高中数学必修4人教A:全册〖精品〗教案+导学案(85份)

文档属性

名称 高中数学必修4人教A:全册〖精品〗教案+导学案(85份)
格式 zip
文件大小 5.3MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2013-11-07 20:15:05

文档简介

1.4.2(2)正弦、余弦函数的性质(二)
教学目的:
知识目标:要求学生能理解三角函数的奇、偶性和单调性;
能力目标:掌握正、余弦函数的奇、偶性的判断,并能求出正、余弦函数的单调区间。
德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。
教学重点:正、余弦函数的奇、偶性和单调性;
教学难点:正、余弦函数奇、偶性和单调性的理解与应用
教学过程:
复习引入:偶函数、奇函数的定义,反映在图象上,说明函数的图象有怎样的对称性呢?
二、讲解新课:
奇偶性
请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么?
(1)余弦函数的图形
当自变量取一对相反数时,函数y取同一值。
例如:f(-)=,f()= ,即f(-)=f();…… 由于cos(-x)=cosx ∴f(-x)= f(x).
以上情况反映在图象上就是:如果点(x,y)是函数y=cosx的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=cosx的图象上,这时,我们说函数y=cosx是偶函数。
(2)正弦函数的图形
观察函数y=sinx的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?
这个事实反映在图象上,说明函数的图象有怎样的对称性呢?函数的图象关于原点对称。
也就是说,如果点(x,y)是函数y=sinx的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=sinx的图象上,这时,我们说函数y=sinx是奇函数。
2.单调性
从y=sinx,x∈[-]的图象上可看出:
当x∈[-,]时,曲线逐渐上升,sinx的值由-1增大到1.
当x∈[,]时,曲线逐渐下降,sinx的值由1减小到-1.
结合上述周期性可知:
正弦函数在每一个闭区间[-+2kπ,+2kπ](k∈Z)上都是增函数,其值从-1增大到1;在每一个闭区间[+2kπ,+2kπ](k∈Z)上都是减函数,其值从1减小到-1.
余弦函数在每一个闭区间[(2k-1)π,2kπ](k∈Z)上都是增函数,其值从-1增加到1;
在每一个闭区间[2kπ,(2k+1)π](k∈Z)上都是减函数,其值从1减小到-1.
3.有关对称轴
观察正、余弦函数的图形,可知
y=sinx的对称轴为x= k∈Z y=cosx的对称轴为x= k∈Z
练习1。(1)写出函数的对称轴;
(2)的一条对称轴是( C )
(A) x轴, (B) y轴, (C) 直线, (D) 直线
思考:P46面11题。
4.例题讲解
例1 判断下列函数的奇偶性
(1) (2)
例2 函数f(x)=sinx图象的对称轴是 ;对称中心是 .
例3.P38面例3
例4 不通过求值,指出下列各式大于0还是小于0;
① ②
例5 求函数 的单调递增区间;
思考:你能求的单调递增区间吗?
练习2:P40面的练习
三、小 结:本节课学习了以下内容:正弦、余弦函数的性质
1. 单调性
2. 奇偶性
3. 周期性
五、课后作业:《习案》作业十。
PAGE
21.1.1 任意角
教学目标
知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念.
过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.
情感与态度目标
提高学生的推理能力;  2.培养学生应用意识.
教学重点
任意角概念的理解;区间角的集合的书写.
教学难点
终边相同角的集合的表示;区间角的集合的书写.
教学过程
一、引入:
1.回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角.
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
二、新课:
1.角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
③角的分类:
④注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角.
⑤练习:请说出角α、β、γ各是多少度
2.象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
例1.如图⑴⑵中的角分别属于第几象限角?
例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.
⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分别为1、2、3、4、1、2象限角.
3.探究:教材P3面
终边相同的角的表示:
所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α + k·360 ° ,
k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.
注意:
⑴ k∈Z
⑵ α是任一角;
⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差
360°的整数倍;
⑷ 角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有角.
例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.
⑴-120°;⑵640 °;⑶-950°12'.
答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;
例4.写出终边在y轴上的角的集合(用0°到360°的角表示) .
解:{α | α = 90°+ n·180°,n∈Z}.
例5.写出终边在上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.
4.课堂小结
①角的定义;
②角的分类:
③象限角;
④终边相同的角的表示法.
5.课后作业:
①阅读教材P2-P5;  ②教材P5练习第1-5题;  ③教材P.9习题1.1第1、2、3题
思考题:已知α角是第三象限角,则2α,各是第几象限角?
解:角属于第三象限,
k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)
即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或终边在y轴的非负半轴上的角.
又k·180°+90°<<k·180°+135°(k∈Z) .
当k为偶数时,令k=2n(n∈Z),则n·360°+90°<<n·360°+135°(n∈Z) ,
此时,属于第二象限角
当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<<n·360°+315°(n∈Z) ,
此时,属于第四象限角
因此属于第二或第四象限角.
始边
终边
顶点
A
O
B
负角:按顺时针方向旋转形成的角
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角

B1
y

O
x
45°
B2
O
x
B3
y
30°
60o
负角:按顺时针方向旋转形成的角
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
PAGE
13. 2 简单的三角恒等变换
【教学目标】
会用已学公式进行三角函数式的化简、求值和证明,引导学生推导半角公式,积化和差、
和差化积公式(公式不要求记忆),使学生进一步提高运用转化、换元、方程等数学思想解决问题的能力。
【教学重点、难点】
教学重点:引导学生以已有公式为依据,以推导半角公式,积化和差、和差化积公式作为基本训练,学习三角变换的内容、思路和方法,体会三角变换的特点,提高推理、运算能力。
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。
【教学过程】
复习引入:复习倍角公式、、
先让学生默写三个倍角公式,注意等号两边角的关系,特别注意。既然能用单角
表示倍角,那么能否用倍角表示单角呢?
半角公式的推导及理解 :
试以表示.
解析:我们可以通过二倍角和来做此题.(二倍角公式中以代2,代)
解:因为,可以得到;
因为,可以得到.
两式相除可以得到.
点评:⑴以上结果还可以表示为:
并称之为半角公式(不要求记忆),符号由角的象限决定。
⑵降倍升幂公式和降幂升倍公式被广泛用于三角函数式的化简、求值、证明。
⑶代数式变换往往着眼于式子结构形式的变换,三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系他们的适当公式,这是三角式恒等变换的重要特点。
变式训练1:求证
积化和差、和差化积公式的推导(公式不要求记忆):
例2:求证:
(1);
(2).
解析:回忆并写出两角和与两角差的正余弦公式,观察公式与所证式子的联系。
证明:(1)因为和是我们所学习过的知识,因此我们从等式右边着手.
;.
两式相加得;
即;
(2)由(1)得①;设,
那么.
把的值代入①式中得.
点评:在例2证明中用到了换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.
变式训练2:课本p142 2(2)、3(3)
例3、求函数的周期,最大值和最小值.
解析:利用三角恒等变换,先把函数式化简,再求相应的值。
解: ,
所以,所求的周期,最大值为2,最小值为.
点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.
变式训练3:课本p142 4、(1)(2)(3)
探究:求y=asinx+bcosx的周期,最大值和最小值.
小结:我们要对三角恒等变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.
作业布置:课本p143 习题3.2 A组1、(1)(5) 3 、5
3.2 简单的三角恒等变换(导学案)
课前预习学案
一、预习目标:回顾复习两角和与差的正弦、余弦和正切公式及二倍角公式,预习简单的三角恒等变换。
二、预习内容:
1、回顾复习以下公式并填空:
Cos(α+β)= Cos(α-β)=
sin(α+β)= sin(α-β)=
tan(α+β)= tan(α-β)=
sin2α= tan2α=
cos2α=
2、阅看课本P139---141例1、2、3。
三、提出疑惑:
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标:会用已学公式进行三角函数式的化简、求值和证明,会推导半角公式,积化和差、和差化积公式(公式不要求记忆),进一步提高运用转化、换元、方程等数学思想解决问题的能力。
学习重点:以已有公式为依据,以推导半角公式,积化和差、和差化积公式作为基本训练,学习三角变换的内容、思路和方法,体会三角变换的特点,提高推理、运算能力。
学习难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。
二、学习过程:
探究一:半角公式的推导(例1)
请同学们阅看例1,思考以下问题,并进行小组讨论。
1、2α与α有什么关系?α与α/2有什么关系?进一步体会二倍角公式和半角公式的应用。
2、半角公式中的符号如何确定?
3、二倍角公式和半角公式有什么联系?
4、代数变换与三角变换有什么不同?
探究二:半角公式的推导(例2)
请同学们阅看例2,思考以下问题,并进行小组讨论。
1、两角和与差的正弦、余弦公式两边有什么特点?它们与例2在结构形式上有什么联系?
2、在例2证明过程中,如果不用(1)的结果,如何证明(2)?
3、在例2证明过程中,体现了什么数学思想方法?
探究三:三角函数式的变换(例3)
请同学们阅看例1,思考以下问题,并进行小组讨论。
1、例3的过程中应用了哪些公式?
2、如何将形如y=asinx+bcosx的函数转化为形如y=Asin(ωx+φ)的函数?并求y=asinx+bcosx的周期,最大值和最小值.
三、反思、总结、归纳:
sinα/2= cosα/2= tanα/2=
sinαcosβ= cosαsinβ=
cosαcosβ= sinαsinβ=
sinθ+sinφ= sinθ-sinφ=
cosθ+cosφ= cosθ-cosφ=
四、当堂检测:
课本p143 习题3.2 A组1、(3)(7)2、(1)B组2
课后练习与提高
一、选择题:
1.已知cos(α+β)cos(α-β)=,则cos2α-sin2β的值为( )
A.- B.- C. D.
2.在△ABC中,若sinAsinB=cos2,则△ABC是( )
A.等边三角形 B.等腰三角形
C.不等边三角形 D.直角三角形
3.sinα+sinβ=(cosβ-cosα),且α∈(0,π),β∈(0,π),则α-β等于( )
A.- B.- C. D.
二、填空题
4.sin20°cos70°+sin10°sin50°=_________.
5.已知α-β=,且cosα+cosβ=,则cos(α+β)等于_________.
三、解答题
6.已知f(x)=-+,x∈(0,π).
(1)将f(x)表示成cosx的多项式;
(2)求f(x)的最小值.1. 2.2同角三角函数的基本关系
班级 姓名
【教学目标】
掌握同角三角函数的基本关系式.
能用同角三角函数的基本关系式化简或证明三角函数的恒等式
【教学重点】
三角函数式的化简或证明
【教学难点】
同角三角函数基本关系式的变用、活用、倒用
【教学过程】
(一)知识回顾
1.若角在第三象限,请分别画出它的正弦线、余弦线和正切线.
2.在角的终边上取一点P(3,4),请分别写出角的正弦、余弦和正切值.并计算sin+cos和的值。
3.请分别计算下列各式:
(1) (2)
(3) (4)
(二)新知学习
由上可知:同角三角函数的基本关系式及公式成立的条件:
平方关系:(语言表述)
(式子表述)
② 商数关系:(语言表述)
(式子表述)
<思考> 对于同一个角的正弦、余弦、正切,至少应知道其中的几个值才能利用基本关系式求出其他的三角函数的值?
(三) 应用示例
例1 已知sinα=,并且α是第二象限的角,求cosα,tanα的值.
变式练习 已知cosα=,且α为第三象限角,求sinα,tanα的值。
例2 已知cosα=,求sinα,tanα的值.
变式练习 已知sinα=,求cosα,tanα的值.
例3、求证:
变式练习 求证:
例4、化简(1) (2) (3)(1+tan2α)cos2α;
变式练习 化简(1).(2) (3)

