
第一步,输入三个系数a,b,c。
第二步,计算 。
第三步,判断 是否成立.若是,则计算 ;否则,输出“方程没有实数根”,结束算法。
第四步,判断 是否成立。若是,则输出 ,否则,计算 ,并输出 。
程序框图:
例2 某工厂2005年的年生产总值为200万元,技术革新后预计以后每年的年生产总值都比上一年增长5%.设计一个程序框图,输出预计年生产总值超过300万元的最早年份.
算法分析:
第一步, 输入 。
第二步,计算 。
第三步,判断 , 若是,则输出该年的年份;否则, 。
循环结构:
(1)循环体:设a为某年的年生产总值,t为年生产总值的年增长量,n为年份,则t= ,a= ,n= 。
(2)初始值:n= ,a= 。
(3)控制条件:当“ ”时终止循环。
程序框图:
目标检测
1、如图(1)所示程序的输出结果为s=132, 则判断中应填 .
A、i≥10? B、i≥11?
C、i≤11? D、i≥12?
2、如图(2)程序框图箭头b指向①处时,输出 s=__________.
箭头b指向②处时,输出 s=__________
3、如图(3)是为求1~1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。
①__________。②__________。
4.如图(4)程序框图表达式中N=__________。
5、已知函数 ,设计一个求函数值的算法,并画出其程序框图
6、假设超市购物标价不超过100时按九折付款,如标价超过100元,则超过部分按七折收费,写出超市收费的算法,并画出流程图。
总结反思
1、条件结构:是根据指定打件选择执行不同指令的控制结构。根据给定的条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行A框和B框,也不可能A框、B框都不执行。
2.循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构。
3.在循环结构中都有一个计数变量和累加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次。
4.画循环结构流程图前:
①确定循环变量和初始条件;
②确定算法中反复执行的部分,即循环体;
③确定循环的转向位置;
④确定循环的终止条件.
i = i + 1
Sum=Sum + i


i = i + 1
Sum=Sum + i


结束
输出Sum
i=0,Sum=0
开始
i = i + 1
Sum=Sum + i
i>=100


A
B
N
(1)
开始
i=1
s=0
s=s+i
i=i+1
i≤5
Y


b
N
结束
(2)
输出s
s=s×i
输出s
结束
开始
Y
i=12,s=111111
i=i-1
结束
开始
i=2
s=0
i≤1000

(1)
(2)

输出s
(3)
开始
N=1
I=2
N=N×I
I=I+1
N
I≤5
输入N
结束
Y
(4)
PAGE
1高考资源网(www.),您身边的高考专家
高考资源网(www.),您身边的高考专家
1. 2.2条件语句
教学目标:1.正确理解条件语句的概念;
2.能应用条件语句编写程序框图;
3.能应用条件语句编写程序。
教学重点:条件语句的步骤、结构及功能。
教学难点:会编写程序中的条件语句
教学过程:
一、知识再现
上节课所学习的三种算法语句是什么?并分别写出它们的一般格式.
输入语句、输出语句和赋值语句
输入语句的一般格式是: 输出语句的一般格式是: 赋值语句的一般格式是:
二、创设情境
试求自然数1+2+3+……+99+100的和.显然大家都能准确地口算出它的答案:5050.
而能不能将这项计算工作交给计算机来完成呢?而要编程,以我们前面所学的输入、输出
语句和赋值语句还不能满足“我们日益增长的物质需要”,因此,还需要进一步学习基本
算法语句中的另外两种:条件语句和循环语句,这节课我们先来学习条件语句.
三、新知探究
(一)条件语句
算法中的条件结构是由条件语句来表达的,是处理条件分支逻辑结构的算法语句.
它的一般格式是:(IF-THEN-ELSE-END IF格式)
当计算机执行上述语句时,首先对IF后的条件进行判断,如果条件符合,就执行THEN
后的语句1,否则执行ELSE后的语句2.其对应的程序框图为:(如上右图)
在某些情况下,也可以只使用IF-THEN语句:(即IF-THEN-END IF格式)
计算机执行这种形式的条件语句时,也是首先对IF后的条件进行判断,如果条件符合,
就执行THEN后的语句体,否则执行END IF之后的语句.其对应的程序框图为:(如上右图)
(二)典型例题
例1 编写一个程序,求实数的绝对值.
程序:
思考:阅读下面的程序,你能得出什么结论?
例2 写出求方程ax2+bx+c=0的根的程序.
答案:
程序
例3 编写程序,使任意输入的3个整数按从大到小的顺序输出.
答案:算法分析:用a,b,c表示输入的3个整数;
为了节约变量,把它们重新排列后,仍用a,b,c表示,并使a≥b≥c.具体操作步骤如下:
第一步:输入3个整数a,b,c.
第二步:将a与b比较,并把小者赋给b,大者赋给a.
第三步:将a与c比较. 并把小者赋给c,大者赋给a(此时a已是三者中最大的).
第四步:将b与c比较,并把小者赋给c,大者赋给b(此时a,b,c已按从大到小的顺序排列好).
第五步:按顺序输出a,b,c.
程序见右图:
(三)〖随堂练习〗:
1 下面程序运行后实现的功能为_______________
2.写出已知函数
输入的值,求y的值程序.
四、归纳小结
本节课主要学习了条件语句的结构、特点、作用以及用法,并能解决一些简单的问题.
条件语句一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两个数
的大小,解一元二次方程等问题,还有求分段函数的函数值等,往往要用条件语句,有时
甚至要用到条件语句的嵌套.
五、板书设计
六、作业布置
1.2.2条件语句
课前预习学案
一、预习目标
通过预习知道条件语句的应用背景及其一般结构。
预习内容
预习教材回答:什么样的问题背景下需要使用条件结构?请举例说明。
提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
学习目标:1.正确理解条件语句的概念;
2.能应用条件语句编写程序框图;
3.能应用条件语句编写程序。
学习重点:条件语句的步骤、结构及功能。
学习难点:会编写程序中的条件语句
学习过程:
一、〖知识再现〗
上节课所学习的三种算法语句是什么?并分别写出它们的一般格式.
输入语句、输出语句和赋值语句
输入语句的一般格式是:__________________________________________.
输出语句的一般格式是:__________________________________________.
赋值语句的一般格式是:__________________________________________.
二、〖创设情境〗
试求自然数1+2+3+……+99+100的和.显然大家都能准确地口算出它的答案:5050.
而能不能将这项计算工作交给计算机来完成呢?而要编程,以我们前面所学的输入、输出
语句和赋值语句还不能满足“我们日益增长的物质需要”,因此,还需要进一步学习基本算法
语句中的另外两种:条件语句和循环语句,这节课我们先来学习条件语句.
三、〖新知探究〗
(一)条件语句
算法中的条件结构是由条件语句来表达的,是处理条件分支逻辑结构的算法语句.
它的一般格式是:(IF-THEN-ELSE-END IF格式)
当计算机执行上述语句时,首先对IF后的条件进行判断,如果条件符合,就执行THEN
后的语句1,否则执行ELSE后的语句2.其对应的程序框图为:(如上右图)
在某些情况下,也可以只使用IF-THEN语句:(即IF-THEN-END IF格式)
计算机执行这种形式的条件语句时,也是首先对IF后的条件进行判断,如果条件符合,
就执行THEN后的语句体,否则执行END IF之后的语句.其对应的程序框图为:(如上右图)
(二)典型例题
例1 编写一个程序,求实数的绝对值.
程序:
思考:求的绝对值还有其他的编写程序方法。
例2 写出求方程ax2+bx+c=0的根的程序.
例3 编写程序,使任意输入的3个整数按从大到小的顺序输出.
(三)〖随堂练习〗:
1 下面程序运行后实现的功能为_______________
2.写出已知函数
输入的值,求y的值程序.
四、〖归纳小结〗
本节课主要学习了条件语句的结构、特点、作用以及用法,并能解决一些简单的问题.
条件语句一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两个数
的大小,解一元二次方程等问题,还有求分段函数的函数值等,往往要用条件语句,有时
甚至要用到条件语句的嵌套.
课后练习与提高
1、 当时,下面的程序段输出的结果是( )
IF THEN
ELSE
PRINT y
A B C D
2 给出以下四个问题,
①输入, 输出它的相反数
②求面积为的正方形的周长
③求三个数中输入一个数的最大数
④求函数的函数值
其中不需要用条件语句来描述其算法的有 ( )
A 个 B 个 C 个 D 个
3 右面程序运行后输出的结果为
_______________
4、 函数,写出求函数的函数值的程序
5. 儿童乘坐火车时,若身高不超过1.1 m,则不需买票;若身高超过1.1 m但不超过1.4 m,则需买半票;若身高超过1.4 m,则需买全票.试设计一个买票的算法,并画出相应的程序框图及程序。
参考答案
1、D
2、B
3、22, -22
4、解:INPUT “x=”;x
IF x>=0 and x<=4 THEN
y=2x
END IF
IF 4=y=8
END IF
IF 8=y=2*(12-x)
END IF
PRINT y
END
程序是:
INPUT “请输入身高h(米):”;h
IF h<=1.1 THEN
PRINT “免票”
ELSE
IF h<=1.4 THEN
PRINT “买半票”
ELSE
PRINT “买全票”
END IF
END IF
END
变量=表达式
PRINT “提示内容”;表达式
INPUT “提示内容”;变量
满足条件?
语句体1
语句体2


IF 条件 THEN
语句体1
ELSE
语句体2
END IF
IF 条件 THEN
语句体
END IF
满足条件?
语句体


INPUT x
IF x>=0 THEN
PRINT x
ELSE
PRINT -x
END IF
END
INPUT x
IF x<0 THEN
x=-x
END IF
PRINT x
END
INPUT “a,b,c =”;a,b,c
IF b>a THEN
t=a
a=b
b=t
END IF
IF c>a THEN
t=a
a=c
c=t
END IF
IF c>b THEN
t=b
b=c
c=t
END IF
PRINT a,b,c
END
INPUT “a,b,c =”;a,b,c
d=b*b-4*a*c
IF d>=0 THEN
p=-b/(2*a)
q=SQR(d)/(2*a)
IF d=0 THEN
PRINT “x1= x2=”; p
ELSE
PRINT “x1,x2=”; p+q,p-q
END IF
ELSE
PRINT “No real root!”
END IF
END
INPUT “a,b,c =”;a,b,c
IF b>a THEN
t=a
a=b
b=t
END IF
IF c>a THEN
t=a
a=c
c=t
END IF
IF c>b THEN
t=b
b=c
c=t
END IF
PRINT a,b,c
END
(一)条件语句
IF-THEN-ELSE语句
IF-THEN语句
(二)典型例题
例5………
例6………
例7………
(三)随堂练习
1、
2、
3、
4、
满足条件?
语句体1
语句体2