要注意sina+cosa,sinacosa,sina-cosa三个量之间有联系:
(sina+cosa) = 1+2sinacosa; (sina—cosa)= 1—2sinacosa
知“一”求“二”
(四)课外探究
(五)归纳小结
(六)作业布置
习题1.2 A组第10,11,12,13题
选做题:习题1.2 B组第1,2,3题
(1)已知角 的某一三角函数值,求它的其它三角函数值;
(2)公式的变形、化简、恒等式的证明.
PAGE
13.2简单的三角恒等变换(一)
一.教学目标
1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力。
2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用。
3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.
二、教学重点与难点
教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.
三、教学设想:
(一)复习:三角函数的和(差)公式,倍角公式
(二)新课讲授:
1、由二倍角公式引导学生思考:有什么样的关系?
学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.
例1、试以表示.
解:我们可以通过二倍角和来做此题.
因为,可以得到;
因为,可以得到.
又因为.
思考:代数式变换与三角变换有什么不同?
代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.
例2.已知,且在第二象限,求的值。
例3、求证:
(1)、;
(2)、.
证明:(1)因为和是我们所学习过的知识,因此我们从等式右边着手.
;.
两式相加得;
即;
(2)由(1)得①;设,
那么.
把的值代入①式中得.
思考:在例3证明中用到哪些数学思想?
例3证明中用到换元思想,(1)式是积化和差的形式,
(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.
三.练习:P142面1、2、3题。
四.小结:要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.
五.作业:《习案》三十三。
PAGE
12. 1.1 向量的物理背景与概念
2.1.2向量的几何表示
2.1.3相等向量与共线向量
教学目标:
了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.
教学难点:平行向量、相等向量和共线向量的区别和联系.
教学过程:
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?
新课学习:
(一)向量的概念:我们把既有大小又有方向的量叫向量。
(二)请同学阅读课本后回答:
1、数量与向量有何区别?
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这时它们是不是平行向量?
这时各向量的终点之间有什么关系?
(三)探究学习
1、数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小;
向量有方向,大小,双重性,不能比较大小.
2.向量的表示方法:
①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示;
③用有向线段的起点与终点字母:;④向量的大小―长度称为向量的模,记作||.
3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.
向量与有向线段的区别:
(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,这两个向量就是相同的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.
4、零向量、单位向量概念:
①长度为0的向量叫零向量,记作. 的方向是任意的. 注意与0的含义与书写区别.
②长度为1个单位长度的向量,叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
①方向相同或相反的非零向量叫平行向量;②我们规定与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.
6、相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段表示,并且与有向线段的起点无关.
7、共线向量与平行向量关系:
平行向量就是共线向量,因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;
(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.
(四)理解和巩固:
例1 书本75页例1
.
例2判断及解答:
(1)平行向量是否一定方向相同?
(2)与任意向量都平行的向量是什么向量?
(3)若两个向量在同一直线上,则这两个向量一定是什么向量?
例3.如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.
变式一:与向量长度相等的向量有多少个?
变式二:是否存在与向量长度相等、方向相反的向量?
变式三:与向量共线的向量有哪些?
例4判断及解答:
(1)不相等的向量是否一定不平行?
(2)与零向量相等的向量必定是什么向量?
(3)当且仅当满足什么条件时两个非零向量相等?
(4)共线向量一定在同一直线上吗?
例5下列命题正确的是( )
A.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点
C.向量a与b不共线,则a与b都是非零向量
D.有相同起点的两个非零向量不平行
课堂练习:
1.判断下列命题是否正确,若不正确,请简述理由.
①向量与是共线向量,则A、B、C、D四点必在一直线上;
②单位向量都相等;
③任一向量与它的相反向量不相等;
④四边形ABCD是平行四边形当且仅当=
⑤一个向量方向不确定当且仅当模为0;
⑥共线的向量,若起点不同,则终点一定不同.
2、课本77页练习1、2、3、4题
三、小结 :
描述向量的两个指标:模和方向.
2、平面向量的概念和向量的几何表示;
3、向量的模、零向量、单位向量、平行向量等概念。
四、课后作业:
习题2.1A组3,4题
A(起点)
B
(终点)
a
PAGE
12. 4.1平面向量的数量积的物理背景及其含义
一、教材分析
本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律.
二.教学目标
1.了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;
2.体会平面向量的数量积与向量投影的关系,理解掌握数量积的性质和运算律,并能运用性质和运算律进行相关的判断和运算;
3.体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。
三、教学重点难点
重点: 1、平面向量数量积的含义与物理意义,2、性质与运算律及其应用。
难点:平面向量数量积的概念
四、学情分析
我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。有些学生对于基本概念不清楚,所以讲解时需要详细
五、教学方法
1.实验法:多媒体、实物投影仪。
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:预习学案。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标。
创设问题情景,引出新课
1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?
期望学生回答:向量的加法、减法及数乘运算。
2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
期望学生回答:物理模型→概念→性质→运算律→应用
3、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算:平面向量数量积的物理背景及其含义
(三)合作探究,精讲点拨
探究一:数量积的概念
1、给出有关材料并提出问题3:
(1)如图所示,一物体在力F的作用下产生位移S,
那么力F所做的功:W= |F| |S| cosα。
(2)这个公式的有什么特点?请完成下列填空:
①W(功)是 量,
②F(力)是 量,
③S(位移)是 量,
④α是 。
(3)你能用文字语言表述“功的计算公式”吗
期望学生回答:功是力与位移的大小及其夹角余弦的乘积
2、明晰数量积的定义
数量积的定义:
已知两个非零向量与,它们的夹角为,我们把数量 ︱︱·︱b︱cos叫做与的数量积(或内积),记作:·,即:·= ︱︱·︱︱cos
(2)定义说明:
①记法“·”中间的“· ”不可以省略,也不可以用“ ”代替。
② “规定”:零向量与任何向量的数量积为零。
(3)提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?
期望学生回答:线性运算的结果是向量,而数量积的结果则是数,这个数值的大小不仅和向量与的模有关,还和它们的夹角有关。
(4)学生讨论,并完成下表:
的范围 0°≤<90° =90° 0°<≤180°
·的符号
例1 :已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分别求·.
解:①当∥时,若与同向,则它们的夹角θ=0°,
∴·=||·||cos0°=3×6×1=18;
若与b反向,则它们的夹角θ=180°,
∴·=||||cos180°=3×6×(-1)=-18;
②当⊥时,它们的夹角θ=90°,
∴·=0;
③当与的夹角是60°时,有
·=||||cos60°=3×6×=9
评述: 两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当∥时,有0°或180°两种可能.
变式:对于两个非零向量、,求使|+t|最小时的t值,并求此时与+t的夹角。
探究二:研究数量积的意义
1.给出向量投影的概念:
如图,我们把││cos(││cos)
叫做向量在方向上(在方向上)的投影,
记做:OB1=︱││︱cos
2.提出问题5:数量积的几何意义是什么?
期望学生回答:数量积·等于的长度︱︱与在的方向上的投影
︱︱cos 的乘积。
3. 研究数量积的物理意义
请同学们用一句话来概括功的数学本质:功是力与位移的数量积 。
探究三:探究数量积的运算性质
1、提出问题6:
比较︱·︱与︱︱×︱︱的大小,你有什么结论?
2、明晰:数量积的性质
3.数量积的运算律
(1)、提出问题7:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?
预测:学生可能会提出以下猜想:
·= ·
(·)= (·)
③( + )· =· + ·
(2)、分析猜想:
猜想①的正确性是显而易见的。
关于猜想②的正确性,请同学们先来讨论:猜测②的左右两边的结果各是什么?它们一定相等吗?
期望学生回答:左边是与向量共线的向量,而右边则是与向量共线的向量,显然在向量与向量不共线的情况下猜测②是不正确的。
(3)、明晰:数量积的运算律:
例2、(师生共同完成)已知︱︱=6,︱︱=4, 与的夹角为60°,求(+2 )·(-3),并思考此运算过程类似于实数哪种运算?
解:(+2 )·(-3)=.-3.+2.-6.
=36-3×4×6×0.5-6×4×4
= -72
评述:可以和实数做类比记忆数量积的运算律
变式:(1)(+)2=2+2·+2
(2)(+ )·(-)= 2—2
(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(五)发导学案、布置预习。
我们已经学习平面向量数量积的物理背景及含义,那么,在下一节课我们一起来学习数量积的坐标运算。模。夹角。这节课后大家可以先预习这一部分,着重分析坐标的作用
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计
十、教学反思
本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。我首先安排让学生讨论影响数量积结果的因素并完成表格,其次将数量积的几何意义提前,这样使学生从代数和
几何两个方面对数量积的“质变”特征有了更加充分的认识。通过尝试练习,一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。数量积的性质和运算律是数量积概念的延伸,教材中这两方面的内容都是以探究的形式出现,为了让学生很好的完成这两个探究活动,我始终按照先创设一定的情景,让学生去发现结论,教师明晰后,再由学生或师生共同完成证明。比如数量积的运算性质是将尝试练习的结论推广得到,数量积的运算律则是通过和实数乘法相类比得到,这样不仅使学生感到亲切自然,同时也培养了学生由特殊到一般的思维品质和类比创新的意识。
2.4.1平面向量的数量积的物理背景及其含义
课前预习学案
一、预习目标:
预习平面向量的数量积及其几何意义;平面向量数量积的重要性质及运算律;
二、预习内容:
1.平面向量数量积(内积)的定义:
2.两个向量的数量积与向量同实数积有很大区别
3.“投影”的概念:作图
4.向量的数量积的几何意义:
5.两个向量的数量积的性质:
设、为两个非零向量,e是与同向的单位向量.
1 e= e =
2 =
设、为两个非零向量,e是与同向的单位向量.
e =e =
3 当与同向时,= 当与反向时, = 特别的= ||2或
4 cos =
5 || ≤ ||||
三、提出疑惑:
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1说出平面向量的数量积及其几何意义;
2.学会用平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
学习重难点:。平面向量的数量积及其几何意义
二、学习过程
创设问题情景,引出新课
1、提出问题1:请同学们回顾一下,我们已经研究了向量的哪些运算?这些运算的结果是什么?
2、提出问题2:请同学们继续回忆,我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?
3、新课引入:本节课我们仍然按照这种研究思路来研究向量的另外一种运算:平面向量数量积的物理背景及其含义
探究一:
数量积的概念
1、给出有关材料并提出问题3:
(1)如图所示,一物体在力F的作用下产生位移S,
那么力F所做的功:W=
(2)这个公式的有什么特点?请完成下列填空:
①W(功)是 量,
②F(力)是 量,
③S(位移)是 量,
④α是 。
(3)你能用文字语言表述“功的计算公式”吗
2、明晰数量积的定义
(1)数量积的定义:
已知两个非零向量与,它们的夹角为,我们把数量 ︱︱·︱︱cos叫做与的数量积(或内积),记作:·,即:·= ︱︱·︱︱cos
(2)定义说明:
①记法“·”中间的“· ”不可以省略,也不可以用“ ”代替。
② “规定”:零向量与任何向量的数量积为零。
(3)提出问题4:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?
(4)学生讨论,并完成下表:
的范围 0°≤<90° =90° 0°<≤180°
·的符号
例1 :已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分别求·.
解:
变式:
. 对于两个非零向量、,求使|+t|最小时的t值,并求此时与+t的夹角.
探究二:研究数量积的意义
1.给出向量投影的概念:
如图,我们把││cos(││cos)
叫做向量在方向上(在方向上)的投影,
记做:OB1=︱││︱cos
2.提出问题5:数量积的几何意义是什么?
3. 研究数量积的物理意义
请同学们用一句话来概括功的数学本质:
探究三:探究数量积的运算性质
1、提出问题6:比较︱·︱与︱︱×︱︱的大小,你有什么结论?
2、明晰:数量积的性质
3.数量积的运算律
(1)、提出问题7:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也用?
(2)、明晰:数量积的运算律:
例2、(师生共同完成)已知︱︱=6,︱︱=4, 与的夹角为60°,求(+2 )·(-3),并思考此运算过程类似于实数哪种运算?
解:
变式:(1)(+)2=2+2·+2
(2)(+ )·(-)= 2—2
(三)反思总结
(四)当堂检测
1 .已知||=5, ||=4, 与的夹角θ=120o,求·.
2. 已知||=6, ||=4,与的夹角为60o求(+2)·(-3)
.
3 .已知||=3, ||=4, 且与不共线,k为何值时,向量+k与-k互相垂直.
4.已知||=3,||=6,当①∥,②⊥,③与的夹角是60°时,分别求·.
5.已知||=1,||=,(1)若∥,求·;(2)若、的夹角为60°,求|+|;(3)若-与垂直,求与的夹角.
6.设m、n是两个单位向量,其夹角为60°,求向量=2m+n与=2n-3m的夹角.
课后练习与提高
1.已知||=1,||=,且(-)与垂直,则与的夹角是( )
A.60° B.30° C.135° D.45°
2.已知||=2,||=1,与之间的夹角为,那么向量m=-4的模为( )
A.2 B.2 C.6 D.12
3.已知、是非零向量,则||=||是(+)与(-)垂直的( )
A.充分但不必要条件 B.必要但不充分条件
C.充要条件 D.既不充分也不必要条件
4.已知向量、的夹角为,||=2,||=1,则|+|·|-|= .
5.已知+=2i-8j,-=-8i+16j,其中i、j是直角坐标系中x轴、y轴正方向上的单位向量,那么·= .
6.已知⊥、c与、的夹角均为60°,且||=1,||=2,|c|=3,则(+2-c)2=______.
S
F
α
设和b都是非零向量,则
1、⊥ ·=0
2、当与同向时,︱·︱=︱︱︱︱;当与反向时,
︱·︱= -︱︱︱︱, 特别地,·=︱︱2或︱︱=
3、︱·︱≤︱︱×︱︱
已知向量、 、和实数λ,则:
(1)·= · (2)(λ)·=λ(·)= ·(λ)
(3)( + )·=· + ·
平面向量数量积的物理背景及其含义
数量积的概念 二、数量积的性质 四、应用与提高
概念: 例1:
概念强调 (1)记法 例2:
(2)“规定” 三、数量积的运算律
3、几何意义:
4、物理意义:
S
F
α
设和b都是非零向量,则
1、⊥ ·=0
2、当与同向时,︱·︱=︱︱︱︱;当与反向时,
︱·︱= -︱︱︱︱, 特别地,·=︱︱2或︱︱=
3、︱·︱≤︱︱×︱︱
已知向量、 、和实数λ,则:
(1)·= · (2)(λ)·=λ(·)= ·(λ)
(3)( + )·=· + ·
PAGE
11信念是一种力量,无论身处顺境,还是逆境,都应该微笑地,平静地面对人生,有了信念,生活便有了希望。只要拥有信念,拥有一颗自强不息,积极向上的心,成功迟早会属于你。2010-4-20
1. 3三角函数的诱导公式<第一课时>
班级 姓名
学习目标:
1、利用单位圆探究得到诱导公式二,三,四,并且概括得到诱导公式的特点。2、理解求任意角三角函数值所体现出来的化归思想。
3、能初步运用诱导公式进行求值与化简。
教学重点:
诱导公式的探究,运用诱导公式进行求值与化简,提高对单位圆与三角函数关系的认识。
教学难点:
诱导公式的灵活应用
教学过程:
一、复习引入:
1、诱导公式一:(角度制表示)
( )
(弧度制表示)
( )
2、诱导公式(一)的作用:
其方法是先在0 ―360 内找出与角终边相同的角,再把它写成诱导公式(一)的形式,然后得出结果。
二、讲解新课:
由正弦函数、余弦函数的定义,即可得sin=y, cos=x,
sin(180 +)=-y, cos(180 +)=-x,
所以 :sin(180 +)=-sin,cos(180 +)=-cos
诱导公式二: 用弧度制可表示如下:
类比公式二的得来,得:
诱导公式三:
类比公式二,三的得来,得:
诱导公式四: 用弧度制可表示如下:
对诱导公式一,二,三,四用语言概括为:
+k·2(k∈Z),—,±的三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符号.
(函数名不变,符号看象限。)
三、例题讲解
例1.将下列三角函数转化为锐角三角函数。
(1)cos (2)sin(1+) (3)sin() (4)cos()
例2.求下列三角函数值: (1)cos210 ; (2)sin(—)
变式练习 1、 求下列三角函数值:(1);(2).
(3)sin(-); (4)cos(-60 )-sin(-210 )
2、求下列三角函数值:
(1)cos(—420 ) (2)sin() (3)sin(—1305 ) (4)cos()
例3.化简
变式练习 1、 已知cos(π+)=- ,<<2π,则sin(2π-)的值是( ).
(A) (B) (C)- (D)±
2、化简:(1)sin(+180 )cos(—)sin(——180 )
(2)sin(—)cos(2π+)tan(——π)
四、回顾小结
应用诱导公式化简三角函数的一般步骤:1用“ ”公式化为正角的三角函数;2用“2k + ”公式化为[0,2]角的三角函数;3用“±”公式化为锐角的三角函数
即利用公式一—四把任意角的三角函数转化为锐角的三角函数,一般可按下列步骤进行:
五、作业布置
1.求下列三角函数值:
(1); (2);(3);(4)
2.化简:
3..习题1.3A组第4题。