IF 条件 THEN
语句体1
ELSE
语句体2
END IF
IF 条件 THEN
语句体
END IF
满足条件?
语句体


INPUT “a,b,c =”;a,b,c
IF b>a THEN
t=a
a=b
b=t
END IF
IF c>a THEN
t=a
a=c
c=t
END IF
IF c>b THEN
t=b
b=c
c=t
END IF
PRINT a,b,c
END
IF THEN
ELSE
END IF
PRINT x-y ; y-x
END
第3题
欢迎广大教师踊跃来稿,稿酬丰厚。www.
PAGE
欢迎广大教师踊跃来稿,稿酬丰厚。www.
10§3.1.1. 随机事件的概率
一、教材分析
在现实世界中,随机现象是广泛存在的,而随机现象中存在着数量规律性,从而使我们可以运用数学方法来定量地研究随机现象;本节课正是引导学生从数量这一侧面研究随机现象的规律性。随机事件的概率在实际生活中有着广泛的应用,诸如自动控制、通讯技术、军事、气象、水文、地质、经济等领域的应用非常普遍;通过对这一知识点的学习运用,使学生了解偶然性寓于必然之中的辩证唯物主义思想,学习和体会数学的奇异美和应用美.
二、教学目标
1.(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系
2.发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。
3.(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.
三、教学重点难点
重点:事件的分类;概率的定义以及和频率的区别与联系;
难点:随机事件发生存在的统计规律性.
四、学情分析
求随机事件的概率主要要用到排列、组合知识,学生没有基础,但学生在初中已经接触个类似的问题,所以在教学中学生并不感到陌生,关键是引导学生对“随机事件的概率”这个重点、难点的掌握和突破,以及如何有具体问题转化为抽象的概念。
五、教学方法
1.引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
多媒体课件,硬币数枚
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标
日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗?
明天上午第一节课一定是八点钟上课吗?等等,这些事情的发生都是必然的.同时也
有许多问题是很难给予准确回答的.例如,你明天什么时间来到学校?明天中午12:10
有多少人在学校食堂用餐?你购买的本期福利彩票是否能中奖?等等,这些问题的
结果都具有偶然性和不确定性
设计意图:步步导入,吸引学生的注意力,明确学习目标。
(三)合作探究、精讲点拨
1、必然事件、不可能事件和随机事件
思考1:考察下列事件:
(1)导体通电时发热;
(2)向上抛出的石头会下落;
(3)在标准大气压下水温升高到100°C会沸腾.
这些事件就其发生与否有什么共同特点?
思考2:我们把上述事件叫做必然事件,你指出必然事件的一般含义吗?
在条件S下,一定会发生的事件,叫做相对于条件S的必然事件.
让学生列举一些必然事件的实例
思考3:考察下列事件:
(1)在没有水分的真空中种子发芽;(2)在常温常压下钢铁融化;
(3)服用一种药物使人永远年轻.
这些事件就其发生与否有什么共同特点?
思考4:我们把上述事件叫做不可能事件,你指出不可能事件的一般含义吗?
在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件
让学生列举一些不可能事件的实例
思考5:考察下列事件:
(1)某人射击一次命中目标;
(2)马林能夺取北京奥运会男子乒乓球单打冠军;
(3)抛掷一个骰字出现的点数为偶数. 这些事件就其发生与否有什么共同特点?
思考6:我们把上述事件叫做随机事件,你指出随机事件的一般含义吗?
在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件.
让学生列举一些随机事件的实例
思考7:必然事件和不可能事件统称为确定事件,确定事件和随机事件统称为
事件,一般用大写字母A,B,C,…表示.对于事件A,能否通过改变条件,使事件A
在这个条件下是确定事件,在另一条件下是随机事件?你能举例说明吗?
2、事件A发生的频率与概率
物体的大小常用质量、体积等来度量,学的高低常用考试分数来衡量.对于随机
事件,它发生的可能性有多大,我们也希望用一个数量来反映.
思考1:在相同的条件S下重复n次试验,若某一事件A出现的次数为nA,则称nA为
事件A出现的频数,那么事件A出现的频率fn(A)等于什么?频率的取值范围是什么?
   思考2:历史上曾有人作过抛掷硬币的大量重复试验,结果如下表所示:
抛掷次数 正面向上次数 频率0.5
2 02048 1061 0.5181
4 04040 2048 0.5069
12000 6019 0.5016
24000 12012 0.5005
30000 14984 0.4996
72088 36124 0.5011
在上述抛掷硬币的试验中,正面向上发生的频率的稳定值为多少?
思考3:上述试验表明,随机事件A在每次试验中是否发生是不能预知的,但是在大量
复试验后,随着试验次数的增加,事件A发生的频率呈现出一定的规律性,这个规律性是如何体现出来的?
事件A发生的频率较稳定,在某个常数附近摆动.
思考4:既然随机事件A在大量重复试验中发生的频率fn(A)趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件A发生的可能性的大小,并把这个常数叫做事件A发生的概率,记作P(A).那么在上述抛掷硬币的试验中,正面向上发生的概率是多少?在上述油菜籽发芽的试验中,油菜籽发芽的概率是多少?
思考5:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率?
通过大量重复试验得到事件A发生的频率的稳定值,即概率.
思考6:在相同条件下,事件A在先后两次试验中发生的频率fn(A)是否一定相等?事件A在先后两次试验中发生的概率P(A)是否一定相等?
频率具有随机性,做同样次数的重复试验,事件A发生的频率可能不相同;概率是一个确定的数,是客观存在的,与每次试验无关.
思考7:必然事件、不可能事件发生的概率分别为多少?概率的取值范围是什么?
(四)、典型例题
例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1)如果a>b,那么a一b>0;
(2)在标准大气压下且温度低于0°C时,冰融化;
(3)从分别标有数字l,2,3,4,5的5张标签中任取一张,得到4号签;
(4)某电话机在1分钟内收到2次呼叫;
〈5)手电筒的的电池没电,灯泡发亮;
(6)随机选取一个实数x,得|x|≥0.
例2某射手在同一条件下进行射击,结果如下表:
射击次数数n 10 20 50 100 200 500
击中靶心次数m 8 19 44 93 178 453
击中靶心频率 0.8 0.95 0.88 0.93 0.89 0.90
(1)计算表中击中靶心的各个频率;如上表
(2)这个射手射击一次,击中靶心的概率约是多少?0.90
(五)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(六)发导学案、布置预习。
我们已经学习了随机事件的概率,概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。那么,如何正确理解概率的意义呢?在下一节课我们一起来学习概率的意义。这节课后大家可以先预习这一部分,如何得出恰当的结论的。并完成本节的课后练习及课后延伸拓展作业。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计
§3.1.1.1 随机事件的概率
一、(1)必然事件 例题讲解
(2)不可能事件
(3)随机事件
二、概率定义 课堂小结
十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
本节课本节课需掌握的知识:
①了解必然事件,不可能事件,随机事件的概念;
②理解随机事件的发生在大量重复试验下,呈现规律性;
③理解概率的意义及其性质。
本节课时间45分钟,其中情景导入、展示目标、检查预习5分钟,讲解随机事件的概率7分钟,学生分组实验10分钟左右,反思总结当堂检测5分钟左右,其余环节18分钟,能够完成教学内容。
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
十一、学案设计(见下页)
§ 3.1.1. 随机事件的概率
课前预习学案
一、预习目标
1. 了解随机事件、必然事件、不可能事件的概念;
2. 正确理解事件A出现的频率的意义;
二、预习内容
问题情境:日常生活中,有些问题是很难给予准确的回答的, 例如,
①抛一枚硬币,它将正面朝上还是反面朝上
②购买本期福利彩票是否能中奖?
③7:20在某公共汽车站候车的人有多少?
④你购买本期体育彩票是否能中奖?等等。
但当我们把某些事件放在一起时, 会表现出令人惊奇的规律性. 这其中蕴涵什么
知识生成:
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的 事件;
(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的 事件;
(3)确定事件:必然事件和不可能事件统称为相对于条件S的 事件;
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的 事件;
(5)频数与频率:对于给定的随机事件A, 在相同的条件S下重复n次试验,观察事件A 是否出现,称n次试验中事件A出现的次数nA为事件A出现的 ;
称事件A出现的比例fn(A)=为事件A出现的 ;
对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A) 稳定在某个常数上,把这个常数记作P(A),称为事件A的 。
(6)频率与概率的区别与联系:随机事件的频率,是指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1. 了解随机事件、必然事件、不可能事件的概念;
2. 正确理解事件A出现的频率的意义;
3. 正确理解概率的概念,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;
学习重难点:
重点:对概率意义的正确理解.
难点:对随机现象的统计规律性的深刻认识。
二、学习过程
例1. 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1)“抛一石块,下落”. (2)“在标准大气压下且温度低于0℃时,冰融化”;
(3)“某人射击一次,中靶”; (4)“如果实数a>b,那么a-b>0”;
(5)“掷一枚硬币,出现正面”;(6)如果都是实数,;
(7)“导体通电后,发热”; (8) “在常温下,焊锡熔化”.
(9)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;
(10) “某电话机在1分钟内收到2次呼叫”;
(11) “没有水份,种子能发芽”;
答:根据定义,事件 是必然事件;
事件 是不可能事件;
事件 是随机事件.
实验(1):把一枚硬币抛多次,观察其出现的结果,并记录各结果出现的频数,然后计算各频率。
上课前一天事先布置作业,要求学生每人完成50次,并完成下表(一):
然后请同学们再以小组为单位,统计好数据,完成表格。
投掷一枚硬币,出现正面可能性究竟有多大?
例2. 某射手在同一条件下进行射击,结果如下表所示:
射击次数n 10 20 50 100 200 500
击中靶心次数m 8 19 44 92 178 455
击中靶心的频率
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是什么?
思悟:概率实际上是频率的科学抽象,
求某事件的概率可以通过求该事件的频率而得之。
(三)反思总结
概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。
(四)当堂检测
1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( )
A.必然事件 B.随机事件
C.不可能事件 D.无法确定
2.下列说法正确的是( )
A.任一事件的概率总在(0.1)内
B.不可能事件的概率不一定为0
C.必然事件的概率一定为1 D.以上均不对
3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。
每批粒数 2 5 10 70 130 700 1500 2000 3000
发芽的粒数 2 4 9 60 116 282 639 1339 2715
发芽的频率
(1)完成上面表格:
(2)该油菜子发芽的概率约是多少?
参考答案
1.B[提示:正面向上恰有5次的事件可能发生,也可能不发生,即该事件为随机事件。]
2.C[提示:任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.]
3.解:(1)填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.903,0.905.(2)该油菜子发芽的概率约为0.897。
课后练习与提高
1.下列试验能够构成事件的是
A.掷一次硬币 B.射击一次
C.标准大气压下,水烧至100℃ D.摸彩票中头奖
2. 在1,2,3,…,10这10个数字中,任取3个数字,那么“这三个数字的和大于6这一事件是
A.必然事件 B.不可能事件
C.随机事件 D.以上选项均不正确
3. 随机事件A的频率满足
A. =0 B. =1 C.0<<1 D.0≤≤1
4. 下面事件是必然事件的有
①如果a、b∈R,那么a·b=b·a ②某人买彩票中奖 ③3+5>10
A.① B.② C.③ D.①②
5. 下面事件是随机事件的有
①连续两次掷一枚硬币,两次都出现正面朝上 ②异性电荷,相互吸引 ③在标准大气
压下,水在1℃时结冰
A.② B.③ C.① D.②③
6. 某个地区从某年起几年内的新生婴儿数及其中男婴数如下表(结果保留两位有效数
字):
时间范围 1年内 2年内 3年内 4年内
新生婴儿数 5544 9013 13520 17191
男婴数 2716 4899 6812 8590
男婴出生频率
(1)填写表中的男婴出生频率;
(2)这一地区男婴出生的概率约是_______.
7. 某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵出8513尾鱼苗,根据概率
的统计定义解答下列问题:
(1)求这种鱼卵的孵化概率(孵化率);
(2)30000个鱼卵大约能孵化多少尾鱼苗?
(3)要孵化5000尾鱼苗,大概得备多少鱼卵?(精确到百位)
PAGE
8§2.1.2系统抽样
学习目标
(1)正确理解系统抽样的概念;
(2)掌握系统抽样的一般步骤;
(3)正确理解系统抽样与简单随机抽样的关系;
重点难点
正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。
学法指导
通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法,
知识链接
简单随机抽样有常用方法及其操作步骤。
问题探究
一、情景设置:
某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?
二、探究新知:
知识探究(一):简单随机抽样的基本思想
思考1:某中学高一年级有12个班,每班50人,为了了解高一年级学生对老师教学的意见,教务处打算从年级600名学生中抽取60名进行问卷调查,那么年级每个同学被抽到的概率是多少?
思考2:你能用简单随机抽样对上述问题进行抽样吗?具体如何操作?
思考3:联想到师大附中每学期选派学生评教评学时的做法,你还有什么方法对上述问题进行抽样?你的抽样方法有何优点?体现了代表性和公平性吗?
思考4:如果从600件产品中抽取60件进行质量检查,按照上述思路抽样应如何操作?
思考5:怎样理解系统抽样的含义?
由系统抽样的定义可知系统抽样有以下特证:
练习:下列抽样中不是系统抽样的是 ( )
A、从标有1~15号的15号的15个小球中任选3个作为样本,按从小号到大号排序,随机确定起点i,以后为i+5, i+10(超过15则从1再数起)号入样
B工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验
C、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止
D、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈
知识探究(二):系统抽样的操作步骤:
思考1:用系统抽样从总体中抽取样本时,首先要做的工作是什么?
思考2:如果用系统抽样从605件产品中抽取60件进行质量检查,由于605件产品不能均衡分成60部分,对此应如何处理?
思考3:用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,要平均分成多少段,每段各有多少个号码?
思考4:如果N不能被n整除怎么办?
思考5:将含有N个个体的总体平均分成n段,每段的号码个数称为分段间隔,那么分段间隔k的值如何确定?
思考6:用系统抽样抽取样本时,每段各取一个号码,其中第1段的个体编号怎样抽取?以后各段的个体编号怎样抽取?
思考7:一般地,用系统抽样从含有N个个体的总体中抽取一个容量为n的样本,其操作步骤如何?
思考8:系统抽样适合在哪种情况下使用?与简单随机抽样比较,哪种抽样方法更使样本具有代表性?
思考9:我校共有360名老师,为了支持四川的教育事业,现要从中随机抽取40名老师到四川江油任教,用系统抽样选取奔赴四川的教师团合适吗?
思考10:在数字化时代,各种各样的统计数字和图表充斥着媒体,由于数字给人的印象直观、具体,所以让数据说话是许多广告的常用手法.下列广告中的数据可靠吗?
“……瘦体减肥灵真的灵,其减肥的有效率为75%.”
“现代研究证明,99%以上的人皮肤感染有螨虫…….”
“……美丽润肤膏,含有多种中药成分,可以彻底清除脸部皱纹,只需10天,就能让你的肌肤得到改善.”
典例分析:
例1 某中学有高一学生322名,为了了解学生的身体状况,要抽取一个容量为40的样本,用系统抽样法如何抽样?
例2一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10组,组号依次为1,2,3,…,10,现用系统抽样抽取一个容量为10的样本,并规定:如果在第一组随机抽取的号码为m,那么在第k(k=2,3,…,10)组中抽取的号码的个位数字与m+k的个位数字相同.若m=6,求该样本的全部号码.
例3 用简单随机抽样和系统抽样,设计一个调查新乡市城区一年内空气质量状况的方案,并比较哪一种方案更便于实施.
目标检测
1、从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为 ( )
A.99 B、99,5 C.100 D、100,5
2、从学号为0~50的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是 ( )
A.1,2,3,4,5 B、5,16,27,38,49
C.2, 4, 6, 8, 10 D、4,13,22,31,40
3、某校为了了解高一年级1115名学生对某项教改试验的意见,计划抽取一个容量为30的样本,如果考虑系统抽样,则应从总体中剔除的个体数是( )
A.3 B.4 C.5 D.6
4、某小礼堂有25排座位,每排20个座位,一次心理学讲座,礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的所有25名学生进行测试,这里运用的是 抽样方法。
5、为了了解某地计算机水平测试中5008名学生的成绩,从中抽取了200名考生的成绩进行统计分析,采用系统抽样方法抽取样本时,每组的容量是 。
6、全班有50名同学,需要从中选取7人参加某项民意测验,若采用系统抽样来选取,则每名学生能被选取的可能性是 。
7、高一某班有51人,男生26人,女生25人,需从中选取12人的一个样本来了解全班学生的某项身体指标,规定用系统抽样方法来选取,请问应如何选取?
纠错矫正
收获与体会
PAGE
1§3.1.2 概率的意义
学习目标
正确理解概率的意义, 并能利用概率知识正确解释现实生活中的实际问题.
重点难点
重点: 概率意义的理解和应用.
难点: 用概率知识解决现实生活中的具体问题.
学法指导
通过对现实生活中的“掷币”,“游戏的公平性”,、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.
知识链接
随机事件、必然事件、不可能事件的概念
随机事件及其概率,概率与频率的区别和联系.
问题探究
【探究新知】(一): 概率的正确理解
思考1:连续两次抛掷一枚硬币,可能会出现哪几种结果?
思考2:抛掷—枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷一枚硬币,一定是出现一次正面和一次反面吗?
可见,随机事件在一次实验中发生与否是随机的,但是随机性中含有________.认识了这种随机性中的规律性,就能使我们比较准确的预测随机事件发生的________.概率只是度量事件发生的可能性的________,不能确定是否发生.
思考3: 围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.
思考5:如果某种彩票的中奖概率为 ,那么买1000张这种彩票一定能中奖吗?为什么?
【探究新知】:概率思想的实际应用
思考1:在一场乒乓球比赛前,必须要决定由谁先发
球,并保证具有公平性,你知道裁判员常用什么方法确定发球权吗?其公平性是如何体现出来的?
思考2: 如果连续10次掷一枚骰子,结果都是出现1点,你认为这枚骰子的质地是均匀的,还是不均匀的?如何解释这种现象?
思考3:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。由于某种原因,一班必须参加,另外再从二至十二班中选1个班.有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?哪个班被选中的概率最大?
在一次试验中________ 的事件称为小概率事件, ________ 的事件称为大概率事件.
如果我们面临的是从多个可选答案中挑选正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法.
思考4:天气预报是气象专家依据观测到的气象资料和专家们的实际经验,经过分析推断得到的.某地气象局预报说,明天本地降水概率为70%,能否认为明天本地有70%的区域下雨,30%的区域不下雨?你认为应如何理解?
思考5:天气预报说昨天的降水概率为 90%,结果昨天根本没下雨,能否认为这次天气预报不准确?如何根据频率与概率的关系判断这个天气预报是否正确?
思考6: 在遗传学中有下列原理:
(1)纯黄色和纯绿色的豌豆均由两个特征因子组成,下一代是从父母辈中各随机地选取一个特
征组成自己的两个特征.
(2)用符号YY代表纯黄色豌豆的两个特征,符号yy代表纯绿色豌豆的两个特征.
(3)当这两种豌豆杂交时,第一年收获的豌豆特征为:Yy.把第一代杂交豌豆再种下时,第二年收获的豌豆特征为:YY,Yy,yy.
(4)对于豌豆的颜色来说.Y是显性因子,y是隐性因子.当显性因子与隐性因子组合时,表现显性因子的特性,即YY,Yy都呈黄色;当两个隐性因子组合时才表现隐性因子的特性,即yy呈绿色.
在第二代中YY,Yy,yy出现的概率分别是多少?黄色豌豆与绿色豌豆的数量比约为多少?
【例题讲评】
例题1 高一一名姚明fancy在篮球赛中的进球率为80%。在一次比赛中,他共可以投10次,前两次都没投进,那么后8次一定都能投进吗?
例题2 为了估计水库中的鱼的尾数,先从水库中捕出2 000尾鱼,给每尾鱼作上记号(不影响其存活),然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出500尾鱼,其中有记号的鱼有40尾,试根据上述数据,估计这个水库里鱼的尾数.
【巩固练习】 教材第2、3题.
【课堂小结】
1. 正确理解概率的意义,概率是描述随机事件发生的可能性大小的一个数量,即使是大概率事件,也不能肯定事件一定会发生,只是认为事件发生的可能性大.
2.利用概率思想正确处理和解释实际问题,是一种科学的理性思维,在实践中要不断巩固和应用,提升自己的数学素养.
目标检测
1.某医院治疗一种病的治愈率是90%,这个90%指的是 ( )
A.100个病人中能治愈90个
B.100个病人中能治愈10个
C. 100个病人中可能治愈90个
D.也上说法都正确
2.气象台预报“本市明天降雨概率是70%”,以下理解正确的是 ( )
A.本市明天将有70%的地区降雨;
B.本市明天将有70%的时间降雨;
C.明天出行不带雨具肯定淋雨;
D.明天出行不带雨具淋雨的可能性很大.
3.设某厂产品的次品率为2%,估计该厂8000件产品中合格品的件数可能为 ( )
A.160 B.7840 C.7998 D.7800
4.根据某医疗所的调查,某地区居民血型的分布是:O型45%,A型15%,AB型30%,B型10%,现在有一血型为O型的病人需要输液,若在该地区任选一人,那么能为病人输血的概率是 ( )
A.50% B.15% C.45% D.65%
5.一个箱子中放置了若干个大小相同的白球和黑球,从箱子中抽到白球的概率是99%,抽到黑球的概率是1%,现在随机取出一球,你估计这个球是白球还是黑球?
6今天电视台的天气预报说:今晚阴有雨,明天白天降雨概率是60%,请回答下列问题:
(1)明天白天运输部门能否抢运粮食?
(2)如果明天抢运的是石灰和白糖,能否在白天进行?
纠错矫正
总结反思
PAGE
1§2.1.3分层抽样
学习目标
(1)正确理解分层抽样的概念;
(2)掌握分层抽样的一般步骤;
(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。
重点难点
正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽 样方法解决现实生活中的抽样问题。
学法指导
通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。
知识链接
简单随机抽样、系统抽样常用方法及其操作步骤。
问题探究
一、情景设置:
假设某地区有高中生2400人,初中生10900人,小学生11000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?
二、探究新知:
知识探究(一):分层抽样的基本思想
问题:某地区有高中生2400人,初中生10800人,小学生11100人.当地教育部门为了了解本地区中小学生的近视率及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查.
思考1:从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?一般地,从N个个体中任意抽取一个,则每一个个体被抽到的概率是多少?
思考2:从6件产品中随机抽取一个容量为3的样本,可以分三次进行,每次从中随机抽取一件,抽取的产品不放回,这叫做逐个不放回抽取.在这个抽样中,某一件产品被抽到的概率是多少?
思考3:具体在三类学生中抽取样本时(如在10800名初中生中抽取108人),可以用哪种抽样方法进行抽样?
思考4:在上述抽样过程中,每个学生被抽到的概率相等吗?
思考5:上述抽样方法不仅保证了抽样的公平性,而且抽取的样本具有较好的代表性,从而是一种科学、合理的抽样方法,这种抽样方法称为分层抽样.一般地,分层抽样的基本思想是什么?
思考6:若用分层抽样从该地区抽取81名学生调查身体发育状况,那么高中生、初中生和小学生应分别抽取多少人?
知识探究(二):分层抽样的操作步骤:
某单位有职工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查职工的身体状况,要从中抽取一个容量为100的样本。
思考1:该项调查应采用哪种抽样方法进行?
思考2:按比例,三个年龄层次的职工分别抽取多少人?
思考3:在各年龄段具体如何抽样?怎样获得所需样本?
思考4:一般地,分层抽样的操作步骤如何?
思考5:在分层抽样中,如果总体的个体数为N,样本容量为n,第i层的个体数为k,则在第i层应抽取的个体数如何计算?
思考6:样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数该如何处理?
思考7:简单随机抽样、系统抽样和分层抽样既有其共性,又有其个性,根据下表,你能对三种抽样方法作一个比较吗?
方法类别 共同 特点 抽样特征 相互联系 适应范围
简单随机抽样
系统抽样
分层抽样
典例分析:
例1 某公司共有1000名员工,下设若干部门,现用分层抽样法,从全体员工中抽取一个容量为80的样本,已知策划部被抽取4个员工,求策划部的员工人数是多少?
例2 某中学有180名教职员工,其中教学人员144人,管理人员12人,后勤服务人员24人,设计一个抽样方案,从中选取15人去参观旅游.
例3 某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品的销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,完成这两项调查宜分别采用什么方法?
目标检测
某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体情况,需从他们中抽取一个容量为36的样本,则适合的抽取方法是( )
A.简单随机抽样B.系统抽样C.分层抽样
D.先从老人中剔除1人,然后再分层抽样
2、某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为 ( )
A.15,5,25 B.15,15,15 C.10,5,30 D15,10,20
为了了解高一学生的身体发育状况,学校计划在高一年级10个班的某两个班中按男女比例抽取样本,正确的抽样方法是 ( )
简单随机抽样B.分层抽样
C.先用抽签法,分层抽样
D.先用分层抽样,再用随机数表法
4、某校有500名学生,其中O型血的有200人,A型血的人有125人,B型血的有125人,AB型血的有50人,为了研究血型与色弱的关系,要从中抽取一个20人的样本,按分层抽样,O型血应抽取的人数为 人,A型血应抽取的人数为 人,B型血应抽取的人数为 人,AB型血应抽取的人数为 人。
5、某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n= 。
6、某中学有学生2000名高一、高二、高三 的学生人数之比5:3:2现要用分层抽样抽取一个样本,要求每个学生被抽取的可能性是0.02,则抽取的样本容量为 。
7、对某单位1000名职工进行某项专门调查,调查的项目与职工任职年限有关,人事部门提供了如下资料:
任职年限 5年以下 5年至10年 10年以上
人数 300 500 200
试利用上述资料设计一个抽样比为0.1的抽样方法。
纠错矫正
收获与体会
PAGE
1§3.1.1随机事件的概率
学习目标
(1)了解随机事件、必然事件、不可能事件的概念;
(2)正确理解事件A出现的频率的意义;正确理解概率的概念和意义,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系;
(3)利用概率知识正确理解现实生活中的实际问题.
重点难点
重点: 事件的分类;概率的定义以及概率和频率的区别与联系.
难点: 随机事件及其概率,概率与频率的区别和联系.
学法指导
对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;做简单易行的实验,发现随机事件的某一结果发生的规律性;通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高.
知识链接
初中所学概率初步
问题探究
【创设情境】
日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗?明天上午第一节课一定是7:50上课吗?等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确回答的.例如明天中午12:10有多少人在学校食堂用餐?你购买的本期福利彩票是否能中奖?等等,这些问题的结果都具有偶然性和不确定性.
【探究新知】(一):必然事件、不可能事件和随机事件
思考1:考察下列事件:
(1)导体通电时发热;
(2)向上抛出的石头会下落;
(3)在标准大气压下水温升高到100°C会沸腾.
这些事件就其发生与否有什么共同特点?
思考2:由此,我们把在条件S下,一定会发生的事件,叫做相对于条件S的________事件,简称必然事件。你能列举一些必然事件的实例吗?
思考3:考察下列事件:
(1)在没有水分的真空中种子发芽;
(2)在常温常压下钢铁融化;
(3)服用一种药物使人永远年轻.
这些事件就其发生与否有什么共同特点?
思考4:由此,我们把在条件S下,一定不会发生的事件,叫做相对于条件S的________事件,简称不可能事件。你能列举一些不可能事件的实例吗?
思考5:考察下列事件:
(1)某人射击一次命中目标;
(2)王皓能夺取伦敦奥运会男子乒乓球单打冠军;
(3)抛掷一个骰子出现的点数为偶数. 这些事件就其发生与否有什么共同特点?
思考6:由此,我们把在条件S下, ________ 也________的事件,叫做相对于条件S下的随机事件.简称随机事件. 你能列举一些随机事件的实例吗?
思考7:思考7:________和________统称为确定事件,________和________统称为事件,一般用大写字母A,B,C,…表示.
例题: 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?
(1) “抛一石块,下落”;
(2) “明天天晴”;
(3) “某人射击一次,中靶”;
(4) “如果a>b,那么a-b>0”;
(5) “掷一枚硬币,出现正面”;
(6) “导体通电后,发热”;
(7) “手电筒的的电池没电,灯泡发亮”;
(8)“某电话机在1分钟内收到2次呼叫”;
(9)“没有水份,种子能发芽”;
(10)“在常温下,焊锡熔化”.
(11) “随机选取一个实数x,得|x|≥0”.
(12)“自由下落的物体作匀加速直线运动”;
(13)“函数(,且)在定义域上为增函数”;
(14) “从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;
(15)“在标准大气压下且温度低于0℃时,冰融化”;
【探究新知】(二):事件A发生的频率与概率
思考1:在相同的条件S下重复n次试验,若某一事件A出现的次数为,则称为事件A出现的频数,那么事件A出现的频率=________,频率的取值范围是________.
思考2:历史上曾有人作过抛掷硬币的大量重复试验,结果如课本112页表格所示。
在上述抛掷硬币的试验中,正面向上发生的频率的稳定值为多少?
思考3:上述试验表明,随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率呈现出一定的规律性。
思考4:既然随机事件A在大量重复试验中发生的频率趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件A发生的可能性的大小,并把这个常数叫做事件A发生的概率,记作P(A).那么在上述抛掷硬币的试验中,正面向上发生的概率是多少?
思考5:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率?
思考6:在相同条件下,事件A在先后两次试验中发生的频率是否一定相等?事件A在先后两次试验中发生的概率P(A)是否一定相等?
思考7:必然事件、不可能事件发生的概率分别为________.,概率的取值范围是________.
【例题讲评】
例1 某射手在同一条件下进行射击,结果如下表所示:
射击次数n 10 20 50 100 200 500
击中靶心次数m 8 19 44 92 178 455
击中靶心的频率
(1)填写表中击中靶心的频率;
(2)这个射手射击一次,击中靶心的概率约是什么?
例2 某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的概率,假设此人射击1次,试问中靶的概率约为多大?中10环的概率约为多大?
【课堂小结】
概率与频率的关系
☆区别:
频率随着次数的改变而改变,而概率却是一个常数,它不随着试验次数的增加而变化。
联系:
①概率是频率的科学抽象, 是某事件的本质属性,它从数量上反应了随机事件发生的可能性的大小;
②频率在大量重复试验的前提下可近似地作为这个事件的概率,即概率可以用频率作为近似代替,可以说,概率是频率的稳定值,而频率是概率的近似值;
③只有当频率在某个常数附近摆动时,这个常数才叫做事件A的概率;
④实践中常用“大量重复试验的前提下的频率值”来估计事件的概率.
目标检测
1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是 ( )
A.必然事件 B.随机事件
C.不可能事件 D.无法确定
2.下面事件:①在标准大气压下,水加热到80 ℃时会沸腾;②抛掷一枚硬币,出现反面;③实 数的绝对值不小于零;其中是不可能事件的是
( )
A. ② B. ① C. ① ② D. ③
3.从12个同类产品(其中有10个正品,2个次 品)中,任意取3个的必然事件是 ( )
A.3个都是正品 B.至少有1个是次品
C.3个都是次品 D.至少有1个是正品
4.某人将一枚硬币连掷了10次,正面朝上出现 了6次,若用A表示正面朝上这一事件,则A的
频率为 ( )
A. B. C. 6 D. 接近
5. 随机事件A发生的概率范围是 ( )  
A. P(A)>0 B.P(A)<1
C.06.某人抛掷一枚硬币100次,结果正面朝上有53次,设正面朝上为事件A,则事件A出现的频数为_____,事件A出现的频率为_______。
7.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并回答题。
每批粒数 2 5 10 70 13 70 15 20 30
发芽的粒数 2 4 9 60 12 28 7 14 27
发芽的频率
(1)完成上面表格:
(2)该油菜子发芽的概率约是多少?
纠错矫正
总结反思
PAGE
1典例分析:
身高区间 [122,126) [126,130) [130,134)
人 数 2 8 9
身高区间 [134,138) [138,142) [142,146)
人 数 18 28 15
身高区间 [146,150) [150,154) [154,158)
人 数 10 6 4
例1 在某小学500名学生中随机抽样得到100人的身高如下表(单位cm) :
(1)列出样本频率分布表;
(2)画出频率分布直方图;
(3)估计该校学生身高小于134cm的人数约为多少?
例2:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
第二小组的频率是多少?样本容量是多少?
若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
目标检测
1.一个容量为10的样本的最大值140,最小值是51,组距为10,则可分成      组。
2.一个容量为n的样本,分成若干组,已知某组的频数和频率分别是50和0.25,则n=        .  
3.设样本容量为40,把数据分成四组,若第一小组的频率为0.1,则第二小组的频率为0.4;第四小组的频率为0.2,则第三小组的频数是 。
4.200辆汽车通过某一段公路时的时速频率分布直方图如下图所示,则时速在的汽车大约有________辆.
5.如下图是总体的一个样本频率分布直方图,且在[15,18)内的频数为8.
(1)求样本的容量;
(2)若在[12,15)内小矩形面积为0.06,求样本在内[12,15)的频数;
(3)求样本在[18,33)内的频率.
6.下图是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知( )
A.甲运动员的成绩好于乙运动员
B.乙运动员的成绩好于甲运动员
C.甲、乙两名运动员的成绩没有明显的差异
D.甲运动员的最低得分为0分
7.有一种鱼的身体吸收汞,汞的含量超过体重的1.00ppm(即百分之一)时就会对人体产生危害,在30条鱼的样本中发现汞的含量是:
0.07,0.24,0.95,0.98,1.02,0.98,1.37,1.40,0.39,1.02,1.44,1.58,0.54,1.08,0.61,0.72,1.20,1.14,1.62,1.68,1.85,1.20,0.81,0.82,0.84,1.29,1.26,2.10,0.91,1.31
(1)用前两位数作为茎,画出样本数据的茎叶图;
(2)描述一下汞含量的分布特点;
100
90
110
120
140
150
次数
o
0.004
0.008
0.012
0.016
0.020
0.024
0.028
频率/组距
0.032
0.036
40 50 60 70 80 时速
频率/组距
0.04
0.03
0.02
0.01
0
第4题
12
15
18
21
24
27
0
EMBED Equation.DSMT4 0
33
30
数据
频率/组距

0
1
2
3
4
5

8
247
199
36
2
50
32
875421
944
1
第5 题
PAGE
11. 1.2程序框图
[教学目标]:
1.掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。
2.通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
3.通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。
[教学重难点]:
教学重点:程序框图的基本概念、基本图形符号和3种基本逻辑结构。
教学难点:能综合运用这些知识正确地画出程序框图。
[教学过程]:
一、.创设情境:如果你向全班同学介绍一下你心中偶像的形象,你认为用语言描述好还是拿出偶像的照片给同学们看好?说明一下你的理由算法除了用自然语言表示外,还可用程序框图表示。
二、基本概念:
(1)起止框图: 起止框是任何流程图都不可缺少的,它表明程序的开始和结束,所以一个完整的流程图的首末两端必须是起止框。
(2)输入、输出框: 表示数据的输入或结果的输出,它可用在算法中的任何需要输入、输出的位置。
(3)处理框: 它是采用来赋值、执行计算语句、传送运算结果的图形符号。
(4)判断框: 判断框一般有一个入口和两个出口,有时也有多个出口,它是惟一的具有两个或两个以上出口的符号,在只有两个出口的情形中,通常都分成“是”与“否”(也可用“Y”与“N”)两个分支。
三、算法的基本逻辑结构
(1)顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
例1:已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
算法分析:这是一个简单的问题,只需先算出p的值,再将它代入公式,最后输出结果,只用顺序结构就能够表达出算法。
J
解:程序框图:
2
点评:顺序结构是由若干个依次执行的步骤组成的,是任何一个算法都离不开的基本结构。
变式训练1:输入矩形的边长求它的面积,画出程序框图。
(2)条件结构:根据条件选择执行不同指令的控制结构。
例2:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在,画出这个算法的程序框图。
算法分析:判断分别以这3个数为三边边长的三角形是否存在,只需要验收这3个数当中任意两个数的和是否大于第3个数,这就需要用到条件结构。
程序框图:
a+b>c , a+c>b, b+c>a是 否
否同时成立?

点评:条件结构的显著特点是根据不同的选择有不同的流向。
变式训练2:求x的绝对值,画出程序框图。
开始
输入x
是 x≥0? 否
输出x 输出- x
结束
(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
循环结构分为两类:
(1)一类是当型循环结构,如图(1)所示,它的功能是当给定的条件P1成立时,执行A框,A框执行完毕后,再判断条件P1 是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P1 不成立为止,此时不再执行A框,从b离开循环结构。
(2)另一类是直到型循环结构,如图(2所示,它的功能是先执行,然后判断给定的条件P2是否成立,如果P2 仍然不成立,则继续执行A框,直到某一次给定的条件P2成立为止,此时不再执行A框,从b点离开循环结构。
A A
P1?
P2? 不成立
不成立
成立
b b
当型循环结构 直到型循环结构
(1) (2)
例3:设计一个计算1+2+…+100的值的算法,并画出程序框图。
算法分析:只需要一个累加变量和一个计数变量,将累加变量的初始值为0,计数变量的值可以从1到100。
解:程序框图:
i≤100?
否 是
点评:循环结构包含条件结构。
变式训练3:画出求21+22+23+…2100的值的程序框图。
解:程序框图:
i≥100 否

四、课堂小结:
本节课主要讲述了程序框图的基本知识,包括常用的图形符号、算法的基本逻辑结构,算法的基本逻辑结有三种,即顺序结构、条件结构和循环结构。其中顺序结构是最简单的结构,也是最基本的结构,循环结构必然包含条件结构,所以这三种基本逻辑结构是相互支撑的,它们共同构成了算法的基本结构,无论怎样复杂的逻辑结构,都可以通过这三种结构来表达
五、布置作业:
1.输入3个实数按从大到小的次序排序。
解:程序框图:
(2题图)
2.给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推. 要求计算这50个数的和. 将上面给出的程序框图补充完整.
(1)________i < = 50_________________
(2)_____p= p + i____________________
1.1.2程序框图导学案
课前预习学案
一、预习目标:
1.了解程序框图的概念及其基本程序框图的功能;
2.知道算法的三个基本逻辑结构
二、预习内容:
1.什么是程序框图?
2.算法的基本逻辑结构有哪些?
三、提出疑惑:如何画程序框图?
课内探究学案
一、学习目标:
1.掌握程序框图的概念及其基本程序框图的功能;
2.会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;
3.理解程序框图的顺序结构;
二、学习重点:
1. 程序框图的顺序结构的画法;
2.程序框图的概念及其基本程序框图的功能;
学习难点:
正确地画出程序框图的顺序结构。
三、学习过程:
1.情境问题:
如果你向全班同学介绍一下你心中偶像的形象,你认为用语言描述好还是拿出偶像的照片给同学们看好?说明一下你的理由。
2.新课探究:
(1).右边的程序框图(如图所示),能判断任意输入的数x的
奇偶性,请大家参考书本第六页的表格,填下表:
(2).你能用语言描述一下框图的基本结构特征吗?
程序框 名称 功能
(3).通过以上算法与上一节课比较,你觉得用框图来表达算法有哪些特点?
(4).请大家观察、研究下面分解框图,能你总结出各有什么特点吗?
(1)顺序结构: ;
(2)条件结构: ;
(3)循环结构: ;
例1:已知一个三角形的三边分别为2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。
变式训练1:输入矩形的边长求它的面积,画出程序框图。
例2:任意给定3个正实数,设计一个算法,判断分别以这3个数为三边边长的三角形是否存在,画出这个算法的程序框图。
变式训练2:求x的绝对值,画出程序框图。
例3:设计一个计算1+2+…+100的值的算法,并画出程序框图。
变式训练3:画出求21+22+23+…2100的值的程序框图。
3.课堂小结
(1).程序框图:
(2).算法的基本逻辑结构:
4.当堂检测
(1)写出下面2个程序框图的作用: (2)写出下面2个程序框图的运行结果:
答案:
(1)输入三个数,输出最大的一个;
输入a,b,求其和并输出。
(2)4.5;
课后练习与提高
1.流程图中的判断框,有1个入口和( )个出口.
A.1 B.2 C.3 D.4
2.以下给出对程序框图的几种说法:①任何一个程序框图都必须有起止框;②输人框只能放在开始框后,输出框只能放在结束框前;③判断框是唯一具有超过一个退出点的符号;④对于一个程序来说,判断框内的条件表述方法是唯一的.其中正确说法的个数是( ).
A.1 B.2 C.3 D.4
3.算法的三种基本结构是( ).
A.顺序结构、流程结构、循环结构
B.顺序结构、分支结构、嵌套结构
C.顺序结构、条件结构、循环结构
D.流程结构、分支结构、循环结构
4. 若输入的a、b、c分别是21、32、75,则输出的a、b、c分别是:
5. 用代表第个学生学号,用代表成绩,打印出每个班及格学生的学号和成绩,画出程序框图.
开始
p=(2+3+4)/2222
s=√p(p-2)(p-3)(p-4)
输出s
结束
开始
输入a,b
S=a*b
输出s
结束
开始
输入a,b,c
不存在这样的三角形
存在这样的三角形
结束
开始
i=1
Sum=0
i=i+1
Sum=sum+i
输出sum
结束
开始
i=1
p=0
i=i+1
p=p+2i
输出p
结束
(2)
结 束
i= i +1
(1)
开 始