180—
x
y
P(x,y)
P(-x,y)
M
O
(4-5-3)




180
x
y
P(x,y)
P(-x,-y)
M
M
O
(4-5-1)



x
y
P(x,y)
P(x,-y)
M
O
(4-5-2)
M
PAGE
12.2.2向量的减法运算及其几何意义
学习目标:
了解相反向量的概念;
掌握向量的减法,会作两个向量的减向量,并理解其几何意义;
通过阐述向量的减法运算可以转化成向量的加法运算,理解事物间可以相互转化的辩证思想.
教学重点:向量减法的概念和向量减法的作图法.
教学难点:减法运算时方向的确定.
教学思路:
复习:向量加法的法则:三角形法则与平行四边形法则,向量加法的运算定律:
例:在四边形中, .
二、新课
用“相反向量”定义向量的减法
(1) “相反向量”的定义:与a长度相同、方向相反的向量.记作 a 。易知(a) = a.
(2) 规定:零向量的相反向量仍是零向量. 。
任一向量与它的相反向量的和是零向量.a + (a) = 0
如果a、b互为相反向量,则a = b, b = a, a + b = 0
(3) 向量减法的定义:向量a加上的b相反向量,叫做a与b的差.
即:a b = a + (b) 求两个向量差的运算叫做向量的减法.
用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:
若b + x = a,则x叫做a与b的差,记作a b
求作差向量:已知向量a、b,求作向量a b
A
作法:在平面内取一点O,
作= a, = b 则= a b
即a b可以表示为从向量b的终点指向向量a的终点的向量.
注意:1表示a b. 强调:差向量“箭头”指向被减向量。
2用“相反向量”定义法作差向量,a b = a + (b)
探究:
如果从向量a的终点指向向量b的终点作向量,那么所得向量是
2)若a∥b, 如何作出a b ?
例题:
例1、已知向量a、b、c、d,求作向量ab、cd.
例2、平行四边形中,a,b, 用a、b表示向量、.
变式一:当a, b满足什么条件时,a+b与ab垂直?
变式二:当a, b满足什么条件时,|a+b| = |ab|?
变式三:a+b与ab可能是相等向量吗?
A
OO
B C
练习:1。已知向量a、b,求作向量a b
a a
a
b a b b
b
(1) (2) (3) (4)
2.在△ABC中, =a, =b,则等于( )
A.a+b? B.-a+(-b) C.a-b? D.b-a
填空
5、作图验证:-(a + b)=-a-b
四:小结:向量减法的定义、作图法|
五:作业:
习题2.2 A组第4题
O
a
b
B
a
b
ab
O
A
B
a
B’
b
b
b
B
a+ (b)
a
b
b
a
d
c
A B
D C
D
O
PAGE
12.2.2向量的减法运算及其几何意义
教学目标:
了解相反向量的概念;
掌握向量的减法,会作两个向量的减向量,并理解其几何意义;
通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物间可以相互转化的辩证思想.
教学重点:向量减法的概念和向量减法的作图法.
教学难点:减法运算时方向的确定.
教学思路:
复习:向量加法的法则:三角形法则与平行四边形法则,向量加法的运算定律:
例:在四边形中, . 解:
提出课题:向量的减法
用“相反向量”定义向量的减法
(1) “相反向量”的定义:与a长度相同、方向相反的向量.记作 a
(2) 规定:零向量的相反向量仍是零向量.(a) = a.
任一向量与它的相反向量的和是零向量.a + (a) = 0
如果a、b互为相反向量,则a = b, b = a, a + b = 0
(3) 向量减法的定义:向量a加上的b相反向量,叫做a与b的差.
即:a b = a + (b) 求两个向量差的运算叫做向量的减法.
用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:
若b + x = a,则x叫做a与b的差,记作a b
求作差向量:已知向量a、b,求作向量a b
∵(ab) + b = a + (b) + b = a + 0 = a
作法:在平面内取一点O,
作= a, = b 则= a b
即a b可以表示为从向量b的终点指向向量a的终点的向量.
注意:1表示a b. 强调:差向量“箭头”指向被减数
2用“相反向量”定义法作差向量,a b = a + (b)
探究:
如果从向量a的终点指向向量b的终点作向量,那么所得向量是b a.
2)若a∥b, 如何作出a b ?
例题:
例一、(P86 例三)已知向量a、b、c、d,求作向量ab、cd.
解:在平面上取一点O,作= a, = b, = c, = d,
作, , 则= ab, = cd
例二、平行四边形中,a,b, 用a、b表示向量、.
解:由平行四边形法则得: = a + b, = = ab
变式一:当a, b满足什么条件时,a+b与ab垂直?(|a| = |b|)
变式二:当a, b满足什么条件时,|a+b| = |ab|?(a, b互相垂直)
变式三:a+b与ab可能是相等向量吗?(不可能,∵ 对角线方向不同)
练习:1。P87面1、2题
2.在△ABC中, =a, =b,则等于( B )
A.a+b? B.-a+(-b) C.a-b? D.b-a
四:小结:向量减法的定义、作图法|
五:作业:《习案》作业十九
O
a
b
B
a
b
ab
O
A
B
a
B’
b
b
b
B
a+ (b)
a
b
ab
A
A
B
B
B’
O
ab
a
a
b
b
O
A
O
B
ab
ab
B
A
O
b
A
B
C
D
O
b
a
d
c
A B
D C
PAGE
12. 3.2平面向量正交分解及坐标表示
教学目标:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
教学过程:
一、复习引入:
平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量
二、讲解新课:
1.平面向量的坐标表示
如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
…………○1
我们把叫做向量的(直角)坐标,记作
…………○2
其中叫做在轴上的坐标,叫做在轴上的坐标,○2式叫做向量的坐标表示.与相等的向量的坐标也为.
特别地,,,.
如图,在直角坐标平面内,以原点O为起点作,则点的位置由唯一确定.
设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.
2.平面向量的坐标运算
(1) 若,,则,
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
设基底为、,则
即,同理可得
(2) 若,,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.
==( x2, y2) (x1,y1)= (x2 x1, y2 y1)
(3)若和实数,则.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
设基底为、,则,即
三、讲解范例:
例1 已知A(x1,y1),B(x2,y2),求的坐标.
例2 已知=(2,1), =(-3,4),求+,-,3+4的坐标.
例3 已知平面上三点的坐标分别为A(2, 1), B(1, 3), C(3, 4),求点D的坐标使这四点构成平行四边形四个顶点.
解:当平行四边形为ABCD时,由得D1=(2, 2)
当平行四边形为ACDB时,得D2=(4, 6),当平行四边形为DACB时,得D3=(6, 0)
例4已知三个力 (3, 4), (2, 5), (x, y)的合力++=,求的坐标.
解:由题设++= 得:(3, 4)+ (2, 5)+(x, y)=(0, 0)
即: ∴ ∴(5,1)
四、课堂练习:
1.若M(3, -2) N(-5, -1) 且 , 求P点的坐标
2.若A(0, 1), B(1, 2), C(3, 4) , 则2= .
3.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) , 求证:四边形ABCD是梯形.
五、小结(略)
六、课后作业(略)
七、板书设计(略)
八、课后记:
2.3.2平面向量正交分解及坐标表示
课前预习学案
复习回顾:
平面向量基本定理:
理解:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的 ;
(2) 基底不惟一,关键是 ;
(3) 由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式 . 即λ1,λ2是被,,唯一确定的数量
二、提出疑惑:
如果在平面直角坐标系中选定一组互相垂直的向量作为基低,向量分解情况又会如何呢?
课内探究学案
一、探究学习
1.平面向量的坐标表示
如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
…………
我们把叫做 ,记作
…………
其中叫做在轴上的坐标,叫做在轴上的坐标,式叫做 与相等的向量的坐标也为.
特别地,i= , j= , 0= .
如图,在直角坐标平面内,以原点O为起点作,则点的位置由唯一确定.
设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.
2.平面向量的坐标运算
(1) 若,,则= ,= .
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
设基底为、,则
即= ,同理可得= .
(2) 若,,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.
==( x2, y2) (x1,y1)= .
(3)若和实数,则.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
设基底为、,则,即
二、讲解范例:
例1 已知A(x1,y1),B(x2,y2),求的坐标.
例2 已知=(2,1), =(-3,4),求+,-,3+4的坐标.
例3 已知平面上三点的坐标分别为A(2, 1), B(1, 3), C(3, 4),求点D的坐标使这四点构成平行四边形四个顶点.
例4已知三个力 (3, 4), (2, 5), (x, y)的合力++=,求的坐标.
三、课堂练习:
1.若M(3, -2) N(-5, -1) 且 , 求P点的坐标
2.若A(0, 1), B(1, 2), C(3, 4) , 则2= .
3.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) , 求证:四边形ABCD是梯形.
五、小结(略)
六、课后作业(略)
七、板书设计(略)
课后练习与提高
1、在平面直角坐标系中,已知点A时坐标为(2,3),点B的坐标为(6,5),则=_______________,=__________________。
2、已知向量,的方向与x轴的正方向的夹角是30°,则的坐标为_____________。
3、下列各组向量中,能作为表示它们所在平面内所有向量的基底是( )
A.
B.
C.
D.
4、已知向量则与的关系是( )
A.不共线 B.相等 C.同向 D.反向
5、已知点A(2,2) B(-2,2) C(4,6) D(-5,6) E(-2,-2) F(-5,-6)
在平面直角坐标系中,分别作出向量并求向量的坐标。
PAGE
- 7 -3. 1.1两角差的余弦公式
一、教材分析
《两角差的余弦公式》是人教A版高中数学必修4第三章《三角恒等变换》第一节《两角和与差的正弦、余弦和正切公式》第一节课的内容。本节主要给出了两角差的余弦公式的推导,要引导学生主动参与,独立思索,自己得出相应的结论。
二、教学目标
1.引导学生建立两角差的余弦公式。通过公式的简单应用,使学生初步理解公式的结构
及其功能,并为建立其他和差公式打好基础。
2.通过课题背景的设计,增强学生的应用意识,激发学生的学习积极性。
3.在探究公式的过程中,逐步培养学生学会分析问题、解决问题的能力,培养学生学会合作交流的能力。
三、教学重点难点
重点 两角差余弦公式的探索和简单应用。
难点 探索过程的组织和引导。
四、学情分析
之前学习了三角函数的性质,以及平面向量的运算和应用,在此基础上,要考虑如何利用任意角的正弦余弦值来表示,牢固的掌握这个公式,并会灵活运用公式进行下一节内容的学习。
五、教学方法
1.自主性学习法:通过自学掌握两角差的余弦公式.
2.探究式学习法:通过分析、探索、掌握两角差的余弦公式的过程.
3.反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距
六、课前准备
1.学生准备:预习《两角差的余弦公式》,理解两种方法的推理过程。
2.教师准备:课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时
八、教学过程
(一)创设情景,揭示课题
以学校教学楼为背景素材(见课件)引入问题。并针对问题中的用计算器或不用计算器计算求值,以激趣激疑,导入课题。
教师问:想一想: 学校因某次活动的需要,需从楼顶的C点处往该点正对的地面上的A点处拉一条钢绳,为了在购买钢绳时不至于浪费,你能算一算到底需要多长钢绳吗 (要求在地面上测量,测量工具:皮尺,测角器)
问题:(1)能不能不用计算器求值 : , ,
(2)
设计意图:由给出的背景素材,使学生感受数学源于生活,又应用于生活,唤起学生解决问题的兴趣,和抛出新知识引起学生的疑惑,在兴趣和疑惑中,激发学生的求知欲,引导学习方向。
(二)、研探新知
1.三角函数线法:
问:①怎样作出角、、的终边。
②怎样作出角的余弦线OM
③怎样利用几何直观寻找OM的表示式。
设计意图:尽量用动画课件把探索过程展示出来,使学生能从几何直观角度加强对公式结构形式的认识。
设角终边与单位圆地交点为P1,。
过点P作PM⊥X轴于点M,那么OM就是 的余弦线。
过点P作PA⊥OP1于A,过点A作AB⊥x轴于B,过点P作PC⊥AB于C
那么
OA表示 ,AP 表示,并且
于是 OM=OB+BM
=OB+CP
=OA+AP
=
最后要提醒学生注意,公式推导的前提条件:
、、都是锐角,且
2.向量法:
问:①结合图形,明确应选哪几个向量,它们怎么表示?
怎样利用向量数量积的概念和计算公式得到结果。
对探索的过程进一步严谨性的思考和处理,从而得到合理的科学结论。
设计意图:让学生经历利用向量知识解决一个数学问题的过程,体会向量方法解决数学问题的简洁性。
由向量数量积的概念,有
由向量数量积的坐标表示,有
因为 、、都是任 意 角,所以也是任意角,但由诱导公式以总可找到一个,使得 。
于是对于任意角、都有
例1. 利用差角余弦公式求的值
(求解过程让学生独立完成,注意引导学生多方向、多维度思考问题)
解法1:
解法2:
变式训练:利用两角差的余弦公式证明下列诱导公式:
(1); (2)
(让学生联系公式和本题的条件,考虑清楚要计算,应作那些准备。) 解:由,得
又由,是第三象限角,得
所以
让学生结合公式,明确需要再求哪些三角函数值,可使问题得到解决。
变式训练:
(三)、质疑答辩,排难解惑,发展思维
1.利用两角和(差)的余弦公式,求
【点评】:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.
2.求值
3.化简
提示:利用拆角思想的变换技巧
(设计意图:通过变式训练,进一步加深学生对公式的理解和应用,体验公式既可正用、逆用,还可变用.还可使学生掌握“变角”和“拆角”的思想方法解决问题,培养了学生的灵活思维品质,提高学生的数学交流能力,促进思维的创新。)
(四)发导学案、布置预习
本节我们学习了两角和与差的余弦公式,要求同学们掌握公式的推导,能熟练运用公式,注意公式的逆用。在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.课下完成本节的课后练习以及课后延展作业,课本习题2.3.4
(设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。)
九、板书设计
两角差的余弦公式
1.三角函数线法 2.向量法
例1 变式训练 例2 变式训练
当堂训练1. 2.
4.
十、教学反思
本节主要考察如何用任意角的正弦余弦值来表示,回顾公式 的推导过程,观察公式的特征,注意符号区别以及公式中角,的任意性,特别要注意公式既可正用、逆用,还可变用(即要活用).还要注意掌握“变角”和“拆角”的思想方法解决问题.
设计意图:让学生通过自己小结,反思学习过程,加深对公式及其推导过程(包括发现、
猜想、论证的数学化的过程)的理解。
十一、学案设计(见下页)
3.1.1两角差的余弦公式
课前预习学案
一、预习目标
预习《两角差的余弦公式》,体会两角差的余弦公式的推导过程 ,尤其是向量法的运用。
预习内容
阅读课本相关内容,经历用向量的数量积推导出两角差的余弦公式,进一步体会向量方法作用,并回答以下问题:
如何用任意角的正弦余弦值来表示;
如何求出的值;
会求的值吗?
提出疑惑
疑惑点 疑惑内容
课内探究学案
学习内容
通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和差公式打
好基础。
学习过程
探究一:(1)能不能不用计算器求值 : , ,
(2)
探究二:两角差的余弦公式的推导
1.三角函数线法:
问:①怎样作出角、、的终边。
②怎样作出角的余弦线OM
③怎样利用几何直观寻找OM的表示式。
2.向量法:
问:①结合图形,明确应选哪几个向量,它们怎么表示?
怎样利用向量数量积的概念和计算公式得到结果。
对探索的过程进一步严谨性的思考和处理,从而得到合理的科学结论。
例题整理
利用差角余弦公式求的值
变式训练:利用两角差的余弦公式证明下列诱导公式:
(1); (2)
变式训练:。
反思总结
本节主要考察如何用任意角的正弦余弦值来表示,回顾公式 的推导过程,观察公式的特征,注意符号区别以及公式中角,的任意性,特别要注意公式既可正用、逆用,还可变用(即要活用).在求值的过程中,还要注意掌握“变角”和“拆角”的思想方法解决问题.
当堂检测
1.利用两角和(差)的余弦公式,求
2.求值
3.化简
课后练习与提高
一、选择题
1. 的值为 ( )
A. B. C. D.
2. 的值为 ( )
A. B. C. D .
3.已知,则的值等于( )
A. B. C. D.
二、填空题
4.化简=
5.若,则=
三、解答题、
6.已知,求的值.
如图,建立单位圆O
A
O
B
x
y
PAGE
91. 2.1任意角的三角函数
【教学目标】
(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);
(2)理解任意角的三角函数不同的定义方法;
(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;
(4)掌握并能初步运用公式一;
(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.
【教学重难点】
重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).
难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.
【教学过程】
一、【创设情境】
提问:锐角O的正弦、余弦、正切怎样表示?
借助右图直角三角形,复习回顾.
引入:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。
数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗
如图,设锐角的顶点与原点重合,始边与轴的正半轴重合,那
么它的终边在第一象限.在的终边上任取一点,它与原点的距离.过作轴的垂线,垂足为,则线段的长度为,线段的长度为.则;
; .
思考:对于确定的角,这三个比值是否会随点在的终边上的位置的改变而改变呢?
显然,我们可以将点取在使线段的长的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:
; ; .
思考:上述锐角的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.
二、【探究新知】
1.探究:结合上述锐角的三角函数值的求法,我们应如何求解任意角的三角函数值呢
显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点为圆心,以单位长度为半径的圆.
2.思考:如何利用单位圆定义任意角的三角函数的定义
如图,设是一个任意角,它的终边与单位圆交于点,那么:
(1)叫做的正弦(sine),记做,即;
(2)叫做的余弦(cossine),记做,即;
(3)叫做的正切(tangent),记做,即.
注意:当α是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点,从而就必然能够最终算出三角函数值.
3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢
前面我们已经知道,三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,那么,,
.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.
4.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:
三角函数 定义域 第一象限 第二象限 第三象限 第四象限
角度制 弧度制
5.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系
终边相同的角的同一三角函数值相等.即有公式一:
(其中)
6.三角函数线
设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点
,过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延长线交与点.
由四个图看出:
当角的终边不在坐标轴上时,有向线段,于是有
我们就分别称有向线段为正弦线、余弦线、正切线。
我们把这三条与单位圆有关的有向线段,分别叫做角的正弦线、余弦线、正切线,统称为三角函数线.
7.例题讲解
例1.已知角α的终边经过点,求α的三个函数制值。
解:
变式训练1:已知角的终边过点,求角的正弦、余弦和正切值.
解:,,.
例2.求下列各角的三个三角函数值:
(1); (2); (3).
解:(1)sin0=0 cos0=1 tan0=0
(2)
(3)
变式训练2:求的正弦、余弦和正切值.
例3.已知角α的终边过点,求α的三个三角函数值.
解析:计算点到原点的距离时应该讨论a的正负.
变式训练3: 求函数的值域.
解析:分四个象限讨论.
答案:{2,-2,0}
例4..利用三角函数线比较下列各组数的大小:
1.与 2.tan与tan
三、【学习小结】
(1)本章的三角函数定义与初中时的定义有何异同
(2)你能准确判断三角函数值在各象限内的符号吗
(3)请写出各三角函数的定义域;
(4)终边相同的角的同一三角函数值有什么关系 你在解题时会准确熟练应用公式一吗
(5)三角函数线的做法.
四、【作业布置】
作业:习题1.2 A组第1,2题.
五、【板书设计】
1.2.1任意角的三角函数(一)复习引入概念形成 1.三角函数定义 2.三角函数线(三)例题讲解 小结:
1.21任意角的三角函数
课前预习学案
一、预习目标:
1.了解三角函数的两种定义方法;
2.知道三角函数线的基本做法.
二、预习内容:
根据课本本节内容,完成预习目标,完成以下各个概念的填空.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);
(2)理解任意角的三角函数不同的定义方法;
(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;
(4)掌握并能初步运用公式一;
(5)树立映射观点,正确理解三角函数是以实数为自变量的函数.
二、重点、难点
重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).
难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理解.
三、学习过程
(一)复习:
1、初中锐角的三角函数 ______________________________________________________
2、在Rt△ABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦、余弦、正切依次为_______________________________________________
(二)新课:
1.三角函数定义
在直角坐标系中,设α是一个任意角,α终边上任意一点(除了原点)的坐标为,它与原点的距离为,那么
(1)比值_______叫做α的正弦,记作_______,即________
(2)比值_______叫做α的余弦,记作_______,即_________
(3)比值_______叫做α的正切,记作_______,即_________;
2.三角函数的定义域、值域
函 数 定 义 域 值 域
3.三角函数的符号
由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:
①正弦值对于第一、二象限为_____(),对于第三、四象限为____();
②余弦值对于第一、四象限为_____(),对于第二、三象限为____();