输出 s

i = 1
P = 1
S= 0
S= s + p
m=0
m=0
不成立
P
成立
A
A
B

P

A
B
开始
开始
a=2
结束
输出S
b=4
a,b
S=a/b+b
输入R
b=
开始
结束
输出sum
a ,b abaa,b
sum=a+b
a=2b
输出a
结束
PAGE
- 11 -§2.3变量间的相关关系(一)
学习目标
(1)通过具体示例引导学生考察变量之间的关系,在讨论的过程中认识现实世界中存在着不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.
(2) 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.会作散点图,并对变量间的正相关或负相关关系作出直观判断.
(3) 在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解统计的作用.
重点难点
重点:利用散点图直观认识变量间的相关关系.
难点:理解变量间的相关关系.
学法指导
在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。
问题探究
复习回顾:
函数的定义
二、情景设置:
客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题.”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?
二、探究新知:
知识探究(一):变量之间的相关关系
思考1:考察下列问题中两个变量之间的关系:
(1)商品销售收入与广告支出经费;
(2)粮食产量与施肥量;
(3)人体内的脂肪含量与年龄.
这些问题中两个变量之间的关系是函数关系吗?
思考2:“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?你能举出类似的描述生活中两个变量之间的这种关系的成语吗?
思考3:上述两个变量之间的关系是一种非确定性关系,称之为相关关系,那么相关关系的含义如何?
思考4:相关关系与函数关系的异同点:
总结:对相关关系的理解应当注意以下几点:
其一是相关关系与函数关系不同.因为函数关系是一种非常确定的关系,而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.而函数关系可以看成是两个非随机变量之间的关系.因此,不能把相关关系等同于函数关系.
其二是函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如,有人发现,对于在校儿童,鞋的大小与阅读能力有很强的相关关系.然而,学会新词并不能使脚变大,而是涉及到第三个因素——年龄.当儿童长大一些,他们的阅读能力会提高而且由于长大脚也变大.
其三是在现实生活中存在着大量的相关关系,如何判断和描述相关关系,统计学发挥着非常重要的作用.变量之间的相关关系带有不确定性,这需要通过收集大量的数据,对数据进行统计分析,发现规律,才能作出科学的判断.(对具有相关关系的两个变量进行统计分析的方法叫回归分析.)
知识探究(二):散点图
【问题】在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:……课本85页的探究。
思考1:描述一下散点图的含义。
思考2:从上面问题的散点图中说明人的年龄的与人体脂肪含量具有什么相关关系?
思考3:正相关和负相关的定义是什么?它们各有什么特征?
思考4:你能列举一些生活中的变量成正相关或负相关的实例吗
三、典例分析:
例1 在下列两个变量的关系中,哪些是相关关系?
①正方形边长与面积之间的关系;
②作文水平与课外阅读量之间的关系;
③人的身高与年龄之间的关系;
④降雪量与交通事故的发生率之间的关系.
房屋面积(平方米) 61 70 115 110 80 135 105
销售价格(万元) 12.2 15.3 24.8 21.6 18.4 29.2 22
例2 以下是某地搜集到的新房屋的销售价格和房屋的面积的数据:
画出数据对应的散点图,并指出销售价格与房屋面积这两个变量是正相关还是负相关.
例3、某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:
气温/C 26 18 13 10 4
杯数 20 24 34 38 50 64
根据上述数据,气温与热茶销售量之间的有怎样的关系
目标检测
1、下列两个变量之间的关系哪个不是函数关系( )
A.角度和它的余弦值
B.正方形边长和面积
C.正n边形的边数和它的内角和
D.人的年龄和身高
有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语.吸烟和健康之间有因果关系吗?每一个吸烟者的健康问题都是因为吸烟引起的吗?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟“的说法对吗?
地区的环境条件适合天鹅栖息繁衍.有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高;天鹅少的地方婴儿出生率低.于是,他就得出一个结论:天鹅能够带来孩子.你认为这个结论对吗?为什么?你能由此解释一下,社会上流行“乌鸦叫,没好兆”这样的迷信说法的原因吗?
下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否有线性相关关系,说明理由.
机动车辆数/千台 95 110 112 120 129 135 150 180
交通事故数/千件 6.2 7.5 7.7 8.5 8.7 9.8 10.2 13
纠错矫正
收获与体会
自我评价
PAGE
1§3.1.3 概率的基本性质
学习目标
(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立
事件的概念;
(2)概率的几个基本性质:
1)必然事件的概率为1,不可能事件的概率为0,因此0≤P(A)≤1;
2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);
3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+
P(B)=1,于是有P(A)=1—P(B).
(3)正确理解和事件与交事件,以及互斥事件与对立事件的区别与联系.
重点难点
重点: 并事件、交事件、互斥事件和对立事件的概念,以及互斥事件的加法公式.
难点: 并事件、交事件、互斥事件和对立事件的区别与联系.
学法指导
通过事件的关系、运算与集合的关系、运算进行类比学习,培养类比与归纳的数学思想。
知识链接
集合之间包含与相等关系、集合的交、并、补运算
问题探究
【提出问题】
1.两个集合之间存在着包含与相等的关系,集合可以进行交、并、补运算,你还记得子集、等集、交集、并集和补集的含义及其符号表示吗?
2. 我们可以把一次试验可能出现的结果看成一个集合(如连续抛掷两枚硬币),那么必然事件对应全集,随机事件对应子集,不可能事件对应空集,从而可以类比集合的关系与运算,分析事件之间的关系与运算,使我们对概率有进一步的理解和认识.
【探究新知】(一):事件的关系与运算
在掷骰子试验中,我们用集合形式定义如下事件:
C1={出现1点},C2={出现2点},
C3={出现3点},C4={出现4点},
C5={出现5点},C6={出现6点},
D1={出现的点数不大于1},
D2={出现的点数大于4},
D3={出现的点数小于6},
E={出现的点数小于7},
F={出现的点数大于6},
G={出现的点数为偶数},
H={出现的点数为奇数},等等.
思考1:上述事件中,是必然事件的有 ,是随机事件的有 , 是不可能事件的有 .
思考2:如果事件C1发生,则一定有 发生。在集合中,集合C1与这些集合之间的关系怎样描述
思考3:一般地,对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称 。
(或称 ),记作
(或___ _ ).与集合类比,不可能事件记作___ .可知, ___ 都包含不可能事件.
思考4:分析事件C1与事件D1之间的包含关系,按集合观点,这两个事件之间的关系应怎样描述?
思考5:一般地,当两个事件A、B满足___
___ ___ ___ ___ ,称事件A与事件B相等?
思考6:如果事件C5发生或C6发生,就意味着哪个事件发生?反之成立吗?
思考7:若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或 ),记作
(或 ).
思考8:类似地,当且仅当事件A发生且事件B发生时,事件C发生,则称事件C为事件A与事件B的交事件(或积事件),记作C=A∩B(或AB).
如: 在上述掷骰子试验中, ___=___.
思考9:两个集合的交可能为空集,两个事件的交事件也可能为不可能事件,即A∩B=Ф,此时,称事件A与事件B互斥,那么在一次试验中,事件A与事件B互斥的含义怎样理解?在上述事件中能找出这样的例子吗?
思考10:若A∩B为不可能事件,A∪B为必然事件,则称事件A与事件B互为对立事件,那么在一次试验中,事件A与事件B互为对立事件的含义怎样理解?
例如: 在掷骰子试验中, GH为不可能事件, 为必然事件,所以G与H互为对立事件.
思考11:若事件A与事件B相互对立,那么事件A与事件B互斥吗?反之,若事件A与事件B互斥,那么事件A与事件B相互对立吗?
【探究新知】(二):概率的几个基本性质
性质一:概率的取值范围是___ ,必然事件、不可能事件的概率分别是 .
思考1: 如果事件A与事件B互斥,则事件A∪B发生的频数与事件A、B发生的频数有什么关系?与、有什么关系?进一步得到P(A∪B)与P(A)、P(B)有什么关系?由此可得
性质二:概率的加法公式
性质三:如果事件A与事件B互为对立事件,则A∪B为___ 事件, 那么P(A∪B)= ___ 则=1.
; .
例1: 在掷骰子试验中,G和H互为对立事件,因此
思考2: 如果事件A与事件B互斥,
那么 ___ 1.(填大小关系)
思考3: 对于任意两个事件A、B, P(A∪B)一定比P(A)或P(B)大吗? P(A∩B)一定比P(A)或P(B)小吗?
【例题讲评】
例1 某射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;
事件B:命中环数为10环;
事件C:命中环数小于6环;
事件D:命中环数为6、7、8、9、10环.
例2如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是,取到方片(事件B)的概率是,问:
(l)取到红色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
例3 经统计,在某高中食堂某些窗口等候打饭的人数及相应概率如下:
排队人数 0 1 2 3 4 5人及5人以上
概率 0.1 0.16 0.3 0.3 0.1 0.04
至少2人排队等候的概率是多少?
至少3人排队等候的概率是多少?
例4一箱新产品中有正品4件,次品3件,从中任取2件产品,给出事件:
(1)恰有一件次品与恰有两件次品
(2)至少有一件次品与全是次品
(3)至少有一件正品与至少有一件
次品
(4)至少有一件次品与全是正品.
判断以上各事件哪些是互斥事件,哪些是对立事件,哪些既不是互斥事件也不是对立事件 .
目标检测
从1,2,3,4,5,6,7,8,9这9个数字中任两个数,分别有下列事件:
①恰有一个是奇数或恰有一个是偶数;
②至少有一个是奇数和两个都是奇数;
③至少有一个是奇数和两个数都是偶数;
④至少有一个是奇数和至少有一个是偶数.
其中为互斥事件的是( ) A. ① B.②④ C.③ D.①③
2、甲、乙两人下棋,两个人下成和棋的概率为,乙获胜的概率为,则乙输的概率为
( )
A. B. C. D.
3、从装有2个红球和2个白球的中袋内任取2个球,那么互斥而不对立的两个事件是( )
A. 至少有1个白球, 都是白球.
B.至少有1个白球, 至少有1个红球.
C. 恰有1个白球, 恰有2个白球.
D.至少有1个白球,都是红球.
4、抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数,事件B为出现2点,已知P(A)=,P(B)=,则出现奇数点或2点的概率是__ .
5、某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,则该射手在一次射击中,射中10环或9环的概率是__ ;少于7环的概率是__ .
6、一批产品共有100件,其中5件是次品,95件是合格品,从这批产品中任意抽5件,现给以下四个事件:A.恰有1件次品;B.至少有2件次品;C.至少有1件次品;D.至多有1件次品;并给出以下结论:①A+B=C;②B+D是必然事件;③A+C=B;④A+D=C;其中正确的结论为 (写出序号即可).
7、某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3、0.2、0.1、0.4,求:
⑴他乘火车或乘飞机去的概 率;
⑵他不乘轮船去的概率;
⑶如果他去的概率为0.5,请问他有可能是乘何种交通工具去的?
纠错矫正
总结反思
PAGE
1§2.2.2用样本的数字特征估计总体的数字特征
学习目标
(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。
(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特 征(如平均数、标准差),并做出合理的解释。
(3)会用样本的基本数字特征估计总体的基本数字特征。
(4)形成对数据处理过程进行初步评价的意识。
重点难点
重点:用样本平均数和标准差估计总体的平均数与标准差。
难点:能应用相关知识解决简单的实际问题。
学法指导
在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。
知识链接
用样本的频率分布去估计总体的分布,当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。
问题探究
一、情景设置:
美国NBA在2006——2007年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:
甲运动员得分:12,15,20,25,31,31, 36,36,37,39,44,49.
乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29.
如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就得有相应的数据作为比较依据,即通过样本数据对总体的数字特征进行研究,用样本的数字特征估计总体的数字特征.
二、探究新知:
知识探究(一):众数、中位数和平均数
思考1:在初中我们学过众数、中位数和平均数的概念,这些数据都是反映样本信息的数字特征,对一组样本数据如何求众数、中位数和平均数?
思考2:在城市居民月均用水量样本数据的频率分布直方图中(参考课本72页图2-2-5),你认为众数应在哪个小矩形内?由此估计总体的众数是什么?
思考3:在频率分布直方图中,每个小矩形的面积表示什么?中位数左右两侧的直方图的面积应有什么关系?
思考4:在城市居民月均用水量样本数据的频率分布直方图中,从左至右各个小矩形的面积分别是0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02.由此估计总体的中位数是什么?
思考5:平均数是频率分布直方图的“重心”,在城市居民月均用水量样本数据的频率分布直方图中,各个小矩形的重心在哪里?从直方图估计总体在各组数据内的平均数分别为多少?
思考6:根据统计学中数学期望原理,将频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数. 由此估计总体的平均数是什么?
思考7:从居民月均用水量样本数据可知,该样本的众数是2.3,中位数是2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?
思考8:一组数据的中位数一般不受少数几个极端值的影响,这在某些情况下是一个优点,但它对极端值的不敏感有时也会额成为缺点,你能举例说明吗?样本数据的平均数大于(或小于)中位数说明什么问题?你怎样理解“我们单位的收入水平比别的单位高”这句话的含义?
知识探究(二):标准差
样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息. 平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度.
思考1:在一次射击选拔赛中,甲、乙两名运动员各射击10次,每次命中的环数如下:
甲:7 8 7 9 5 4 9 10 7 4
乙:9 5 7 8 7 6 8 6 7 7
甲、乙两人本次射击的平均成绩分别为多少环?
思考2:甲、乙两人射击的平均成绩相等,观察两人成绩的频率分布条形图,你能说明其水平差异在那里吗?
思考3:对于样本数据x1,x2,…,xn,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?
思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用s表示.假设样本数据x1,x2,…,的平均数为,则标准差的计算公式是:
那么标准差的取值范围是什么?标准差为0的样本数据有何特点?
思考5:对于一个容量为2的样本:, 则在数轴上,这两个统计数据有什么几何意义?由此说明标准差的大小对数据的离散程度有何影响?
知识补充:
标准差的平方称为方差,有时用方差代替标准差测量样本数据的离散度.方差与标准差的测量效果是一致的,在实际应用中一般多采用标准差.
现实中的总体所包含的个体数往往很多,总体的平均数与标准差是未知的,我们通常用样本的平均数和标准差去估计总体的平均数与标准差,但要求样本有较好的代表性.
3.对于城市居民月均用水量样本数据,其平均数 ,标准差s=0.868.在这100个数据中,
落在区间=[1.105,2.841]外的有28个;
落在区间=[0.237,3.709]外的只有4个;
落在区间=[-0.631,4.577]外的有0个.
一般地,对于一个正态总体,数据落在区间、、 内的百分比分别为68.3%、95.4%、99.7%,这个原理在产品质量控制中有着广泛的应用(参考教材P79“阅读与思考”).
三、典例分析:
例 1 计算甲、乙两名运动员的射击成绩的标准差,比较其射击水平的稳定性.
甲:7 8 7 9 5 4 9 10 7 4
乙:9 5 7 8 7 6 8 6 7 7
例2 画出下列四组样本数据的条形图,说明他们的异同点.
(1) 5,5,5,5,5,5,5,5,5;
(2) 4,4,4,5,5,5,6,6,6;
(3) 3,3,4,4,5,6,6,7,7;
(4) 2,2,2,2,5,8,8,8,8.
分析:先画出数据的直方图,根据样本数据算出样本数据的平均数,利用标准差的计算公式即可算出每一组数据的标准差。
例3甲、乙两人同时生产内径为25.40mm的一种零件,为了对两人的生产质量进行评比,从他们生产的零件中各随机抽取20件,量得其内径尺寸如下(单位:mm):
甲 :
25.46 25.32 25.45 25.39 25.36 25.34 25.42 25.45 25.38 25.42 25.39 25.43 25.39 25.40 25.44 25.40 25.42 25.35 25.41 25.39
乙:
25.40 25.43 25.44 25.48 25.48 25.47 25.49 25.49 26.36 25.34 25.33 25.43 25.43 25.32 25.47 25.31 25.32 25.32 25.32 25.48
从生产零件内径的尺寸看,谁生产的零件质量较高? (参考课本P77)
例4以往招生统计显示,某所大学录取的新生高考总分的中位数基本稳定在550分,若某同学今年高考得了520分,他想报考这所大学还需收集哪些信息?
例5 有20种不同的零食,它们的热量含量如下:
110 120 123 165 432 190 174 235 428 318 249 280 162 146 210 120 123 120 150 140
(1)以上20个数据组成总体,求总体平均数与总体标准差;
(2)设计一个适当的随机抽样方法,从总体中抽取一个容量为7的样本,计算样本的平均数和标准差.
目标检测
1、下列刻画一组数据离散程度的是 ( )
平均数 B.方差 C.中位数 D.众数
2、下列说法错误的是 ( )
A.一个样本的众数、中位数、平均数不可能是同一个数
B统计中,我们可以用样本平均数去估计总体平均数
C.样本平均数既不可能大于,也不可能小于这个数中的所有数据
D.众数、中位数、平均数从不同的角度描述了一组数据的集中趋势
若m个数的平均数是x,n个数的平均数是y,则这m+n个数的平均数是 ( )
A. B. C. D.
4、某同学历次数学考试成绩是95,98,92,83,91和92,则他取得的数学成绩的平均数、中位数、众数、极差和标准差分别是 ( )
A.91.8,92,92,15,4.60 B.92,92,92,15,5.60
C.91.8,91,92,15,4.60 D.91,92,92,18,4.60
5、某校高一年级进行一次数学测试,抽取40人,算出平均成绩为80分,为准确起见,后来又抽取50人,算出其平均成绩为83分。通过两次抽样结果,估计这次数学测验成绩为 ( )
A、81.7分 B、81.5分
C、 80分 D、83分
6、在一次歌手大奖赛上,五位评委为某歌手打出的分数如下:9.4,8.4,9.9,9.6,
9.5,去掉一个最高分和一个最低分后,所剩数据的平均值和标准差分别为 ( )
A.9.4, 0.1 B.9.4,0.01
C.9.5, 0.1 D.9.5,0.01
7、甲、乙两台机器同时生产 一种零件,现要检验它们的运 行情况,统计10天中两台机器每天出次品数分别是甲:0,1,0,2,2,0,3,1,2,4;乙:2,3,1,1,0,2,1,1,0,1.则出次品数较少的为
( )
A.甲 B.乙
C.相同 D.不能确定
8、.已知一组数的平均数是2,方差是,那么另一组数据
的平均数和方差分别是 ( )
A.2, B.2,1
C.4, D.4,3
9、计算:(1)1,2,3,4,5,6,7,8,9的方差 = 标准差s= ;
( 2 )10,20,30,40,50,60,70,8 0,90的方差= ,标准差s= . 试比较两组数据的计算结果,得到的一般结论是
10、已知样本101,100,99,x,y的平均数为100,方差为2,这个样本中的数据x和y的值分别是 ,
11、(选做)如果5个从小到大的整数所组成的数组的中位数是4,这个组唯一的众数是6,那么这个数组全体数字的和的最大值为 。
12、某班50位同学的身高分成如下三层:
层数 身高/cm 人数
1 155~165 15
2 165~175 27
3 175~185 8
(1)画出频数分布直方图,并据此估计全班同学的平均身高;(2)现自第一层中抽取三个样本,分别为154,160,163;自第二层中抽取五个样本,分别为171,168,166,174,171;自第三层中抽取两个样本,分别为175,179,估计全班同学之平均身高;(3)比较(1)和(2)的结果,你有什么体会?
13、甲、乙两种玉米苗中各抽 10 株,分别测得它们的株高如下(单位:cm):
甲:25 41 40 37 22 14 19 39 21 42
乙:27 16 44 27 44 16 40 40 16 40
问:(1)哪种玉米的苗长得高?
(2)哪种玉米的苗长得齐?
14、在某高中篮球联赛中,甲、乙两名运动员的得分如下.
甲的得分:14,17,25,26,30,3l,35.37,38,39,44,48,51,53,54;
乙的得分:6,15,17,18,2l,27,28,33,35,38,40,44,56.
(1)用茎叶图表示上面的样本数据,并找出样本数据的中位数;(2)根据(1)中所求的数据分析甲、乙两名运动员哪一位发挥得更加稳定.
纠错矫正
收获与体会
频率
0.4
0.3
0.2
0.1
4 5 6 7 8 9 10 环数
O
(甲)
环数
频率
0.4
0.3
0.2
0.1
4 5 6 7 8 9
O
(乙)
PAGE
13. 1.3概率的基本性质
【教学目标】
1.说出事件的包含,并,交, 相等事件, 以及互斥事件, 对立事件的概念;
2..能叙述互斥事件与对立事件的区别与联系
3. 说出概率的三个基本性质;会使用互斥事件、对立事件的概率性质求概率。
【教学重难点】
教学重点:概率的加法公式及其应用,事件的关系与运算。
教学难点:概率的加法公式及其应用,事件的关系与运算,概率的几个基本性质
【教学过程】
一、创设情境
1. 两个集合之间存在着包含与相等的关系,集合可以进行交、并、补运算,你还
记得子集、等集、交集、并集和补集的含义及其符号表示吗?
2 我们可以把一次试验可能出现的结果看成一个集合(如连续抛掷两枚硬币),那么必然事件对应全集,随机事件对应子集,不可能事件对应空集,从而可以类比集合的关系与运算,分析事件之间的关系与运算,使我们对概率有进一步的理解和认识.
二、新知探究
1. 事件的关系与运算
思考:在掷骰子试验中,我们用集合形式定义如下事件:
C1={出现1点},
C2={出现2点},
C3={出现3点},C4={出现4点},
C5={出现5点},C6={出现6点},
D1={出现的点数不大于1},
D2={出现的点数大于4},
D3={出现的点数小于6},
E={出现的点数小于7},
F={出现的点数大于6},
G={出现的点数为偶数},
H={出现的点数为奇数},等等.
你能写出这个试验中出现其它一些事件吗?类比集合与集合的关系,运算,你能发现
它们之间的关系和运算吗?
上述事件中哪些是必然事件?哪些是随机事件?哪些是不可能事件
(1) 显然,如果事件C1发生, 则事件H一定发生,这时我们说事件H包含事件C1,记作H C1。
一般地,对于事件A与事件B,如何理解事件B包含事件A(或事件A包含于事件B)?特别地,不可能事件用Ф表示,它与任何事件的关系怎样约定?
如果当事件A发生时,事件B一定发生,则BA ( 或AB );任何事件都包含不可能事件.
(2)分析事件C1与事件D1之间的包含关系,按集合观点这两个事件之间的关
系应怎样描述?
一般地,当两个事件A、B满足什么条件时,称事件A与事件B相等?
若BA,且AB,则称事件A与事件B相等,记作A=B.
(3)如果事件C5发生或C6发生,就意味着哪个事件发生?反之成立吗?
事件D2称为事件C5与事件C6的并事件(或和事件),一般地,事件A与
事件B的并事件(或和事件)是什么含义?
当且仅当事件A发生或事件B发生时,事件C发生,则称事件C为事件A与事件B的并事件(或和事件),记作 C=A∪B(或A+B).
(4)类似地,当且仅当事件A发生且事件B发生时,事件C发生,则称事件C为事件A与事件B的交事件(或积事件),记作C=A∩B(或AB),在上述事件中能找出这样的例子吗?
例如,在掷骰子的试验中D2∩D3=C4
(5)两个集合的交可能为空集,两个事件的交事件也可能为不可能事件,即A∩B=Ф,此时,称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生
例如,上述试验中的事件C1与事件C2互斥,事件G与事件H互斥。
(6)若A∩B为不可能事件,A∪B为必然事件,则称事件A与事件B互为对立事件,其含义是: 事件A与事件B有且只有一个发生.
思考:事件A与事件B的和事件、积事件,分别对应两个集合的并、交,那么事件A与事件B互为对立事件,对应的集合A、B是什么关系?
集合A与集合B互为补集.
思考:若事件A与事件B相互对立,那么事件A与事件B互斥吗?反之,若事件A与
事件B互斥,那么事件A与事件B相互对立吗?
2.概率的几个基本性质
思考1:概率的取值范围是什么?必然事件、不可能事件的概率分别是多少?
思考2:如果事件A与事件B互斥,则事件A∪B发生的频数与事件A、B发生的频数有什么关系?fn(A∪B)与fn(A)、fn(B)有什么关系?进一步得到P(A∪B)与P(A)、P(B)有什么关系?
若事件A与事件B互斥,则A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,且 P(A∪B)=P(A)+ P(B),这就是概率的加法公式.
思考3:如果事件A与事件B互为对立事件,则P(A∪B)的值为多少?P(A∪B)与P(A)、P(B)有什么关系?由此可得什么结论?
若事件A与事件B互为对立事件,则P(A)+P(B)=1.
思考4:如果事件A与事件B互斥,那么P(A)+P(B)与1的大小关系如何?
P(A)+P(B)≤1.
三、典型例题
例1 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是0.25,取到方片(事件B)的概率是0.25,问:
(l)取到红色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
解:(1)因为C= A∪B,且A与B不会同时发生,所以A与B是互斥事件,根据概率的加法公式,得
P(C)=P(A∪B)= P(A)+P(B)=0.5,
(2)C与D也是互斥事件,又由于C∪D为必然事件,所以C与D互为对立事件,所以
P(D)=1- P(C)=0.5.
点评:利用互斥事件、对立事件的概率性质求概率
变式训练1:袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,已知得到红球的概率是 1/3 ,得到黑球或黄球的概率是 5/12,得到黄球或绿球的概率也是5/12 ,试求得到黑球、黄球、绿球的概率分别是多少?
例2某射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;
事件B:命中环数为10环;
事件C:命中环数小于6环;
事件D:命中环数为6、7、8、9、10环.
事件A与事件C互斥,事件B与事件C互斥,事件C与事件D互斥且对立.
点评:学会判断互斥、对立关系
变式训练2:.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断
下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件。
(1)恰好有1件次品恰好有2件次品; (2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品; (4)至少有1件次品和全是正品
四、课堂小结
1.事件的各种关系与运算,可以类比集合的关系与运算,互斥事件与对立事件的概念的外延具有包含关系,即{对立事件} {互斥事件}.
2.在一次试验中,两个互斥事件不能同时发生,它包括一个事件发生而另一个事件不发生,或者两个事件都不发生,两个对立事件有且仅有一个发生.
3.事件(A+B)或(A∪B),表示事件A与事件B至少有一个发生,事件(AB)或A∩B,表示事件A与事件B同时发生.
4.概率加法公式是对互斥事件而言的,一般地,P(A∪B)≤P(A)+P(B).
五、反馈测评
1.某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:
(1)射中10环或9环的概率;
(2)少于7环的概率。
解:(1)该射手射中10环与射中9环的概率是射中10环的概率与射中9环的概率的和,即为0.21+0.23=0.44。(2)射中不少于7环的概率恰为射中10环、9环、8环、7环的
概率的和,即为0.21+0.23+0.25+0.28=0.97,而射中少于7环的事件与射中不少于7环
的事件为对立事件,所以射中少于7环的概率为1-0.97=0.03。
2.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是,从中取出2粒都是白子的概率是,现从中任意取出2粒恰好是同一色的概率是多少?
解:从盒子中任意取出2粒恰好是同一色的概率恰为取2粒白子的概率与2粒黑子的概率的和,即为+=
【板书设计】