③正切值对于第一、三象限为_______(同号),对于第二、四象限为______(异号).
4.诱导公式
由三角函数的定义,就可知道:__________________________
即有:_________________________
_________________________
_________________________
5.当角的终边上一点的坐标满足_______________时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延长线交与点.
由四个图看出:
当角的终边不在坐标轴上时,有向线段,于是有
,_______ ,________
._________
我们就分别称有向线段为正弦线、余弦线、正切线。
(三)例题
例1.已知角α的终边经过点,求α的三个函数制值。
变式训练1:已知角的终边过点,求角的正弦、余弦和正切值.
例2.求下列各角的三个三角函数值:
(1); (2); (3).
变式训练2:求的正弦、余弦和正切值.
例3.已知角α的终边过点,求α的三个三角函数值。
变式训练3: 求函数的值域
例4..利用三角函数线比较下列各组数的大小:
1. 与 2. tan与tan
(四)、小结
课后练习与提高
一、选择题
1. 是第二象限角,P(,)为其终边上一点,且,则的值为( )
A. B. C. D.
2. 是第二象限角,且,则是( )
A. 第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角
3、如果那么下列各式中正确的是( )
A. B.
C. D.
二、填空题
4. 已知的终边过(9,)且,,则的取值范围是 。
5. 函数的定义域为 。
6. 的值为 (正数,负数,0,不存在)
三、解答题
7.已知角α的终边上一点P的坐标为()(),且,求
y
P(a,b)
r
O M
a的终边
P(x,y)
O
x
y
(Ⅰ)
(Ⅱ)
(Ⅳ)
(Ⅲ)
(Ⅰ)
(Ⅱ)
(Ⅳ)
(Ⅲ)
PAGE
82. 5.1平面几何中的向量方法
教学目的:
1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;
2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.;
3.让学生深刻理解向量在处理平面几何问题中的优越性.
教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.
教学难点:如何将几何等实际问题化归为向量问题.
教学过程:
一、复习引入:
1. 两个向量的数量积:
2. 平面两向量数量积的坐标表示:
3. 向量平行与垂直的判定:
4. 平面内两点间的距离公式:
5. 求模:
二、讲解新课:
例1. 平行四边形是表示向量加法与减法的几何模型.如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?
思考1:
如果不用向量方法,你能证明上述结论吗?
练习1. 已知AC为⊙O的一条直径,∠ABC为圆周角.求证:∠ABC=90o.(用向量方法证明)
思考2:
运用向量方法解决平面几何问题可以分哪几个步骤?
用向量方法解决平面几何问题的“三步曲”:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
例2.如图,□ ABCD中,点E、F分别是AD、DC边的中点,BE、 BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
三、课堂小结
用向量方法解决平面几何的“三步曲”:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
四、课后作业
习题2.5 A组第1题
2.5.2向量在物理中的应用举例
教学目的:
1.通过力的合成与分解模型、速度的合成与分解模型,掌握利用向量方法研究物理中相关问题
的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识;
2.通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力,体会
数学在现实生活中的作用.
教学重点:运用向量的有关知识对物理中的力的作用、速度分解进行相关分析来计算.
教学难点:将物理中有关矢量的问题转化为数学中向量的问题.
教学过程:
一、复习引入:
1. 讲解上节作业题.
2. 你能掌握物理中的哪些矢量?向量运算的三角形法则与平行四边形法则是什么?
二、讲解新课:
例1. 在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力. 你能从数学的角度解释这种形象吗?
探究1.设两人拉力分别为,,其夹角为 ,旅行包的重力为。
(1)为何值时,||最小,最小值是多少
(2)| |能等于||吗 为什么
探究2:
你能总结用向量解决物理问题的一般步骤吗
用向量解决物理问题的一般步骤是:
(1)问题的转化:把物理问题转化为数学问题;
(2)模型的建立:建立以向量为主体的数学模型;
(3)参数的获得:求出数学模型的有关解——理论参数值;
(4)问题的答案:回到问题的初始状态, 解决相关物理现象.
例2. 如图,一条河的两岸平行,河的宽度d=500 m,一艘船从A处出发到河对岸.已知船的速度||=10 km/h,水流速度||=2 km/h,问行驶航程最短时,所用时间是多少(精确到0.1 min)?
思考3、: “行驶最短航程”是什么意思?怎样才能使航程最短?
三、课堂小结
向量解决物理问题的一般步骤:
(1)问题的转化:把物理问题转化为数学问题;
(2)模型的建立:建立以向量为主体的数学模型;
(3)参数的获得:求出数学模型的有关解——理论参数值;
(4)问题的答案:回到问题的初始状态, 解决相关物理现象.
四、课后作业
习题2.5 A组第4题
PAGE
11. 3 三角函数的诱导公式<第二课时>
班级 姓名
学习目标:
1、利用单位圆探究得到诱导公式五,六,并且概括得到诱导公式的特点。
2、理解求任意角三角函数值所体现出来的化归思想。
3、能初步运用诱导公式进行求值与化简。
教学重点:
诱导公式的探究,运用诱导公式进行求值与化简,提高对单位圆与三角函数关系的认识。
教学难点:
诱导公式的灵活应用
教学过程:
一、复习:1.复习诱导公式一、二、三、四;
2.对“函数名不变,符号看象限”的理解。
二、新课:
1、 如图,设任意角α的终边与单位圆的交点P1的坐标为(x,y),由于角-α的终边与角α的终边关于直线y=x对称,角-α的终边与单位圆的交点P2与点P1关于直线y=x对称,因此点P2的坐标是(y,x),于是,我们有sinα=y, cosα=x, cos(-α)=y, sin(-α)=x.
从而得到诱导公式五:
cos(-α)=sinα,sin(-α)=cosα.
2、提出问题
能否用已有公式得出+α的正弦、余弦与α的正弦、余弦之间的关系式
3、诱导公式六
Sin(+α)=cosα,cos(+α)=-sinα.
4、用语言概括一下公式五、六:
±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号. 简记为“:函数名改变,符号看象限.”
作用:利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化.
5、提出问题
学了六组诱导公式后,能否进一步用语言归纳概括诱导公式的特点?
(奇变偶不变,符号看象限.)
6、示例应用
例1将下列三角函数转化为锐角三角函数。
(1)sin (2)cos100 21′ (3)sin (4)tan324 32′
例2、 证明(1)sin(-α)=-cosα ;(2)cos(-α)=-sinα.
变式练习
例3 化简
变式练习 化简 1、(1)
(2)
2、已知sinα是方程5x2-7x-6=0的根,且α为第三象限角,
求的值.
三、小结
应用诱导公式化简三角函数的一般步骤:
1用“ ”公式化为正角的三角函数;
2用“2k + ”公式化为[0,2]角的三角函数;
3用“±”或 “±α”公式化为锐角的三角函数
四、作业:
习题1.3 B组第1题
五、探究
1、习题1.3 B组第2题
2、
PAGE
13.1.1 两角差的余弦公式
一、教学目标
掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
二、教学重、难点
1. 教学重点:通过探索得到两角差的余弦公式;
2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.
三、教学设想:
(一)导入:问题1:
我们在初中时就知道 ,,由此我们能否得到大家可以猜想,是不是等于呢?
根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式
(二)探讨过程:
在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示。
思考
怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)
思考2:怎样联系向量的数量积探求公式?
(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?
(2)怎样利用向量的数量积的概念的计算公式得到探索结果?
两角差的余弦公式:
(三)例题讲解
例1、利用和、差角余弦公式求、的值.
解:分析:把、构造成两个特殊角的和、差.
点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.
例2、已知,是第三象限角,求的值.
解:因为,由此得
又因为是第三象限角,所以
所以
点评:注意角、的象限,也就是符号问题.
思考:本题中没有,呢?
(四)练习:1.不查表计算下列各式的值:
解:
2.教材P127面1、2、3、4题
(五)小结:两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.
(1)牢记公式
(2)在“给值求值”题型中,要能灵活处理已、未知关系.
(六)作业:《习案》作业二十九
PAGE
11. 3.1三角函数的诱导公式(一)
一、教学目标:
1.借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题
2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
二、重点与难点:
重点:四组诱导公式的记忆、理解、运用。
难点:四组诱导公式的推导、记忆及符号的判断;
三、学法与教学用具:
(1)、与学生共同探讨,应用数学解决现实问题;
(2)、通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.
四、教学过程:
创设情境:我们知道,任一角都可以转化为终边在内的角,如何进一步求出它的三角函数值?
我们对范围内的角的三角函数值是熟悉的,那么若能把内的角的三角函数值转化为求锐角的三角函数值,则问题将得到解决,这就是数学化归思想
研探新知
1. 诱导公式的推导
由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:
(公式一)
诱导公式(一)的作用:把任意角的正弦、余弦、正切化为之间角的正弦、余弦、正切。
【注意】:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成
,是不对的
【讨论】:利用诱导公式(一),将任意范围内的角的三角函数值转化到角后,又如何将角间的角转化到角呢?
除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。那么它们的三角函数值有何关系呢?
若角的终边与角的终边关于轴对称,那么与的三角函数值之间有什么关系?特别地,角与角的终边关于轴对称,由单位圆性质可以推得:
(公式二)
特别地,角与角的终边关于轴对称,故有
(公式三)
特别地,角与角的终边关于原点对称,故有
(公式四)
所以,我们只需研究的同名三角函数的关系即研究了的关系了。
【说明】:①公式中的指任意角;②在角度制和弧度制下,公式都成立;
③记忆方法: “函数名不变,符号看象限”;
【方法小结】:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般方向是:
①化负角的三角函数为正角的三角函数;
②化为内的三角函数;
③化为锐角的三角函数。
可概括为:“负化正,大化小,化到锐角为终了”(有时也直接化到锐角求值)。
2、例题分析:
例1 求下列三角函数值:(1); (2).
分析:先将不是范围内角的三角函数,转化为范围内的角的三角
函数(利用诱导公式一)或先将负角转化为正角然后再用诱导公式化到范围内
角的三角函数的值。
解:(1)(诱导公式一)
(诱导公式二)

(2)(诱导公式三)
(诱导公式一)
(诱导公式二)

方法小结:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步骤是:
①化负角的三角函数为正角的三角函数;
②化为内的三角函数;
③化为锐角的三角函数。
可概括为:“负化正,大化小,化到锐角为终了”(有时也直接化到锐角求值)。
例2 化简.
解:原式

3 课堂练习:
(1).若,则的取值集合为 ( )
A. B.
C. D.
(2).已知那么 ( )
A. B. C. D.
(3).设角的值等于 ( )
A. B.- C. D.-
(4).当时,的值为 ( )
A.-1 B.1 C.±1 D.与取值有关
(5).设为常数),且
那么 A.1 B.3 C.5 D.7 ( )
(6).已知则 .
4、课堂练习答案:
(1)、D (2)、C (3)、C (4)、A (5)、C (6)、 2
5、作业:根据情况安排
6 板书设计:
三角函数的诱导公式(一)
基本概念: 例1 课堂练习
例2
1.3.1三角函数的诱导公式(一)
课前预习学案
预习目标:
回顾记忆各特殊锐角三角函数值,在单位圆中正确识别三种三角函数线。
预习内容:
1、背诵30度、45度、60度角的正弦、余弦、正切值;
2、在平面直角坐标系中做出单位圆,并分别找出任意角的正弦线、余弦线、正切线。
提出疑惑:
我们知道,任一角都可以转化为终边在内的角,如何进一步求出它的三角函数值?
我们对范围内的角的三角函数值是熟悉的,那么若能把内的角的三角函数值转化为求锐角的三角函数值,则问题将得到解决。那么如何实现这种转化呢?
课内探究学案
一、学习目标:
(1).借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题
(2).通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
二、重点与难点:
重点:四组诱导公式的记忆、理解、运用。
难点:四组诱导公式的推导、记忆及符号的判断;
三、学习过程:
(一)研探新知
1. 诱导公式的推导
由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:
(公式一)
诱导公式(一)的作用:把任意角的正弦、余弦、正切化为之间角的正弦、余弦、正切。
【注意】:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成
,是不对的
【讨论】:利用诱导公式(一),将任意范围内的角的三角函数值转化到角后,又如何将角间的角转化到角呢?
除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。那么它们的三角函数值有何关系呢?
若角的终边与角的终边关于轴对称,那么与的三角函数值之间有什么关系?特别地,角与角的终边关于轴对称,由单位圆性质可以推得:
(公式二)
特别地,角与角的终边关于轴对称,故有
(公式三)
特别地,角与角的终边关于原点对称,故有
(公式四)
所以,我们只需研究的同名三角函数的关系即研究了的关系了。
【说明】:①公式中的指任意角;②在角度制和弧度制下,公式都成立;
③记忆方法: “函数名不变,符号看象限”;
【方法小结】:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般方向是:
① ;
② ;
③ 。
可概括为:“ ”(有时也直接化到锐角求值)。
(二)、例题分析:
例1 求下列三角函数值:(1); (2).
分析:先将不是范围内角的三角函数,转化为范围内的角的三角
函数(利用诱导公式一)或先将负角转化为正角然后再用诱导公式化到范围内
角的三角函数的值。
例2 化简.
(三) 课堂练习:
(1).若,则的取值集合为 ( )
A. B.
C. D.
(2).已知那么 ( )
A. B. C. D.
(3).设角的值等于 ( )
A. B.- C. D.-
(4).当时,的值为 ( )
A.-1 B.1 C.±1 D.与取值有关
(5).设为常数),且
那么 A.1 B.3 C.5 D.7 ( )
(6).已知则 .
课后练习与提高
一、选择题
1.已知,则值为( )
A. B. — C. D. —
2.cos (+α)= —,<α<,sin(-α) 值为( )
A. B. C. D. —
3.化简:得( )
A. B. C. D.±
4.已知,,那么的值是( )
A B C D
二、填空题
5.如果且那么的终边在第 象限
6.求值:2sin(-1110 ) -sin960 +=      .
三、解答题
7.设,求的值.
8.已知方程sin( 3) = 2cos( 4),求的值。
∴  ==
8.解: ∵sin( 3) = 2cos( 4)
∴ sin(3 ) = 2cos(4 )
∴ sin( ) = 2cos( )
∴sin = 2cos 且cos 0

PAGE
141.3诱导公式(二)
教学目标
(一)知识与技能目标
⑴理解正弦、余弦的诱导公式.
⑵培养学生化归、转化的能力.
(二)过程与能力目标
(1)能运用公式一、二、三的推导公式四、五.
(2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.
(三)情感与态度目标
通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质.
教学重点
掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式.
教学难点
运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.
教学过程
一、复习:
诱导公式(一)
诱导公式(二)
诱导公式(三)
诱导公式(四)
sin(-)=sin cos( -)=-cos tan (-)=-tan
诱导公式(五)
诱导公式(六)
二、新课讲授:
练习1.将下列三角函数转化为锐角三角函数:
练习2:求下列函数值:
例1.证明:(1)
(2)
例2.化简:
解:
例4.
小结:
①三角函数的简化过程图:
②三角函数的简化过程口诀:
负化正,正化小,化到锐角就行了.
练习3:教材P28页7.
化简:
例5.
三.课堂小结
①熟记诱导公式五、六;
②公式一至四记忆口诀:函数名不变,正负看象限;
③运用诱导公式可以将任意角三角函数转化为锐角三角函数.
四.课后作业:
①阅读教材;
②《学案》P.16-P.17的双基训练.
公式一或二或四
任意负角的
三角函数
任意正角的
三角函数
00~3600间角
的三角函数
00~900间角
的三角函数
查表
求值
公式一或三
PAGE
12.1.3 相等向量与共线向量
教学目标:
掌握相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
教学重点:理解并掌握相等向量、共线向量的概念,
教学难点:平行向量、相等向量和共线向量的区别和联系.
教学思路:
一、情景设置:
(一)、复习
1、数量与向量有何区别?(数量没有方向而向量有方向)
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?
这时各向量的终点之间有什么关系?
(二)、新课学习
1、有一组向量,它们的方向相同、大小相同,这组向量有什么关系?
2、任一组平行向量都可以移到同一直线上吗?这组向量有什么关系?
三、探究学习
1、相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段表示,并且与有向线段的起点无关.
2、共线向量与平行向量关系:
平行向量就是共线向量,因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;
(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.
四、理解和巩固:
例1.如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.
变式一:与向量长度相等的向量有多少个?(11个)
变式二:是否存在与向量长度相等、方向相反的向量?(存在)
变式三:与向量共线的向量有哪些?()
例2判断:
(1)不相等的向量是否一定不平行?(不一定)
(2)与零向量相等的向量必定是什么向量?(零向量)
(3)两个非零向量相等的当且仅当什么?(长度相等且方向相同)
(4)共线向量一定在同一直线上吗?(不一定)
例3下列命题正确的是( )
A.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点
C.向量a与b不共线,则a与b都是非零向量
D.有相同起点的两个非零向量不平行
解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.
课堂练习:
1.判断下列命题是否正确,若不正确,请简述理由.
①向量与是共线向量,则A、B、C、D四点必在一直线上;
②单位向量都相等;
③任一向量与它的相反向量不相等;
④四边形ABCD是平行四边形当且仅当=
⑤一个向量方向不确定当且仅当模为0;
⑥共线的向量,若起点不同,则终点一定不同.
解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.
②不正确.单位向量模均相等且为1,但方向并不确定.
③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图与共线,虽起点不同,但其终点却相同.
2.书本77页练习4题
三、小结 :
描述向量的两个指标:模和方向.
2、平行向量不是平面几何中的平行线段的简单类比.
3、共线向量与平行向量关系、相等向量。
四、课后作业:
《习案》作业十八。
PAGE
22. 1平面向量的实际背景及基本概念
教材分析:
向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题。
向量不同于数量,它是一种新的量,关于数量的代数运算在向量范围内不都适用。因此,本章在介绍向量概念时,重点说明了向量与数量的区别,然后又重新给出了向量代数的部分运算法则,包括加法、减法、实数与向量的积、向量的数量积的运算法则等。之后,又将向量与坐标联系起来,把关于向量的代数运算与数量(向量的坐标)的代数运算联系起来,这就为研究和解决有关几何问题又提供了两种方法——向量法和坐标法。
本章共分五大节。第一节是“平面向量的实际背景及基本概念”,内容包括向量的物理背景与概念、向量的几何表示、相等向量与共线向量。
本节从物理学中的位移、力这些既有大小又有方向的量出发,抽象出向量的概念,并重点说明了向量与数量的区别,然后介绍了向量的几何表示、向量的长度、零向量、单位向量、平行向量、共线向量、相等向量等基本概念。
在“向量的物理背景与概念”中介绍向量的定义;在“向量的几何表示”中,主要介绍有向线段、有向线段的三个要素、向量的表示、向量与有向线段的区别与联系、向量的长度、零向量、单位向量、平行向量;在“相等向量与共线向量”中,主要介绍相等向量,共线向量定义等。
教学目标:
1、了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
2、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
3、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.
教学难点:平行向量、相等向量和共线向量的区别和联系.
学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.
教 具:多媒体或实物投影仪,尺规
授课类型:新授课
教学过程:
一、情景设置:
如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了.
分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?
二、新课学习:
(一)向量的概念:我们把既有大小又有方向的量叫向量
(二)请同学阅读课本后回答:(可制作成幻灯片)
1、数量与向量有何区别?
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?
(三)探究学习
1、数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小;
向量有方向,大小,双重性,不能比较大小.
2.向量的表示方法:
①用有向线段表示;
②用字母a、b
(黑体,印刷用)等表示;
③用有向线段的起点与终点字母:;
④向量的大小――长度称为向量的模,记作||.
3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.
向量与有向线段的区别:
(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.
4、零向量、单位向量概念:
①长度为0的向量叫零向量,记作0. 0的方向是任意的.
注意0与0的含义与书写区别.
②长度为1个单位长度的向量,叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.
6、相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.
7、共线向量与平行向量关系:
平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.
(四)理解和巩固:
例1 书本86页例1.
例2判断:
(1)平行向量是否一定方向相同?(不一定)
(2)不相等的向量是否一定不平行?(不一定)
(3)与零向量相等的向量必定是什么向量?(零向量)
(4)与任意向量都平行的向量是什么向量?(零向量)
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)
(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)
(7)共线向量一定在同一直线上吗?(不一定)
例3下列命题正确的是( )
A.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点是一平行四边形
的四顶点
C.向量a与b不共线,则a与b都是非零向量
D.有相同起点的两个非零向量不平行
解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C.
例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.
变式一:与向量长度相等的向量有多少个?(11个)
变式二:是否存在与向量长度相等、方向相反的向量?(存在)
变式三:与向量共线的向量有哪些?()
课堂练习:
1.判断下列命题是否正确,若不正确,请简述理由.
①向量与是共线向量,则A、B、C、D四点必在一直线上;
②单位向量都相等;
③任一向量与它的相反向量不相等;
④四边形ABCD是平行四边形当且仅当=
⑤一个向量方向不确定当且仅当模为0;
⑥共线的向量,若起点不同,则终点一定不同.
解:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量、在同一直线上.
②不正确.单位向量模均相等且为1,但方向并不确定.
③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. ④、⑤正确.⑥不正确.如图与共线,虽起点不同,但其终点却相同.
2.书本88页练习
三、小结 :
描述向量的两个指标:模和方向.
平行向量不是平面几何中的平行线段的简单类比.
向量的图示,要标上箭头和始点、终点.
四、课后作业:
书本88页习题2.1第3、5题
2.1平面向量的实际背景及基本概念
课前预习学案
一、预习目标
通过阅读教材初步了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
二、预习内容
(一)、情景设置:
如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了.
分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?
(二)、新课预习:
1、向量的概念:我们把既有大小又有方向的量叫向量
2、请同学阅读课本后回答:(可制作成幻灯片)
数量与向量有何区别?
如何表示向量?
有向线段和线段有何区别和联系?分别可以表示向量的什么?
长度为零的向量叫什么向量?长度为1的向量叫什么向量?
满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
有一组向量,它们的方向相同或相反,这组向量有什么关系?
如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各
向量的终点之间有什么关系?
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1、通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
2、通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
二、学习过程
1、数量与向量的区别?
-
2.向量的表示方法?