【作业布置】课本121页1---5T
3.1.3概率的基本性质
课前预习学案
一、预习目标:
通过预习事件的关系与运算,初步理解事件的包含,并,交, 相等事件, 以及互斥事件, 对立事件的概念。
二、预习内容:
1、知识回顾:
(1)必然事件:在条件S下, 发生的事件,叫相对于条件S的必然事件;
(2)不可能事件:在条件S下, 发生的事件,叫相对于条件S的不可能事件;
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
(4)随机事件:在条件S下 的事件,叫相对于条件S的随机事件;
2、事件的关系与运算
①对于事件A与事件B, 如果事件A发生,事件B一定发生, 就称事件 包含事件 .
(或称事件 包含于事件 ).记作A B, 或B A. 如上面试验中 与
②如果B A 且A B, 称事件A与事件B相等.记作A B. 如上面试验中 与
③如果事件发生当且仅当事件A发生或事件B发生. 则称此事件为事件A与事件B的并.
(或称和事件), 记作A B(或A B). 如上面试验中 与
④如果事件发生当且仅当事件A发生且事件B发生. 则称此事件为事件A与事件B的交.
(或称积事件), 记作A B(或A B). 如上面试验中 与
⑤如果A B为不可能事件(A B), 那么称事件A与事件B互斥.
其含意是: 事件A与事件B在任何一次实验中 同时发生.
⑥如果A B为不可能事件,且A B为必然事件,称事件A与事件B互为对立事件.
其含意是: 事件A与事件B在任何一次实验中 发生.
3. 概率的几个基本性质
(1).由于事件的频数总是小于或等于试验的次数. 所以, 频率在0~1之间, 从而任何事件的概率
在0~1之间.即
①必然事件的概率: ; ; ②不可能事件的概率: .
(2) 当事件A与事件B互斥时, A B发生的频数等于A发生的频数与B发生的频数之和.
从而A B的频率. 由此得
概率的加法公式:
(3).如果事件A与事件B互为对立, 那么, A B为必然事件, 即.
因而
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标:
1.说出事件的包含,并,交, 相等事件, 以及互斥事件, 对立事件的概念;
2.能叙述互斥事件与对立事件的区别与联系
3. 说出概率的三个基本性质;会使用互斥事件、对立事件的概率性质求概率。
二、学习内容
1. 事件的关系与运算
(1) 显然,如果事件C1发生, 则事件H一定发生,这时我们说事件H包含事件C1,
记作H C1
一般地,对于事件A与事件B,如何理解事件B包含事件A(或事件A包含于事件B)?特别地,不可能事件用Ф表示,它与任何事件的关系怎样约定?
(2)分析事件C1与事件D1之间的包含关系,按集合观点这两个事件之间的关
系应怎样描述?
(3)如果事件C5发生或C6发生,就意味着哪个事件发生?反之成立吗?
事件D2称为事件C5与事件C6的并事件(或和事件),一般地,事件A与事件B的并事件(或和事件)是什么含义?
(4)类似地,当且仅当事件A发生且事件B发生时,事件C发生,则称事件C为事件A与事件B的交事件(或积事件),记作C=A∩B(或AB),在上述事件中能找出这样的例子吗?
(5)你能在探究试验中找出互斥事件吗?请举例。
(6)在探究试验中找出互斥事件
思考:事件A与事件B的和事件、积事件,分别对应两个集合的并、交,那么事件A与事件B互为对立事件,对应的集合A、B是什么关系?
思考:若事件A与事件B相互对立,那么事件A与事件B互斥吗?反之,若事件A与
事件B互斥,那么事件A与事件B相互对立吗?
2.概率的几个基本性质
思考1:概率的取值范围是什么?必然事件、不可能事件的概率分别是多少?
思考2:如果事件A与事件B互斥,则事件A∪B发生的频数与事件A、B发生的频数有什么关系?fn(A∪B)与fn(A)、fn(B)有什么关系?进一步得到P(A∪B)与P(A)、P(B)有什么关系?
思考3:如果事件A与事件B互为对立事件,则P(A∪B)的值为多少?P(A∪B)与P(A)、P(B)有什么关系?由此可得什么结论?
思考4:如果事件A与事件B互斥,那么P(A)+P(B)与1的大小关系如何?
3、典型例题
例1 如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是0.25,取到方片(事件B)的概率是0.25,问:
(l)取到红色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
例2某射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?
事件A:命中环数大于7环;
事件B:命中环数为10环;
事件C:命中环数小于6环;
事件D:命中环数为6、7、8、9、10环.
三、反思总结
1.如何判断事件A与事件B是否为互斥事件或对立事件?
2. 如果事件A与事件B互斥,P(A∪B)与P(A)、P(B)有什么关系?
3. 如果事件A与事件B互为对立事件,则P(A∪B)的值为多少?P(A∪B)与P(A)、P(B)有什么关系?
四、当堂检测
1. 一个人打靶时连续射击两次 ,事件“至少有一次中靶”的互斥事件是 ( )
A.至多有一次中靶 B.两次都中靶 C. 只有一次中靶 D. 两次都不中靶
2. 把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁四人,每人分得一张,那么事件“甲得红牌”与事件“乙分得红牌”是 ( )
A.对立事件 B. 互斥但不对立事件
C.必然事件 D. 不可能事件
3. 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,已知得到红球的概率是 1/3 ,得到黑球或黄球的概率是 5/12,得到黄球或绿球的概率也是5/12 ,试求得到黑球、黄球、绿球的概率分别是多少?
课后练习与提高
1.从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,判断
下列每件事件是不是互斥事件,如果是,再判断它们是不是对立事件。
(1)恰好有1件次品恰好有2件次品; (2)至少有1件次品和全是次品;
(3)至少有1件正品和至少有1件次品; (4)至少有1件次品和全是正品
2.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数,事件B为出现2点,
已知P(A)=,P(B)=, 求出现奇数点或2点的概率。
3.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,
0.28,计算该射手在一次射击中:(1)射中10环或9环的概率; (2)少于7环的概率。
4.某射手在一次射击训练中,射中10环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:
(1)射中10环或9环的概率;
(2)少于7环的概率。
5.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是,从中取出2粒都是白子的概率是,现从中任意取出2粒恰好是同一色的概率是多少?
参考答案:
1.解:依据互斥事件的定义,即事件A与事件B在一定试验中不会同时发生知:
(1)恰好有1件次品和恰好有2件次品不可能同时发生,因此它们是互斥事件,
又因为它们的并不是必然事件,所以它们不是对立事件,同理可以判断:
(2)中的2个事件不是互斥事件,也不是对立事件。
(3)中的2个事件既是互斥事件也是对立事件。
2.解:“出现奇数点”的概率是事件A,“出现2点”的概率是事件B,
“出现奇数点或2点”的概率之和为P(C)=P(A)+P(B)=+=
PAGE
81. 3算法案例
【教学目标】:
1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。
2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。
【教学重难点】:
重点:理解辗转相除法与更相减损术求最大公约数的方法。
难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。
【教学过程】:
情境导入:
1.教师首先提出问题:在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?
2.接着教师进一步提出问题,我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?这就是我们这一堂课所要探讨的内容。
新知探究:
1.辗转相除法
例1 求两个正数8251和6105的最大公约数。
(分析:8251与6105两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公约数)
解:8251=6105×1+2146
显然8251的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。
6105=2146×2+1813
2146=1813×1+333
1813=333×5+148
333=148×2+37
148=37×4+0
则37为8251与6105的最大公约数。
以上我们求最大公约数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的。利用辗转相除法求最大公约数的步骤如下:
第一步:用较大的数m除以较小的数n得到一个商q0和一个余数r0;
第二步:若r0=0,则n为m,n的最大公约数;若r0≠0,则用除数n除以余数r0得到一个商q1和一个余数r1;
第三步:若r1=0,则r1为m,n的最大公约数;若r1≠0,则用除数r0除以余数r1得到一个商q2和一个余数r2;
……
依次计算直至rn=0,此时所得到的rn-1即为所求的最大公约数。
练习:利用辗转相除法求两数4081与20723的最大公约数(答案:53)
2.更相减损术
我国早期也有解决求最大公约数问题的算法,就是更相减损术。
更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母·子之数,以少减多,更相减损,求其等也,以等数约之。
翻译出来为:
第一步:任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。
第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。
例2 用更相减损术求98与63的最大公约数.
解:由于63不是偶数,把98和63以大数减小数,并辗转相减,即:98-63=35
63-35=28
35-28=7
28-7=21
21-7=14
14-7=7
所以,98与63的最大公约数是7。
练习:用更相减损术求两个正数84与72的最大公约数。(答案:12)
比较辗转相除法与更相减损术的区别:
(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。
(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到
3. 秦九韶算法
  秦九韶计算多项式的方法
  
  令,则有,
  其中.这样,我们便可由依次求出;
  
  显然,用秦九韶算法求n次多项式的值时只需要做n次乘法和n次加法运算
4.进位制
  进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值.可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制.现在最常用的是十进制,通常使用10个阿拉伯数字0-9进行记数.
  对于任何一个数,我们可以用不同的进位制来表示.比如:十进数57,可以用二进制表示为111001,也可以用八进制表示为71、用十六进制表示为39,它们所代表的数值都是一样的.
表示各种进位制数一般在数字右下脚加注来表示,如111001(2)表示二进制数,34(5)表示5进制数.
(1).k进制转换为十进制的方法:
  ,
(2).十进制转化为k进制数b的步骤为:
  第一步,将给定的十进制整数除以基数k,余数便是等值的k进制的最低位;
  第二步,将上一步的商再除以基数k,余数便是等值的k进制数的次低位;
  第三步,重复第二步,直到最后所得的商等于0为止,各次所得的余数,便是k进制各位的数,最后一次余数是最高位,即除k取余法.
要点诠释:
  1、在k进制中,具有k个数字符号.如二进制有0,1两个数字.
  2、在k进制中,由低位向高位是按“逢k进一”的规则进行计数.
  3、非k进制数之间的转化一般应先转化成十进制,再将这个十进制数转化为另一种进制的数,有的也可以相互转化.
【反馈测评】:
1.求324、243、135这三个数的最大公约数。
求三个数的最大公约数可以先求出两个数的最大公约数,第三个数与前两个数的最大公约数的最大公约数即为所求。
2.用更相减损术求98与63的最大公约数
解:由于63不是偶数,把98和63以大数减小数,并辗转相减
98-63=35
63-35=28
35-28=7
28-7=21
21-7=21
14-7=7
所以,98和63的最大公约数等于7
3.已知一个五次多项式为用秦九韶算法求这个多项式当x = 5的值。
解:将多项式变形:按由里到外的顺序,依此计算一次多项式当x = 5时的值:
,,,
,所以,当x = 5时,多项式的值等于17255.2
4.将二进制数110011(2)化成十进制数
解:根据进位制的定义可知
所以,110011(2)=51。
【板书设计】:
1.3算法案例
课前预习学案
一、预习目标
1、理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。
2、理解秦九韶算法的思想。
二、预习内容
什么是进位制?最常见的进位制是什么?除此之外还有哪些常见的进位制?请举例说明.
三、提出疑惑
思考:辗转相除法中的关键步骤是哪种逻辑结构?
课内探究学案
学习目标
1. 会用辗转相除法与更相减损术求最大公约数的方法。
2. 会利用秦九韶算法求多项式的值。
3.各进位制之间能灵活转化。
二、学习重难点:
重点:辗转相除法与更相减损术求最大公约数的方法和秦九韶算法求多项式的值。
难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。
学习过程
辗转相除法思路:可以利用除法将大数化小,找两数的最大公约数.(适于两数较大时)
(1)用较大的数m除以较小的数n得到一个商和一个余数;
(2)若=0,则n为m,n的最大公约数;若≠0,则用除数n除以余数得到一个
和一个余数;(3)若=0,则为m,n的最大公约数;若≠0,则用除数除以余数得到一个商和一个余数;……依次计算直至=0,此时所得到的即为所求的最大公约数.
例题1:求两个正数1424和801的最大公约数.
①以上我们求最大公约数的方法就是辗转相除法,也叫欧几里德算法.
②由上述步骤可以看出,辗转相除法中的除法是一个反复执行的步骤,且执行次数由余数 是否等于0来决定,所以可把它看成一循环体,写出辗转相除法完整的程序框图和程序语言.
教学更相减损术:我国早期也有求最大公约数问题的算法,就是更相减损术. 在《九章算 术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置 分母 子之数,以少减多,更相减损,求其等也,以等数约之.
翻译为:(1) 任意给出两个正数;判断它们是否都是偶数. 若是,用2约简;若不是,执 行第二步.
(2) 以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小
数. 继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最
大公约数.
例题2. 用更相减损术求91和49的最大公约数.
秦九韶算法:
(1)设计求多项式当x=5时的值的算法,并写出程序。
(2)有没有更高效的算法?能否探求更好的算法,来解决任意多项式的求解问题?
引导学生把多项式变形为:
并提问:从内到外,如果把每一个括号都看成一个常数,那么变形后的式子中有哪些“一次式”?x的系数依次是什么?
用秦九韶算法求多项式的值,与多项式组成有直接关系吗?用秦九韶算法计算上述多项式的值,需要多少次乘法运算和多少次加法运算?秦九韶算法适用于一般的多项式的求值问题吗?
怎样用程序框图表示秦九韶算法?观察秦九韶算法的数学模型,计算时要用到的值,若令,我们可以得到下面的递推公式:
这是一个在秦九韶算法中反复执行的步骤,可以用循环结构来实现。请画出程序框图。
例题3.已知一个五次多项式为用秦九韶算法求这个多项式当x = 5的值。
进位制:
我们了解十进制吗?所谓的十进制,它是如何构成的?其它进位制的数又是如何的呢?
进位制是人们为了计数和运算方便而约定的记数系统。进位制是一种记数方式,用有限的数字在不同的位置表示不同的数值。可使用数字符号的个数称为基数,基数为n,即可称n进位制,简称n进制。
例题4.将二进制数110011(2)化成十进制数
精讲点拨:
1.求两个正数8251和2146;228和1995;5280和12155的最大公约数.
2. 求两个正数8251和2146的最大公约数.
3.用秦九韶算法计算多项式
在x=-4时的值时,V3的值为 :
反思总结:
比较辗转相除法与更相减损术的区别
(1)都是求 的方法,计算上辗转相除法以 法为主,更相减损术以 法为主,计算次数上 法计算次数相对较少,特别当两个数字 时计算次数的区别较明显.
(2)从结果体现形式来看,辗转相除法体现结果是以 则得到,而更相减损术
则以 而得到.
(3)通过对秦九韶算法的学习,你对算法本身有哪些进一步认识?
(4)秦九韶算法在计算一个n次多项式的值时,只要做____次乘法运算和____次加法运算。
课后练习与提高
1、用“辗转相除法”求得459和357的最大公约数是:
A.3 B.9 C.17 D.51
2、将数转化为十进制数为:
A. 524 B. 774 C. 256 D. 260
3、用秦九韶算法计算多项式
当时的值时,需要做乘法和加法的次数分别是:
A. 6 , 6 B. 5 , 6
C. 5 , 5 D. 6 ,5
参考答案:1D 2B 3A
1.3算法案例
一、辗转相除法
例1
二、更相减损术
例2
三、秦九韶算法
四、进位制
五、反馈测评:
小结
作业
PAGE
- 1 -2. 3变量间的相关关系
一、教材分析
本节知识内容不多,但分析本节内容,至少有下列特点:
1)知识的联系面广,应用性强,概念的真正理解有难度,教学既要承前启后,完成统计必修基础知识的构建;也要知道知识的来龙去脉,提升学生运用统计知识解决实际问题的能力,更要抓住本质,正确理解统计推断的结论。
2)通过典型案例进行教学,使知识形成的过程中具有可操作性,易于创设问题情境,引导学生参与,而学生借助解决问题,通过自主思维活动,会产生感悟、发现,能提出问题,思考交流,不仅能正确、全面地理解基础知识和基本方法,而且能促进、发展学生的统计意识、统计思想。
二、教学目标
1. 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;
2. 知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
三、教学重点难点
重点:作出散点图和根据给出的线性回归方程系数公式建立线性回归方程。
难点:对最小二乘法的理解。
四、学情分析
本节是一种对样本数据的处理方法,但侧重的是由样本推断总体,其方法是学生初识的、知识的作用也是学生初见的。知识量并不大,但涉及的数学方法、数学思想较充分,同时,在教材中留有供发现的点,设有开放性问题,既具有体验数学方法、数学思想的功能,也具有培养学生从具体到抽象能力、锻炼创造性思维能力的作用。
五、教学方法
1.自主探究,互动学习
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:预习课本,初步把握必须的定义。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。七、课时安排:1课时
八、教学过程
〖复习回顾〗
标准差的公式为:______________________________________________________
〖创设情境〗
1、函数是研究两个变量之间的依存关系的一种数量形式.对于两个变量,如果当一个变量的取值一定时,另一个变量的取值被惟一确定,则这两个变量之间的关系就是一个函数关系
2、在中学校园里,有这样一种说法:“如果你的数学成绩好,那么你的物理学习就不会有什么大问题。”按照这种说法,似乎学生的物理成绩与数学成绩之间存在着某种关系,我们把数学成绩和物理成绩看成是两个变量,那么这两个变量之间的关系是函数关系吗?
3、“名师出高徒”可以解释为教师的水平越高,学生的水平就越高,那么学生的学业成绩与教师的教学水平之间的关系是函数关系吗?
〖新知探究〗
思考:考察下列问题中两个变量之间的关系:
(1)商品销售收入与广告支出经费;
(2)粮食产量与施肥量;
(3)人体内的脂肪含量与年龄.
这些问题中两个变量之间的关系是函数关系吗?
一、相关关系:
自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。
【说明】函数关系是一种非常确定的关系,而相关关系是一种非确定性关系。
思考探究:
1、有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语。吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?
2、某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子。你认为这样的结论可靠吗?如何证明这个问题的可靠性?
分析:(1)吸烟只是影响健康的一个因素,对健康的影响还有其他的一些因素,两者之间非函数关系即非因果关系;
(2)不对,这也是相关关系而不是函数关系。
上面提到了很多相关关系,那它们之间的相关关系强还是弱?我们下面来研究一下。
二、散点图
探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:
年龄 23 27 39 41 45 49 50
脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2
年龄 53 54 56 57 58 60 61
脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数。
思考探究:
1、对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?
2、为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?
在平面直角坐标系中,
表示具有相关关系的
两个变量的一组数据图
形称为散点图。
3、观察人的年龄的与人体脂肪含量散点图的大致趋势,有什么样的特点?阅读课本,这种相关关系我们称为什么?还有没有其他的相关关系?它又有怎样的特点?
三、线性相关、回归直线方程和最小二乘法
在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?
如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线。
我们所画的回归直线应该使散点图中的各点在整体上尽可能的与其接近。我们怎么来实现这一目的呢?说一说你的想法。
设所求的直线方程为=bx+a,其中a、b是待定系数。
则i=bxi+a(i=1,2,…,n).于是得到各个偏差
yi-i =yi-(bxi+a)(i=1,2,…,n)
显见,偏差yi-i 的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n个偏差的平方和
Q=(y1-bx1-a)2+(y2-bx2-a)2+…+(yn-bxn-a)2
表示n个点与相应直线在整体上的接近程度。
记Q=
这样,问题就归结为:当a、b取什么值时Q最小,a、b的值由下面的公式给出:
其中=,=,a为回归方程的斜率,b为截距。
求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫最小二乘法。
【例题精析】
有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的饮料杯数与当天气温的对比表:
摄氏温度 -5 0 4 7 12 15 19 23 27 31 36
热饮杯数 156 150 132 128 130 116 104 89 93 76 54
(1)画出散点图;
(2)从散点图中发现气温与热饮杯数之间关系的一般规律;
(3)求回归方程;
(4)如果某天的气温是2℃,预测这天卖出的热饮杯数。
解:
(4)当x=2时,y=143.063
(四)反思总结,当堂检测。
1、求样本数据的线性回归方程,可按下列步骤进行:
(1)计算平均数,;
(2)求a,b;
(3)写出回归直线方程。
2、回归方程被样本数据惟一确定,对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性.。
3、对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的。因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(五)发导学案、布置预习。
完成本节的课后练习及课后延伸拓展作业。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计
十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
本节课学习了变量间的相互关系和两个变量的线性相关,以及最小二乘法和回归直线的定义,体会了用最小二乘法解决两个变量线性相关的方法,在解决问题中要熟练掌握求回归系数b、a的公式,精确计算.同时,要注意培养学生的观察分析两变量的关系和抽象概括的能力
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
2.3变量间相关关系
课前预习学案
一、预习目标
1. 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系;
2. 知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。
二、预习内容
1.举例说明函数关系为什么是确定关系?
2.一个人的身高与体重是函数关系吗
3. 相关关系的概念:
4. 什么叫做散点图?
5.回归分析,(1)求回归直线方程的思想方法;(2)回归直线方程的求法
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1.通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.
2.经历用不同估算方法描述两个变量线性相关的过程,知道最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.
二、学习重难点:
重点:作出散点图和根据给出的线性回归方程系数公式建立线性回归方程
难点:对最小二乘法的理解。
三、学习过程
思考:考察下列问题中两个变量之间的关系:
(1)商品销售收入与广告支出经费;
(2)粮食产量与施肥量;
(3)人体内的脂肪含量与年龄.
这些问题中两个变量之间的关系是函数关系吗?
(一)、相关关系:
自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系,叫做相关关系。
【说明】函数关系是一种非常确定的关系,而相关关系是一种非确定性关系。
思考探究:
1、有关法律规定,香烟盒上必须印上“吸烟有害健康”的警示语。吸烟是否一定会引起健康问题?你认为“健康问题不一定是由吸烟引起的,所以可以吸烟”的说法对吗?
2、某地区的环境条件适合天鹅栖息繁衍,有人经统计发现了一个有趣的现象,如果村庄附近栖息的天鹅多,那么这个村庄的婴儿出生率也高,天鹅少的地方婴儿出生率低,于是他得出了一个结论:天鹅能够带来孩子。你认为这样的结论可靠吗?如何证明这个问题的可靠性?
(二)、散点图
探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:
年龄 23 27 39 41 45 49 50
脂肪 9.5 17.8 21.2 25.9 27.5 26.3 28.2
年龄 53 54 56 57 58 60 61
脂肪 29.6 30.2 31.4 30.8 33.5 35.2 34.6
其中各年龄对应的脂肪数据是这个年龄人群脂肪含量的样本平均数。
思考探究:
1、对某一个人来说,他的体内脂肪含量不一定随年龄增长而增加或减少,但是如果把很多个体放在一起,就可能表现出一定的规律性.观察上表中的数据,大体上看,随着年龄的增加,人体脂肪含量怎样变化?
2、为了确定年龄和人体脂肪含量之间的更明确的关系,我们需要对数据进行分析,通过作图可以对两个变量之间的关系有一个直观的印象.以x轴表示年龄,y轴表示脂肪含量,你能在直角坐标系中描出样本数据对应的图形吗?
3、观察人的年龄的与人体脂肪含量散点图的大致趋势,有什么样的特点?阅读课本,这种相关关系我们称为什么?还有没有其他的相关关系?它又有怎样的特点?
(三)、线性相关、回归直线方程和最小二乘法
在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?
如果散点图中的点的分布,从整体上看大致在一条直线附近,则称这两个变量之间具有线性相关关系,这条直线叫做回归直线。
我们所画的回归直线应该使散点图中的各点在整体上尽可能的与其接近。我们怎么来实现这一目的呢?说一说你的想法。
这样,问题就归结为:当a、b取什么值时Q最小,a、b的值由下面的公式给出:
其中=,=,a为回归方程的斜率,b为截距。
求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫最小二乘法。
【例题精析】
【例1】下表是某小卖部6天卖出热茶的杯数与当天气温的对比表:
气温/℃ 26 18 13 10 4 -1
杯数 20 24 34 38 50 64
(1)将上表中的数据制成散点图.
(2)你能从散点图中发现温度与饮料杯数近似成什么关系吗
(3)如果近似成线性关系的话,请求出回归直线方程来近似地表示这种线性关系.
(4)如果某天的气温是-5℃时,预测这天小卖部卖出热茶的杯数.
(四)反思总结
1、求样本数据的线性回归方程,可按下列步骤进行:
(1)计算平均数,;
(2)求a,b;
(3)写出回归直线方程。
2、回归方程被样本数据惟一确定,对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性.。
3、对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程”是没有实际意义的。因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程。
(五)当堂检测
1.有关线性回归的说法,不正确的是
A.相关关系的两个变量不是因果关系
B.散点图能直观地反映数据的相关程度
C.回归直线最能代表线性相关的两个变量之间的关系
D.任一组数据都有回归方程
2.下面哪些变量是相关关系
A.出租车费与行驶的里程 B.房屋面积与房屋价格
C.身高与体重 D.铁的大小与质量
3.回归方程=1.5x-15,则
A.=1.5-15 B.15是回归系数a
C.1.5是回归系数a D.x=10时,y=0
4.r是相关系数,则结论正确的个数为
①r∈[-1,-0.75]时,两变量负相关很强
②r∈[0.75,1]时,两变量正相关很强
③r∈(-0.75,-0.3]或[0.3,0.75)时,两变量相关性一般
④r=0.1时,两变量相关很弱
A.1 B.2 C.3 D.4
5.线性回归方程=bx+a过定点________.
6.一家工厂为了对职工进行技能检查,对某位职工进行了10次实验,收集数据如下:
零件数x(个) 10 20 30 40 50 60 70 80
加工时间y(分钟) 12 25 33 48 55 61 64 70
(1)画出散点图;
(2)求回归方程.
参考答案:
1. 答案:D解析:只有线性相关的数据才有回归直线.
2. 答案:C解析:A、B、D都是函数关系,其中A一般是分段函数,只有C是相关关系.
3. 答案:A解析:D中x=10时=0,而非y=0,系数a、b的意义要分清.
4. 答案:D解析:相关系数r的性质.
5.答案:(,)解析:=bx+a,=bx+-b,(-)=b(x-)
课后练习与提高
1.下列两个变量之间的关系不具有线性关系的是( )
A.小麦产量与施肥值
B.球的体积与表面积
C.蛋鸭产蛋个数与饲养天数
D.甘蔗的含糖量与生长期的日照天数
2.下列变量之间是函数关系的是( )
A.已知二次函数,其中,是已知常数,取为自变量,因变量是这个函数的判别式:
B.光照时间和果树亩产量
C.降雪量和交通事故发生率
D.每亩施用肥料量和粮食亩产量
3.下面现象间的关系属于线性相关关系的是( )
A.圆的周长和它的半径之间的关系
B.价格不变条件下,商品销售额与销售量之间的关系
C.家庭收入愈多,其消费支出也有增长的趋势
D.正方形面积和它的边长之间的关系
4.下列关系中是函数关系的是( )
A.球的半径长度和体积的关系
B.农作物收获和施肥量的关系
C.商品销售额和利润的关系
D.产品产量与单位成品成本的关系
5.设有一个回归方程为,则变量x增加一个单位时( )
A.平均增加1.5单位 B. 平均增加2单位
C. 平均减少1.5单位 D. 平均减少2单位
6.工人月工资(元)与劳动生产率(千元)变化的回归直线方程为,下列判
断不正确的是( )
A.劳动生产率为1000元时,工资约为130元
B.劳动生产率提高1000元时,则工资平均提高80元
C.劳动生产率提高1000元时,则工资平均提高130元
D.当月工资为210元时,劳动生产率约为2000元
7.某城市近10年居民的年收入x与支出y之间的关系大致符合(单位:亿元),预计今年该城市居民年收入为15亿元,则年支出估计是 .
8、在某种产品表面进行腐蚀线试验,得到腐蚀深度y与腐蚀时间x之间对应的一组数据:
时间t(s) 5 10 15 20 30 40 50 60 70 90 120
深度y(μm) 6 10 10 13 16 17 19 23 25 29 46
(1)画出散点图;
(2)试求腐蚀深度y对时间t的回归直线方程。
一、相关关系
二、散点图
三、线性相关、回归直线方程和最小二乘法
例题讲解
小结
PAGE
123. 3.2几何概型及均匀随机数的产生
一、教材分析
1.几何概型是不同于古典概型的又一个最基本、最常见的概率模型,其概率计算原理通俗、简单,对应随机事件及试验结果的几何量可以是长度、面积或体积.
2.如果一个随机试验可能出现的结果有无限多个,并且每个结果发生的可能性相等,那么该试验可以看作是几何概型.通过适当设置,将随机事件转化为几何问题,即可利用几何概型的概率公式求事件发生的概率.
二、教学目标
(1)正确理解几何概型的概念;
(2)掌握几何概型的概率公式;
(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;
(4)了解均匀随机数的概念;
(5)掌握利用计算器(计算机)产生均匀随机数的方法;
(6)会利用均匀随机数解决具体的有关概率的问题.
三、教学重点难点
1、几何概型的概念、公式及应用;
2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.
四、学情分析
五、教学方法
1.自主探究,互动学习
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学.七、课时安排:1课时
七、教学过程
1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。
2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
(2)几何概型的概率公式:
P(A)=;
(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
3、例题分析:
课本例题略
例1 判下列试验中事件A发生的概度是古典概型,还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;
(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率。
分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性。而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关。
解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;
(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.
例2 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.
分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.
解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)= =,即此人等车时间不多于10分钟的概率为.
小结:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.
练习:1.已知地铁列车每10min一班,在车站停1min,求乘客到达站台立即乘上车的概率。
2.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率.
解:1.由几何概型知,所求事件A的概率为P(A)= ;
2.记“灯与两端距离都大于2m”为事件A,则P(A)= =.
例3 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?
分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的而40平方千米可看作构成事件的区域面积,有几何概型公式可以求得概率。
解:记“钻到油层面”为事件A,则P(A)= ==0.004.
答:钻到油层面的概率是0.004.
例4 在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。
解:取出10毫升种子,其中“含有病种子”这一事件记为A,则
P(A)= ==0.01.
答:取出的种子中含有麦诱病的种子的概率是0.01.
例5 取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?
分析:在任意位置剪断绳子,则剪断位置到一端点的距离取遍[0,3]内的任意数,并且每一个实数被取到都是等可能的。因此在任意位置剪断绳子的所有结果(基本事件)对应[0,3]上的均匀随机数,其中取得的[1,2]内的随机数就表示剪断位置与端点距离在[1,2]内,也就是剪得两段长都不小于1m。这样取得的[1,2]内的随机数个数与[0,3]内个数之比就是事件A发生的概率。
解法1:(1)利用计算器或计算机产生一组0到1区间的均匀随机数a1=RAND.
(2)经过伸缩变换,a=a1*3.
(3)统计出[1,2]内随机数的个数N1和[0,3] 内随机数的个数N.
(4)计算频率fn(A)=即为概率P(A)的近似值.
解法2:做一个带有指针的圆盘,把圆周三等分,标上刻度[0,3](这里3和0重合).转动圆盘记下指针在[1,2](表示剪断绳子位置在[1,2]范围内)的次数N1及试验总次数N,则fn(A)=即为概率P(A)的近似值.
小结:用随机数模拟的关键是把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围。解法2用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大;解法1用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.
例6 在长为12cm的线段AB上任取一点M,并以线段AM为边作正方形,求这个正方形的面积介于36cm2 与81cm2之间的概率.
分析:正方形的面积只与边长有关,此题可以转化为在12cm长的线段AB上任取一点M,求使得AM的长度介于6cm与9cm之间的概率.
解:(1)用计算机产生一组[0,1]内均匀随机数a1=RAND.
(2)经过伸缩变换,a=a1*12得到[0,12]内的均匀随机数.
(3)统计试验总次数N和[6,9]内随机数个数N1
(4)计算频率.
记事件A={面积介于36cm2 与81cm2之间}={长度介于6cm与9cm之间},则P(A)的近似值为fn(A)=.
八、反思总结,当堂检测。
九、发导学案、布置预习。
完成本节的课后练习及课后延伸拓展作业。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
十、板书设计
十一、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。
1、几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例;
2、均匀随机数在日常生活中,有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数 )有关,然后设计适当的试验,并通过这个试验的结果来确定这些量。
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
十二、学案设计(见下页)
3.3.2几何概型及均匀随机数的产生
课前预习学案
一、预习目标
1. 了解几何概型的概念及基本特点;
2. 掌握几何概型中概率的计算公式;
3. 会进行简单的几何概率计算.
二、预习内容
1. 基本事件的概念: 一个事件如果 事件,就称作基本事件.
基本事件的两个特点:
10.任何两个基本事件是 的;
20.任何一个事件(除不可能事件)都可以 .
2. 古典概型的定义:古典概型有两个特征:
10.试验中所有可能出现的基本事件 ;
20.各基本事件的出现是 ,即它们发生的概率相同.
具有这两个特征的概率称为古典概率模型. 简称古典概型.
3. 古典概型的概率公式, 设一试验有n个等可能的基本事件,而事件A恰包含其中的m个基本事件,则事件A的概率P(A)定义为:

问题情境:
试验1.取一根长度为的绳子,拉直后在任意位置剪断.
试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.
奥运会的比赛靶面直径为,靶心直径为.运动员在外射箭.假设射箭都能射中靶面内任何一点都是等可能的.
问题:对于试验1:剪得两段的长都不小于的概率有多大?
试验2:射中黄心的概率为多少?
新知生成:
1.几何概型的概念:
2.几何概型的基本特点:
3.几何概型的概率公式:
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1. 了解几何概型的概念及基本特点;
2. 掌握几何概型中概率的计算公式;
3. 会进行简单的几何概率计算.
学习重难点:
重点:概率的正确理解
难点:用概率知识解决现实生活中的具体问题。
二、学习过程
例题学习:
例1判下列试验中事件A发生的概度是古典概型,还是几何概型。
(1)抛掷两颗骰子,求出现两个“4点”的概率;
(2)如课本P135图中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率。
例2某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,
求此人等车时间不多于10分钟的概率.
例3在1万平方千米的海域中有40平方千米的大陆架储藏着石油,
假设在海域中任意一点钻探,钻到油层面的概率是多少?
例4在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,
则取出的种子中含有麦诱病的种子的概率是多少?
例题参考答案:
例1分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性。而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关。
解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;
(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.
例2分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.
解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)= =,即此人等车时间不多于10分钟的概率为.
小结:在本例中,到站等车的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.
例3分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的, 而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率。
解:记“钻到油层面”为事件A,则P(A)= ==0.004.
答:钻到油层面的概率是0.004.
例4
分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。
解:取出10毫升种子,其中“含有病种子”这一事件记为A,则
P(A)= ==0.01.
答:取出的种子中含有麦诱病的种子的概率是0.01.
(三)反思总结
(四)当堂检测
1.在500ml的水中有一个草履虫,现从中随机取出2ml水样放到显微镜下观察,则发现草履虫的概率是( )
A.0.5 B.0.4 C.0.004 D.不能确定
2.平面上画了一些彼此相距2a的平行线,把一枚半径r3.某班有45个,现要选出1人去检查其他班的卫生,若每个人被选到的机会均等,则恰好选中学生甲主机会有多大?
4.如图3-18所示,曲线y=-x2+1与x轴、y轴围成一个区域A,直线x=1、直线y=1、x轴围成一个正方形,向正方形中随机地撒一把芝麻,利用计算机来模拟这个试验,并统计出落在区域A内的芝麻数与落在正方形中的芝麻数。
参考答案:
1.C(提示:由于取水样的随机性,所求事件A:“在取出2ml的水样中有草履虫”的概率等于水样的体积与总体积之比=0.004)
2.解:把“硬币不与任一条平行线相碰”的事件记为事件A,为了确定硬币的位置,由硬币中心O向靠得最近的平行线引垂线OM,垂足为M,如图所示,这样线段OM长度(记作OM)的取值范围就是[o,a],只有当r<OM≤a时硬币不与平行线相碰,所以所求事件A的概率就是P(A)==
3.提示:本题应用计算器产生随机数进行模拟试验,请按照下面的步骤独立完成。
(1)用1~45的45个数来替代45个人;
(2)用计算器产生1~45之间的随机数,并记录;
(3)整理数据并填入下表
试 验次 数 50 100 150 200 250 300 350 400 450 500 600 650 700 750 800 850 900 1000 1050
1出现的频数
1出现的频率
(4)利用稳定后1出现的频率估计恰好选中学生甲的机会。
4.解:如下表,由计算机产生两例0~1之间的随机数,它们分别表示随机点(x,y)的坐标。如果一个点(x,y)满足y≤-x2+1,就表示这个点落在区域A内,在下表中最后一列相应地就填上1,否则填0。
x y 计数
0.598895 0.940794 0
0.512284 0.118961 1
0.496841 0.784417 0
0.112796 0.690634 1
0.359600 0.371441 1
0.101260 0.650512 1
… … …
0.947386 0.902127 0
0.117618 0.305673 1
0.516465 0.222907 1
0.596393 0.969695 0
课后练习与提高
1.已知地铁列车每10min一班,在车站停1min,求乘客到达站台立即乘上车的概率
2.两根相距6m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m的概率 。
3.在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?
4.某人午觉醒来,发现表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。
5.取一根长为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不少于1米的概率有多大
2a
r
o
M
PAGE
9§2.1.1 简单的随机抽样
学习目标
正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;
重点难点
正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。.
学法指导
(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;
(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
知识链接
复习初中所学的概率知识。
问题探究
一、情景设置:
要判断一锅汤的味道需要把整锅汤都喝完吗?应该怎样判断?
二、探究新知:
知识探究(一):简单随机抽样的基本思想
思考1:从5件产品中任意抽取一件,则每一件产品被抽到的概率是多少?一般地,从N个个体中任意抽取一个,则每一个个体被抽到的概率是多少?
思考2:从6件产品中随机抽取一个容量为3的样本,可以分三次进行,每次从中随机抽取一件,抽取的产品不放回,这叫做逐个不放回抽取.在这个抽样中,某一件产品被抽到的概率是多少?
思考3:一般地,从N个个体中随机抽取n个个体作为样本,则每一个个体被抽到的概率是多少?
思考4:食品卫生工作人员,要对校园食品店的一批小包装饼干进行卫生达标检验,打算从中抽取一定数量的饼干作为检验的样本.其抽样方法是,将这批小包装饼干放在一个麻袋中搅拌均匀,然后逐个不放回抽取若干包,这种抽样方法就是简单随机抽样.那么简单随机抽样的含义如何?
简单随机抽样的含义:
思考5:根据你的理解,简单随机抽样有哪些主要特点?
思考6:在1936年美国总统选举前,一份颇有名气的杂志的工作人员对兰顿和罗斯福两位候选人做了一次民意测验.调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表.调查结果表明,兰顿当选的可能性大(57%),但实际选举结果正好相反,最后罗斯福当选(62%).你认为预测结果出错的原因是什么?
知识探究(二):简单随机抽样的方法
思考1:假设要在我们班选派5个人去参加某项活动,为了体现选派的公平性,你有什么办法确定具体人选
思考2:用抽签法(抓阄法)确定人选,具体如何操作?
思考3:一般地,抽签法的操作步骤如何?
思考4:你认为抽签法有哪些优点和缺点?
思考5:从0,1,2,…,9十个数中每次随机抽取一个数,依次排列成一个数表称为随机数表(见教材P103页),每个数每次被抽取的概率是多少?
思考6:假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时应如何操作?
思考7:如果从100个个体中抽取一个容量为10的样本,你认为对这100个个体进行怎样编号为宜?
思考8:一般地,利用随机数表法从含有N个个体的总体中抽取一个容量为n的样本,其抽样步骤如何?
三、典例分析:
例1 为调查央视春节联欢晚会的收视率,有如下三种调查方案:方案一:通过互联网调查.
方案二:通过居民小区调查.
方案三:通过电话调查. 上述三种调查方案能获得比较准确的收视率吗?为什么?
例2 为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,试利用简单随机抽样法抽取样本,并简述其抽样过程.
例3 利用随机数表法从500件产品中抽取40件进行质检.
(1)这500件产品可以怎样编号?
(2)如果从随机数表第10行第8列的数开始往左读数,则最先抽取的5件产品的编号依次是什么?
目标检测
1、为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是
A.总体是240 B、个体是每一个学生
C、样本是40名学生 D、样本容量是40
2、为了正确所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是 ( )
A、总体 B、个体是每一个零件
C、总体的一个样本 D、样本容量
在简单随机抽样中,某个个体被抽到的可能性是( )
A、与第一次抽样有关,且第一次抽到的可能性最小
B、与第一次抽样无关,且每次抽到的可能性都相等
C、与第一次抽样有关,最后一次抽到的可能性最小
D、与第一次抽样无关,每次抽到的可能性都不相等
利用简单随机抽样从有6个个体的总体中抽取一个容量为3的样本,则总体中每个个体被抽到的可能性是( )
B、 C、 D、
5、一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是 。
6、从3名男生、2名女生中随机抽取2人,检查数学成绩,则抽到的均为女生的可能性是 。
7、采用简单随机抽样时,常用的方法有: 。
某电视台一娱乐节目要从40名热心观众中随机抽取4名幸运观众,试用抽签法为其设计产生这4名幸运观众的过程.
欲从全班45名学生中随机抽取10名学生参加一项社区服务活动,试用随机数表法确定这10名学生.
通常人们打桥牌时,将洗好的扑克牌随机确定一张为始牌,这时开始按次序抓牌,对任何一方来说,都是从52张(去掉大、小王)总体中抽取13张样本,问这样的抽样方法是否是简单随机抽样?如果是,请说明理由;如果不是,请思考此方法的规律是怎样的?
纠错矫正
收获与体会
PAGE
1§1.2.3 循环语句
学习目标
1、正确理解循环语句的概念,
2、掌握其结构,
3、会应用循环语句编写程序。
重点难点
重点:两种循环语句的表示方法、结构和用法,用循环语句表示算法。
难点:理解循环语句的表示方法、结构和用法,会编写程序中的循环语句。
学法指导
1.两种循环语句源于两种循环结构,直到型循环语句先执行循环体,再判断条件;当型循环语句先判断条件,再执行循环体.
2.直到型循环语句在条件不符合时再执行循环体,当型循环语句在条件符合时再执行循环体.
3.循环语句主要用来实现算法中的循环结构,在处理一些需要反复执行的运算任务. 如累加求和,累乘求积等问题中常用到.
知识链接
循环结构的程序框图。
问题探究
知识探究(一):直到型循环语句
思考1:直到型循环结构的程序框图是什么?
思考2:该循环结构对应的循环语句的一般格式设定为:
你能说明计算机在执行上述语句时是怎样工作的吗?
先执行 ,再对 .如果条件不符合,则继续执行 ;然后再检查上述条件,如果条件仍不符合,则再次执行 ,直到条件符合为止.这时,计算机将不执行 ,而执行UNTIL语句之后的语句.
思考3:计算1+2+3+…+100的值有如下算法:
第一步,令i=1,S=0.
第二步,计算S+i,仍用S表示.
第三步,计算i+1,仍用i表示.
第四步,判断i>100是否成立.若是,则输出S,结束算法;否则,返回第二步.
你能利用UNTIL语句写出这个算法对应的程序吗?
思考4:在下面的程序运行中,计算机输出的结果是多少?
x=20
DO
x=x-3
LOOP UNTIL x<0
PRINT x
END
知识探究(二):当型循环语句
思考1:当型循环结构的程序框图是什么?
思考2:该循环结构对应的循环语句的
一般格式设定为:
你能说明计算机在执行上述语句时是怎样工作的吗?
先对 ,如果条件符合,则执行WHILE和WEND之间的循环体;然后再检查上述条件,如果条件仍符合,则再次执行循环体,直到 为止.这时,计算机将不执行 ,而执行 .
思考3:计算1+2+3+…+100的值又有如下算法:
第一步,令i=1,S=0.
第二步,若i≤100成立,则执行第三步;否则,输出S,结束算法.
第三步,S=S+i.
第四步,i=i+1,返回第二步.
你能利用WHILE语句写出这个算法对应的程序吗?
思考4:阅读下面的程序,你能说明它是一个什么问题的算法吗?
x=1
WHILE x∧2<1000
PRINT
x=x+1
WEND
END
理论迁移
例1 已知函数y=x3+3x2-24x+30,写出连续输入自变量的11个取值,分别输出相应的函数值的程序.
算法分析:
第一步,输入自变量x的值.
第二步,计算y=x3+3x2-24x+30.
第三步,输出y.
第四步,记录 .
第五步,判断输入的次数 .若是,则结束算法;否则,返回第一步.
程序框图为:
程序为:
例2 将用“二分法”求方程
的近似解的程序框图转化为相应的程序.
目标检测
1.下边程序执行后输出的结果是
A. -1 B. 0 C. 1 D. 2
2.如果下边程序执行后输出的结果是132,那么在程序until后面的“条件”应为 ( )
“条件”
A. B.
C. D.
3.当时,下面的程序段结果是
A. 3 B. 7 C. 15 D. 17
4.下面为一个求20个数的平均数的程序,在横线上应填充的语句为
___________
A. B. C. D.
5.把求﹗()的程序补充完整
__________“”;
_________
_________
6.编写程序,求的值.
(分别用两种循环语句编写)
纠错矫正
总结反思
※自我评价( )
A、课前自主学习认真,学案完成很好;
你真棒,继续坚持。
B、课前自主学习一般,学案完成良好;
下次争取做的更好。
C、课前自主学习较差,学案空白较多;
注意学习方法,提高学习效率。
开始
结束
f(a)f(m)<0
a=m
b=m


|a-b|输出m


f(x)=x2-2
输入精确度d
和初始值a,b
PAGE
1§1.2.2条件语句
学习目标
正确理解条件语句的概念,
掌握条件语句的结构,
会应用条件语句编写程序。
重点难点
重点:条件语句的步骤、结构及功能,
难点:会编写程序中的条件语句。
学法指导
对于顺序结构的算法或程序框图,我们可以利用输入语句、输出语句和赋值语句写出其计算机程序.对于条件结构的算法或程序框图,要转化为计算机能够理解的算法语言,我们必须进一步学习条件语句.
1.条件语句有两种形式,应用时要根据实际问题适当选取.
2.编写含有多个条件结构的程序时,每个条件语句执行结束时都以END IF表示.
问题探究
知识探究(一):条件语句(1)
思考1:下图是算法的条件结构用程序框图表示的一种形式,它对应的条件语句的一般格式设定为:
你能理解这个算法语句的含义吗?
当计算机执行上述语句时,首先对 ,如果(IF)条件符合,那么(THEN)执行 ,否则执行 .
思考2:求实数x的绝对值有如下一个算法:
第一步,输入一个实数x.
第二步,判断x的符号.若x<0,则x=-x;否则,x=x.
第三步,输出x.
该算法的程序框图如何表示?
思考3:这个算法含有顺序结构和条件结构,你能写出这个算法对应的程序吗?
思考4:阅读下面的程序,你能说明它是一个什么问题的算法吗?
INPUT “a,b=”;a,b
IF a>b THEN
x=a
a=b
b=x
END IF
PRINT a,b
END
知识探究(二):条件语句(2)
思考1:下图是算法的条件结构用程序框图表示的另一种形式,它对应的条件语句的一般格式设定为:
你能理解这个算法语句的含义吗?
当计算机执行上述语句时,首先对 ,如果(IF)条件符合,那么(THEN)执行 ,否则(ELSE)执行 。
思考2:求实数x的绝对值又有如下一个算法: 第一步,输入一个实数x.
第二步,判断x的符号.若x≥0,则输出x;否则,输出-x.
该算法的程序框图如何表示?
思考3:你能写出这个算法对应的程序吗?
思考4:阅读下面的程序,你能说明它是一个什么问题的算法吗?

理论迁移
例1 将下列解一元二次方程的程序框图转化为程序.
(注:SQR()是一个函数,用来求某个数的平方根。即 )
例2 编写程序,使任意输入的3个整数按从大到小的顺序输出.
算法分析: 算法分析:用a,b,c表示输入的3个整数;为了节约变量,把它们重新排列后,仍用a,b,c表示,并使a≥b≥c。
第一步,输入3个整数a,b,c.
第二步,将a与b比较,并把小者赋给b,大者赋给a.
第三步,将a与c比较,
第四步,将b与c比较,
第五步,按顺序输出a,b,c.
程序框图为:
程序为:
目标检测
1、当=3时, 第1题程序段输出的结果是 。
2、 第2 题程序运行后输出结果是______。
3、参看课本29页练习第2题的程序:
若输入的数字是“37”,则输出的结果是____。
4、第4题程序运行后输出结果是 。
5、已知= 编写一个程序,对每输入的一个值,都得到相应的函数值。
6、编写程序,判断一个整数是偶数还是奇数,即从键盘上输入一个整数,输出该数的奇偶性。
7、闰年是指年份能被4整除但不能被100整除,或者能被400整除的年份。编写一个程序,判断输入的年份是否为闰年。
8、儿童乘坐火车时,若身高不超过1.1,则不需要买票;若身高超过1.1但不超过1.4,则需买半票;若身高超过1.4,则需买全票.试设计一个买票的算法的程序。
纠错矫正
总结反思
条件语句一般用在需要对条件进行判断的算法设计中,如判断一个数的正负,确定两个数的大小等问题,还有求分段函数的函数值等,往往要用条件语句,有时甚至要用到条件语句的嵌套。
※自我评价( )
A、课前自主学习认真,学案完成很好;
你真棒,继续坚持。
B、课前自主学习一般,学案完成良好;
下次争取做的更好。
C、课前自主学习较差,学案空白较多;
注意学习方法,提高学习效率。
满足条件?
步骤A


满足条件?
步骤1
步骤2


INPUT “x=”;x
IF x>=1 THEN
y=x∧2+3*x
ELSE
y=x-4
END IF
END
PRINT y
开始
输入a,b,c
△= b2-4ac
△≥0?
△=0?

x1=p+q
输出x1,x2
结束


x2=p-q
输出x1=x2=p

输出“方程没有实数根”
=5
=-20
IF <0 THEN
=-3
ELSE
=+3
END IF
PRINT -,+
END
第2 题程序
IF a<10 THEN
y=2*a
ELSE
y=a*a
END IF
PRINT y
END
第1题
IF a<=6 THEN
PRINT 6
END IF
END
第4 题程序
A=5
IF a<=3 THEN
PRINT 3
END IF
IF a<=4 THEN
PRINT 4
END IF
IF a<=5 THEN
PRINT 5
END IF
PAGE
1§2.2.1用样本的频率分布估计总体分布
学习目标
(1) 通过实例体会分布的意义和作用。
(2)在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
(3)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。
重点难点
重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图。
难点:能通过样本的频率分布估计总体的分布
学法指导
通过对现实生活的探究,感知应用数学知识解决问题的方法,理解数形结合的数学思想和逻辑推理的数学方法。
知识链接
简单随机抽样、系统抽样和分层抽样常用方法及其操作步骤。
问题探究
一、情景设置:
在NBA的2004赛季中,甲、乙两名篮球运动员每场比赛得分的原始记录如下﹕
甲运动员得分﹕12,15,20,25,31,31,36,36,37,39,44,49,50
乙运动员得分﹕8,13,14,16,23,26,28,38,39,51,31,29,33
请问从上面的数据中你能否看出甲,乙两名运动员哪一位发挥比较稳定?
如何根据这些数据作出正确的判断呢?这就是我们这堂课要研究、学习的主要内容——用样本的频率分布估计总体分布。
二、探究新知:
知识探究(一):频率分布表
问题:我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.通过抽样调查,获得100位居民2007年的月均用水量如下表(单位:t):
分 组 频数累计 频数 频率
[0,0.5)
[0.5,1)
[1,1.5)
[1.5,2)
[2,2.5)
[2.5,3)
[3,3.5)
[3.5,4)
[4,4.5]
合计
3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.6
3.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.4
3.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.8
3.3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6 4.1
3.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.3
3.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.0
2.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.3
2.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.4
2.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.4
2.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.2
思考1:上述100个数据中的最大值和最小值分别是什么?由此说明样本数据的变化范围是什么?
思考2:样本数据中的最大值和最小值的差称为极差.如果将上述100个数据按组距为0.5进行分组,那么这些数据共分为多少组?
思考3:以组距为0.5进行分组,上述100个数据共分为9组,各组数据的取值范围可以如何设定?
思考4:如何统计上述100个数据在各组中的频数?如何计算样本数据在各组中的频率?你能将这些数据用表格反映出来吗?
思考5:上表称为样本数据的频率分布表,由此可以推测该市全体居民月均用水量分布的大致情况,给市政府确定居民月用水量标准提供参考依据,这里体现了一种什么统计思想?
思考6:如果市政府希望85%左右的居民每月的用水量不超过标准,根据上述频率分布表,你对制定居民月用水量标准(即a的取值)有何建议?
思考7:在实际中,取a=3t一定能保证85%以上的居民用水不超标吗?哪些环节可能会导致结论出现偏差?
思考8:对样本数据进行分组,其组数是由哪些因素确定的?
思考9:当样本容量不超过100时,按照数据的多少,常分成5~12组.若以0.1或1.5为组距对上述100个样本数据分组合适吗?
思考10:一般地,列出一组样本数据的频率分布表可以分哪几个步骤进行?
知识探究(二):频率分布直方图
为了直观反映样本数据在各组中的分布情况,我们将上述频率分布表中的有关信息用下面的频率分布直方图(参考课本67页图2.2-1)表示。
思考1:频率分布直方图中各小长方形的和高度在数量上有何特点?
思考2:频率分布直方图中各小长方形的面积表示什么?各小长方形的面积之和为多少?
思考3:频率分布直方图非常直观地表明了样本数据的分布情况,使我们能够看到频率分布表中看不太清楚的数据模式,但原始数据不能在图中表示出来.你能根据上述频率分布直方图指出居民月均用水量的一些数据特点吗?
思考4:样本数据的频率分布直方图是根据频率分布表画出来的,一般地,频率分布直方图的作图步骤如何?
思考5:对一组给定的样本数据,频率分布直方图的外观形状与哪些因素有关?在居民月均用水量样本中,请你以0.1和1为组距画频率分布直方图,然后谈谈你对图的印象?
例 某地区为了了解知识分子的年龄结构,
随机抽样50名,其年龄分别如下:
42,38,29,36,41,43,54,43,34,44,
40,59,39,42,44,50,37,44,45,29,
48,45,53,48,37,28,46,50,37,44,
42,39,51,52,62,47,59,46,45,67,
53,49,65,47,54,63,57,43,46,58.
(1)列出样本频率分布表;
(2)画出频率分布直方图;
(3)估计年龄在32~52岁的知识分子所占的比例约是多少.
探究(三):频率分布折线图与总体密度曲线
思考1:在城市居民月均用水量样本数据的频率分布直方图中,各组数据的平均值大致是哪些数?
思考2:在频率分布直方图中,依次连接各小长方形上端的中点,就得到一条折线,这条折线称为频率分布折线图. 你认为频率分布折线图能大致反映样本数据的频率分布吗?(参考课本69页图2.2-2,并在学案上画出此图)
思考3:当总体中的个体数很多时(如抽样调查全国城市居民月均用水量),随着样本容量的增加,作图时所分的组数增多,组距减少,你能想象出相应的频率分布折线图会发生什么变化吗?(参考课本69页图2.2-3)
思考4:在上述背景下,相应的频率分布折线图越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.那么图中阴影部分的面积有何实际意义?
思考5:当总体中的个体数比较少或样本数据不密集时,是否存在总体密度曲线?为什么?
思考6:对于一个总体,如果存在总体密度曲线,这条曲线是否惟一?能否通过样本数据准确地画出总体密度曲线?
探究(四):茎叶图
频率分布表、频率分布直方图和折线图的主要作用是表示样本数据的分布情况,此外,我们还可以用茎叶图来表示样本数据的分布情况.
【问题】 某赛季甲、乙两名篮球运动员每场比赛的得分情况如下:
甲运动员得分:13,51,23,8,26,38,16,33,14,28,39;
乙运动员得分:49,24,12,31,50,31,44,36,15,37,25,36,39.
助教在比赛中将这些数据记录为如下形式:
思考1:你能理解这个图是如何记录这些数据的吗?你能通过该图说明哪个运动员的发挥更稳定吗?
思考2:在统计中,上图叫做茎叶图,它也是表示样本数据分布情况的一种方法,其中“茎”指的是哪些数,“叶”指的是哪些数?
思考3:对于样本数据:3.1,2.5,2.0,0.8,1.5,1.0,4.3,2.7,3.1,3.5,用茎叶图如何表示?
思考4:一般地,画出一组样本数据的茎叶图的步骤如何?
思考5:用茎叶图表示数据的分布情况是一种好方法,你认为茎叶图有哪些优点?
思考6:比较茎叶图和频率分布表,茎叶图中“茎”和“叶”的数目分别与频率分布表中哪些数目相当?
思考7:对任意一组样本数据,是否都适合用茎叶图表示?为什么?


8
4 6 3
3 6 8
3 8 9
1
012345
2 5
5 4
1 6 1 6 7 9
4 9
0

PAGE
1§3.2.2 (整数值)随机数(randon numbers)的产生
学习目标
让学生学会用计算机产生随机数.
重点难点
重点: 理解古典概型及其概率计算公式.
难点: 设计和运用模拟方法近似计算概率.
学法指导
1.用计算机或计算器产生的随机数,是依照确定的算法产生的数,具有周期性(周期很长),这些数有类似随机数的性质,但不是真正意义上的随机数,称为伪随机数.
2.随机模拟方法是通过将一次试验所有等可能发生的结果数字化,由计算机或计算器产生的随机数,来替代每次试验的结果,其基本思想是用产生整数值随机数的频率估计事件发生的概率,这是一种简单、实用的科研方法,在实践中
有着广泛的应用.
知识链接
古典概型的概念、意义和基本性质
问题探究
【创设情境】
通过大量重复试验,反复计算事件发生的频率,再由频率的稳定值估计概率,是十分费时的.对于实践中大量(非)古典概型的事件概率,又缺乏相关原理和公式求解.因此,我们设想通过计算机模拟试验解决这些矛盾.
【探究新知】(一):随机数的产生
思考1:对于某个指定范围内的整数,每次从中有放回随机取出的一个数都称为随机数. 那么你有什么办法产生1~20之间的随机数 .
思考2:随机数表中的数是0~9之间的随机数,你有什么办法得到随机数表?
方法一:我们可以利用计算器产生随机数,其操作方法见教材P130及计算器使用说明书.
方法二:我们也可以利用计算机产生随机数,
用Excel演示:
(1)选定Al格,键人___ ___ ,按Enter键,则在此格中的数是随机产生数;
(2)选定Al格,点击复制,然后选定要产生随机数的格,比如A2至A100,点击粘贴,则在A1至A100的数均为随机产生的0~9之间的数,这样我们就很快就得到了100个0~9之间的随机数,相当于做了100次随机试验.
思考3:若抛掷一枚均匀的骰子30次,如果没有骰子,你有什么办法得到试验的结果?
思考5:一般地,如果一个古典概型的基本事件总数为n,在没有试验条件的情况下,你有什么办法进行m次实验,并得到相应的试验结果?
将n个基本事件编号为1,2,…,n,由计算器或计算机产生m个1~n之间的随机数.
【探究新知】(二):随机模拟方法
思考1:对于古典概型,我们可以将随机试验中所有基本事件进行编号,利用计算器或计算机产生随机数,从而获得试验结果.这种用计算器或计算机模拟试验的方法,称为随机模拟方法或蒙特卡罗方法(Monte Carlo).你认为这种方法的最大优点是什么?
思考2:用随机模拟方法抛掷一枚均匀的硬币100次,那么如何统计这100次试验中“出现正面朝上”的频数和频率.
除了计数统计外,我们也可以利用计算机统计频数和频率,用Excel演示:
(1)选定C1格,键人频数函数___ ___ ___ ___ ,按Enter键,则此格中的数是统计Al至Al00中比0.5小的数的个数,即0出现的频数,也就是反面朝上的频数;
(2)选定Dl格,键人“=1-C1/1OO”,按Enter键,在此格中的数是这100次试验中出现1的频率,即正面朝上的频率.
思考3:把抛掷两枚均匀的硬币作为一次试验,则一次试验中基本事件的总数为多少?若把这些基本事件数字化,可以怎样设置?
可以用0表示第一枚出现正面,第二枚出现反面,1表示第一枚出现反面,第二枚出现正面,2表示两枚都出现正面,3表示两枚都出现反面.
【知识迁移】
例 天气预报说,在今后的三天中,每一天下雨的概率均为40%,用随机模拟方法估计这三天中恰有两天下雨的概率约是多少?
要点分析:
(1)设计模型:今后三天的天气状况是随机的,共有四种可能结果,每个结果的出现不是等可能的.用数字1,2,3,4表示下雨,数字5,6,7,8,9,0表示不下雨,体现下雨的概率是40%.
(2)模拟试验:用计算机产生三组随机数,代表三天的天气状况.产生30组随机数,相当于做30次重复试验.
(3)统计试验结果:以其中表示恰有两天下雨的随机数的频率作为这三天中恰有两天下雨的概率的近似值. Excel演示.
事实上,高二学习了有关概率原理(二项分布)后易知,这三天中恰有两天下雨的概率
.
练习 某篮球爱好者,做投篮练习,假设其每次投篮命中的概率是40%,那么在连续三次投篮中,恰有两次投中的概率是多少?
分析:其投篮的可能结果有有限个,但是每个结果的出现不是等可能的,所以不能用古典概型的概率公式计算,我们用计算机或计算器做模拟试验可以模拟投篮命中的概率为40%。
小结:(1)利用计算机或计算器做随机模拟试验,可以解决非古典概型的概率的求解问题。
(2)对于上述试验,如果亲手做大量重复试验的话,花费的时间太多,因此利用计算机或计算器做随机模拟试验可以大大节省时间。(3)随机函数RANDBETWEEN(a,b)产生从整数a到整数b的取整数值的随机数。
【例题荟萃】
例1 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、得到黄球、得到绿球的概率各是多少?
分析:利用方程的思想及互斥事件、对立事件的概率公式求解.
例2已知关于x的一元二次方程,其系数可以分别在1,2,5三个数中任意取值,求该方程有实数根的概率.
例3 有1号、2号、3号3个信箱和A、B、C、D四个信封,若四个信封可以任意投入信箱,投完为至.求信封A投入1号或2号信箱的概率.
分析:由于每个信封可以任意投入信箱,对于A信封投入各个信箱的可能性相等,这是古典概型问题.
目标检测
1.下列每对事件是互斥事件的个数 (  )                   
(1)将一枚均匀的硬币抛2次, 记事件A:两次出现正面;
事件B:只有一次出现正面.
(2)某人射击一次,记事件A:中靶;事件B:射中9环.
(3)某人射击一次,记事件A:射中环数大于5;事件B:射中环数小于5.
 A.0个 B.1个 C.2个 D.3个
2.用1,2,3组成无重复数字的三位数,求 这些数被2整除的概率为 ( )
A. B. C. D.
3.从一个不透明的口袋中摸出红球的概率为,已知袋中红球有3个,则袋中共有质地相同但颜色不同的球的个数为( ) A. 5 B. 8 C. 10 D.15
4.房间里有四个人,至少有两个人的生日是同一个月的概率是 ( )
A. B. C. D.
5.在由1、2、3组成的不多于三位 的自然数(可以有重复数字)中任意取一个,正好抽出两位自然数的概率是 ( )
A. B. C. D.
6.一批零件共有10个,其中8个正品,2个次品,每次任取一个零件装配机器,若第二次取到合格品的概率为,第三次取到合格品的概率为,则 ( )
A. > B. =
C. < D. 二者大小关系不确定
7.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 。
8.在10000张有奖储蓄的奖券中,设有1个一等奖,5个二等奖,10个三等奖,从中买1张奖券,求:
⑴分别获得一等奖、二等奖、在三等奖的概率;
⑵中奖的概率.
纠错矫正
总结反思
PAGE
13. 2.1古典概型
【教学目标】
1.能说出古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;
2.会应用古典概型的概率计算公式:P(A)=
3.会叙述求古典概型的步骤;
【教学重难点】
教学重点:正确理解掌握古典概型及其概率公式
教学难点:会用列举法计算一些随机事件所含的基本事件数及事件发生的概率
【教学过程】
前置测评
1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间
的运算包括和事件、积事件,这些概念的含义分别如何?
若事件A发生时事件B一定发生,则 .
若事件A发生时事件B一定发生,反之亦然,则A=B.若事件A与事件B不同时发
生,则A与B互斥.若事件A与事件B有且只有一个发生,则A与B相互对立.
2。概率的加法公式是什么?对立事件的概率有什么关系?
若事件A与事件B互斥,则 P(A+B)=P(A)+P(B).
若事件A与事件B相互对立,则 P(A)+P(B)=1.
3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.
新知探究
我们再来分析事件的构成,考察两个试验:
(1)掷一枚质地均匀的硬币的试验。
(2)掷一枚质地均匀的骰子的试验。
有哪几种可能结果?
在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中所有可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事件。我们把这类随机事件称为基本事件
综上分析,基本事件有哪两个特征?
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表示成基本事件的和.
例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?
分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来。
解:所求的基本事件有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};A+B+C.
上述试验和例1的共同特点是:
(1)试验中有可能出现的基本事件只有有限个;
(2)每个基本事件出现的可能性相等,
这有我们将具有这两个特点的概率模型称为古典概率模型
思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?
思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗?
思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?无数个
思考4:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点” 的概率如何计算?
思考5:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?
P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;
P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数.
思考6:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?
P(A)=事件A所包含的基本事件的个数÷基本事件的总数
典型例题
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,即基本事件共有4个,考生随机地选择一个答案是指选择A,B,C,D的可能性是相等的。
由古典概型的概率计算公式得P(“答对”)=1/4=0.25
点评:在4个答案中随机地选一个符合了古典概型的特点。
变式训练:在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有的正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?
例3 同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
解:(1)掷一个骰子的结果有6种。把两个骰子标上记号1,2以便区分,由于1号投骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种。
(2)在上面的所有结果中,向上点数和为5的结果有如下4种
(1,4),(2,3),(3,2),(4,1)
(3)由古典概型概率计算公式得
P(“向上点数之和为5”)=4/36=1/9
点评:通过本题理解掷两颗骰子共有36种结果
变式训练:一枚骰子抛两次,第一次的点数记为m ,第二次的点数记为n ,计算m-n<2的概率。
例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
解:一个密码相当于一个基本事件,总共有10000个基本事件,它们分别是0000,0001,0002,…
9998,9999。随机地试密码,相当于试到任何一个密码的可能性都时相等的,所以这是一个古典概型。事件“试一次密码就能取到钱”有一个基本事件构成,即由正确的密码构成。所以
P(“试一次密码就能取到钱”)=1/10000
点评:这是一个小概率事件在实际生活中的应用。
变式训练:在所有首位不为0的八位电话号码中,任取一个号码。求:头两位数码都是8的概率。
例5 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.
解:合格的4听分别记作:1,2,3,4,不合格的2听分别记作:a.,b,只要检测的2听有1听不合格的,就表示查处了不合格产品。
依次不放回的取2听饮料共有如下30个基本事件:
(1,2),(1,3),(1,4),(1,a),(1,b),(2,1),(2,3),(2,4),(2,a),(2,b),(3,1),(3,2),(3,4),(3,a),(3,b),(4,1),(4,2),(4,3),(4,a),(4,b),(a,1),(a,2),(a,3),(a,4),(a,b),(b,1),(b,2),(b,3),(b,4),(b,a)
P(“含有不合格产品”)=18/30=0.6
点评:本题的关键是对依次不放回抽取总共列多少基本事件的考查。
变式训练:
一个盒子里装有标号为1,2,3,4,5的5张标签,根据下列条件求两张标签上的数字为相邻整数的概率:
标签的选取是无放回的:
标签的选取是有放回的:
归纳小结
1.基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A可以是基本事件,也可以是有几个基本事件组合而成的.
2.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数÷基本事件的总数,只对古典概型适用
反馈测评
1.在20瓶饮料中,有2瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?
2.在夏令营的7名成员中,有3名同学已去过北京。从这7名同学中任取两名同学,选出的这两名同学恰是已去过北京的概率是多少?
3.5本不同的语文书,4本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率为多少?
〖板书设计〗
〖书面作业〗
课本P134,A组4,5,6 B组2
3.2.1古典概型
课前预习学案
一、预习目标:
通过实例,初步理解古典概型及其概率计算公式
二、预习内容:
1、知识回顾:
(1)随机事件的概念
①必然事件:每一次试验 的事件,叫必然事件;
②不可能事件:任何一次试验 的事件,叫不可能事件;
③随机事件:随机试验的每一种 或随机现象的每一种 叫的随机事件,简称为事件.
(2)事件的关系
①如果A B为不可能事件(A B ), 那么称事件A与事件B互斥.
其含意是: 事件A与事件B在任何一次实验中 同时发生.
②如果A B为不可能事件,且A B为必然事件,那么称事件A与事件B互为对立事件.其含意是: 事件A与事件B在任何一次实验中 发生.
2. 基本事件的概念: 一个事件如果 事件,就称作基本事件.
基本事件的两个特点: 10.任何两个基本事件是 的;
20.任何一个事件(除不可能事件)都可以 .
例如(1) 试验②中,随机事件“出现偶数点”可表示为基本事件 的和.
(2) 从字母中, 任意取出两个不同字母的这一试验中,
所有的基本事件是: ,共有 个基本事件.
3. 古典概型的定义
古典概型有两个特征:
10.试验中所有可能出现的基本事件 ;
20.各基本事件的出现是 ,即它们发生的概率相同.
将具有这两个特征的概率模型称为古典概型(classical models of probability).
4.古典概型的概率公式, 设一试验有n个等可能的基本事件,而事件A恰包含其中的m个
基本事件,则事件A的概率P(A)定义为:
例如
随机事件A =“出现偶数点”包含有 基本事件.所以
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标:
1. 通过实例,叙述古典概型定义及其概率计算公式;
2. 会用列举法计算一些随机事件所含的基本事件数及事件发生的概率
二、学习内容
1.古典概型的定义
思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?
思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗?
思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?无数个
结论:如果一次试验中所有可能出现的基本事件只有有限个(有限性),且每个基本事件出现的可能性相等(等可能性),则具有这两个特点的概率模型称为古典概型.
2. 古典概型的概率计算公式
思考4:随机抛掷一枚质地均匀的骰子是古典概型吗?每个基本事件出现的概率是多少?你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?
P(“1点”)= P(“2点”)= P(“3点”)= P(“4点”)=P(“5点”)= P(“6点”)
P(“1点”)+P(“2点”)+ P(“3点”)+ P(“4点”)+P(“5点”)+ P(“6点”)=1.
思考5:一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验
中发生的概率为多少?
思考6:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点” 的概率如何计算?
思考7:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?
P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;
P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数.
思考8:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?
3.典型例题
例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?
例3 同时掷两个骰子,计算:
(1)一共有多少种不同的结果?
(2)其中向上的点数之和是5的结果有多少种?
(3)向上的点数之和是5的概率是多少?
例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?
例5 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.
三、反思总结
1.基本事件是一次试验中所有可能出现的最小事件,且这些事件彼此互斥.试验中的事件A可以是基本事件,也可以是有几个基本事件组合而成的.
2.有限性和等可能性是古典概型的两个本质特点,概率计算公式P(A)=事件A所包含的基本事件的个数÷基本事件的总数,只对古典概型适用
四、当堂检测
1.在20瓶饮料中,有2瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?
2.在夏令营的7名成员中,有3名同学已去过北京。从这7名同学中任取两名同学,选出的这两名同学恰是已去过北京的概率是多少?
3.5本不同的语文书,4本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率为多少?
课后练习与提高
1.从一副扑克牌(54张)中抽一张牌,抽到牌“K”的概率是 。
2.将一枚硬币抛两次,恰好出现一次正面的概率是 。
3.一个口袋里装有2个白球和2个黑球,这4 个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是 。
4.先后抛3枚均匀的硬币,至少出现一次正面的概率为 。
5.口袋里装有两个白球和两个黑球,这四个球除颜色外完全相同,四个人按顺序依次从中摸出一球,试求“第二个人摸到白球”的概率。
6.袋中有红、白色球各一个,每次任取一个,有放回地抽三次,写出所有的基本事件,并计算下列事件的概率:(1)三次颜色恰有两次同色; (2)三次颜色全相同;
(3)三次抽取的球中红色球出现的次数多于白色球出现的次数。
7 .从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概
参考答案:
1、答案: 2、答案: 3、答案: 4、答案:
从上面的树形图可以看出,试验的所有可能结果数为24,第二人摸到白球的结果有12种,记“第二个人摸到白球”为事件A,则。
6、答案:(红红红)(红红白)(红白红)(白红红)(红白白)(白红白)(白白红)(白白白)
(1) (2) (3)
7、解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产用A表示“取出的两种中,恰好有一件次品”这一事件,则
A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]事件A由4个基本事件组成,因而,P(A)==
一、古典概型的特点
1
2
二古典概型的定义
三、公式
四、求古典概型概率的步骤、
例1………
探究
例2………
随堂练习
PAGE
2§1.1.2程序框图与算法的基本逻辑结构(三)
学习目标
通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。
重点难点
重点:教学综合运用框图知识正确地画出程序框图
难点:教学综合运用框图知识正确地画出程序框图
学法指导
设计一个算法的程序框图的基本思路:
第一步,用自然语言表述算法步骤.
第二步,确定每个算法步骤所包含的逻 辑结构,并用相应的程序框图表示.
第三步,将所有步骤的程序框图用流程 线连接起来,并加上两个终端框.
知识链接
算法的三个基本逻辑结构。
问题探究
问题提出:
1.算法的基本逻辑结构有哪几种?用程序框图分别如何表示?
2.在学习上,我们要求对实际问题能用自然语言设计一个算法,再根据算法的逻辑结构画出程序框图,同时,还要能够正确阅读、理解程序框图所描述的算法的含义,这需要我们对程序框图的画法有进一步的理解和认识.
知识探究(一):多重条件结构的程序框图
思考1:解关于的方程的算法步骤如何设计?
(注意要对分别进行讨论,)
第一步,输入实数
第二步,判断是否为0. 若是,执行第三步;否则,
第三步,判断是否为0.若是,则输出“ ”;否则,输出“ ”.
思考2:该算法的程序框图如何表示?
思考3:你能画出求分段函数
的值的程序框图吗?
知识探究(二):混合逻辑结构的程序框图
思考1:用“二分法”求方程 的近似解的算法如何设计?
第一步,令,给定精确度.
第二步,确定区间 ,满足 。
第三步,取区间中点 。
第四步,若,则则含零点的区间为 ,否则,含零点的区间为 ,将新得到的含零点的区间仍记为 。
第五步,判断的长度是否
或是否 . 则是方程的近似解;否则,返回第三步.
思考2:该算法中哪几个步骤可以用顺序结构来表示?这个顺序结构的程序框图如何?
思考3:该算法中第四步是什么逻辑结构?这个步骤用程序框图如何表示?
思考4:该算法中哪几个步骤构成循环结构?这个循环结构用程序框图如何表示?
思考5:根据上述分析,你能画出表示整个算法的程序框图吗?
知识探究(三):程序框图的阅读与理解
考察下列程序框图:
思考1:怎样理解该程序框图中包含的逻辑结构?
思考2:该程序框图中的循环结构属于那种类型?
思考3:该程序框图反映的实际问题是什么?
理论迁移
例 画出求三个不同实数中的最大值的程序框图.
目标检测
1、如果学生的成绩大于或等于60分,则输出“及格”,否则输出“不及格”.用程序框图表示这一算法过程.
2、写出按从小到大的顺序重新排列三个数值的算法.
3、火车站对乘客退票收取一定的费用,具体办法是:按票价每10元(不足10元按10元计算)核收2元;2元以下的票不退.试写出票价为x元的车票退掉后,返还的金额y元的算法的程序框图.
总结反思
纠错矫正
※自我评价( )
A、课前自主学习认真,学案完成很好;
你真棒,继续坚持。
B、课前自主学习一般,学案完成良好;
下次争取做的更好。
C、课前自主学习较差,学案空白较多;
注意学习方法,提高学习效率。
开始
S=S-n×n
S=S+n×n
n=n+1



是偶数
n≤100?

输出S
结束
PAGE
1