④向量的大小――长度称为向量的模,记作 。
3.有向线段:具有方向的线段就叫做有向线段,三个要素: 。
向量与有向线段的区别:
(1) 。
(2) 。
4、零向量、单位向量概念:
① 叫零向量,记作0. 0的方向是任意的.
注意0与0的含义与书写区别.
② 叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
① 叫平行向量;②我们规定0与 平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.
6、相等向量定义: 叫相等向量。
说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.
7、共线向量与平行向量关系:
平行向量就是共线向量,这是因为 (与有向线段的起点无关).
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.
三、理解和巩固:
例1 书本86页例1.
例2判断:
(1)平行向量是否一定方向相同?
(2)不相等的向量是否一定不平行?
(3)与零向量相等的向量必定是什么向量?
(4)与任意向量都平行的向量是什么向量?
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?
(6)两个非零向量相等的当且仅当什么?
(7)共线向量一定在同一直线上吗?
例3下列命题正确的是( )
A.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点是一平行四边形
的四顶点
C.向量a与b不共线,则a与b都是非零向量
D.有相同起点的两个非零向量不平行
例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、、相等的向量.
变式一:与向量长度相等的向量有多少个?
变式二:是否存在与向量长度相等、方向相反的向量?
变式三:与向量共线的向量有哪些?
课堂练习:
1.判断下列命题是否正确,若不正确,请简述理由.
①向量与是共线向量,则A、B、C、D四点必在一直线上;
②单位向量都相等;
③任一向量与它的相反向量不相等;
④四边形ABCD是平行四边形当且仅当=
⑤一个向量方向不确定当且仅当模为0;
⑥共线的向量,若起点不同,则终点一定不同.
2.书本88页练习
课后练习与提高
1.下列各量中不是向量的是( )
A.浮力 B.风速 C.位移 D.密度
2.下列说法中错误的是( )
A.零向量是没有方向的 B.零向量的长度为0
C.零向量与任一向量平行 D.零向量的方向是任意的
3.把平面上一切单位向量的始点放在同一点,那么这些向量的终点所构成的图形是( )
A.一条线段 B.一段圆弧 C.圆上一群孤立点 ? D.一个单位圆
4.已知非零向量,若非零向量,则与必定 .
5.已知、是两非零向量,且与不共线,若非零向量与共线,则与必定 .
6.设在平面上给定了一个四边形ABCD,点K、L、M、N分别是AB、BC、CD、DA的中点,则
A
B
C
D
A(起点)
B
(终点)
a
A
B
C
D
A(起点)
B
(终点)
a
PAGE
82. 3.1 平面向量基本定理
教学目标:
(1)了解平面向量基本定理;
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量
解决实际问题的重要思想方法;
(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
教学重点:平面向量基本定理.
教学难点:平面向量基本定理的理解与应用.
教学过程:
复习引入:
1.实数与向量的积:实数λ与向量的积是一个向量,记作:λ
(1)|λ|=|λ|||;(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=
2.运算定律
结合律:λ(μ)=(λμ) ;分配律:(λ+μ)=λ+μ, λ(+)=λ+λ
3. 向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ.
二、讲解新课:
平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2.
探究:
(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2) 基底不惟一,关键是不共线;
(3) 由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量
三、讲解范例:
例1 已知向量, 求作向量2.5+3.
例2 如图 ABCD的两条对角线交于点M,且=,=,用,表示,,和
例3已知 ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+++=4
例4(1)如图,,不共线,=t (tR)用,表示.
(2)设不共线,点P在O、A、B所在的平面内,且.求证:A、B、P三点共线.
例5 已知 a=2e1-3e2,b= 2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数与c共线.
四、课堂练习:见教材
五、小结(略)
六、课后作业(略):
七、板书设计(略)
八、教学反思
2.3.1平面向量的基本定理
课前预习学案
一、预习目标:通过回顾复习向量的线性运算,提出新的疑惑.为新授内容做好铺垫.
二、预习内容
(一)复习回顾
1.实数与向量的积:实数λ与向量的积是一个向量,记作:λ
(1)|λ|= ;(2)λ>0时λ与方向 ;λ<0时λ与方向 ;λ=0时λ=
2.运算定律
结合律:λ(μ)= ;分配律:(λ+μ)= , λ(+)= .
3. 向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使 .
(二)阅读教材,提出疑惑:
如何通过向量的线性运算来表示出平面内的任意向量
课内探究学案
一、学习目标 1、知道平面向量基本定理;
2、理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步应用向量解决实际问题;
3、能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示.
学习重难点:
1. 教学重点:平面向量基本定理
2. 教学难点:平面向量基本定理的理解与应用
二、学习过程
(一)定理探究:
平面向量基本定理:
探究:
(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的 ;
(2) 基底不惟一,关键是 ;
(3) 由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式 . 即λ1,λ2是被,,唯一确定的数量
(二)例题讲解
例1 已知向量, 求作向量2.5+3.
例2、如图 ABCD的两条对角线交于点M,且=,=,用,表示,,和
例3已知 ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+++=4
例4(1)如图,,不共线,=t (tR)用,表示.
(2)设不共线,点P在O、A、B所在的平面内,且.求证:A、B、P三点共线.
例5 已知 a=2e1-3e2,b= 2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数与c共线.
(三)反思总结
课后练习与提高
1.设e1、e2是同一平面内的两个向量,则有( )
A.e1、e2一定平行
B.e1、e2的模相等
C.同一平面内的任一向量a都有a =λe1+μe2(λ、μ∈R)
D.若e1、e2不共线,则同一平面内的任一向量a都有a =λe1+ue2(λ、u∈R)
2.已知向量a = e1-2e2,b =2e1+e2,其中e1、e2不共线,则a+b与c =6e1-2e2的关系
A.不共线 B.共线 C.相等 D.无法确定
3.已知向量e1、e2不共线,实数x、y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y的值等于( )
A.3 B.-3 C.0 D.2
4.已知a、b不共线,且c =λ1a+λ2b(λ1,λ2∈R),若c与b共线,则λ1= .
5.已知λ1>0,λ2>0,e1、e2是一组基底,且a =λ1e1+λ2e2,则a与e1_____,a与e2_________(填共线或不共线).
PAGE
62.2.3 向量数乘运算及几何意义(2)
一、教学目标:
(1)理解并掌握共线向量定理,并会判断两个向量是否共线。
(2)能运用向量判断点共线、线共点等。
二、教学重、难点:
(1)共线向量定理
(2)共线向量定理应用。
三、教学过程:
(一)复习:
1.实数与向量的积的定义:
一般地,实数与向量的积是一个向量,记作,它的长度与方向规定如下:
(1);
(2)当时,的方向与的方向相同;
当时,的方向与的方向相反;
当 时,.
2.实数与向量的积的运算律:
(1)(结合律);
(2)(第一分配律);
(3)(第二分配律).
3.向量共线定理:
定理: 如果有一个实数,使 (),那么向量与是共线向量;反之,如果向量与()是共线向量,那么有且只有一个实数,使得.
(二)新课讲解:
1.向量共线问题:
例1、
例2、
例3、教材P89面例6
例4。
四、课堂练习: P90面6题
五、小结:1.掌握向量数乘运算的定义;
2.掌握向量数乘运算的运算律,并进行有关的计算;
3.理解两向量共线(平行)的条件,并会判断两个向量是否共线、点共线。
课后思考
1.
2.
3.
PAGE
11.6三角函数模型的简单应用
教学目的
【知识与技能】
1.掌握三角函数模型应用基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型.
2.利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
【过程与方法】
练习讲解:《习案》作业十三的第3、4题
3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是,(1)求小球摆动的周期和频率;(2)已知g=980cm/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?
解:(1);(2).
4、略(学生看书)
二、应用举例:
例1如图,某地一天从6~14时的温度变化曲线近似满足函数y=Asin(x+)+b
(1) 求这一天6~14时的最大温差;
(2) 写出这段曲线的函数解析式.
本题是研究温度随时间呈周期性变化的问题.问题给出了某个时间段的温度变化曲线,要求这一天的最大温差,并写出曲线的函数解析式.也就是利用函数模型来解决问题.要特别注意自变量的变化范围.
例2 画出函数y=|sinx|的图象并观察其周期.
本题利用函数图象的直观性,通过观察图象而获得对函数性质的认识,这是研究数学问题的常用方法.显然,函数与正弦函数有紧密的联系.
练习:教材P65面1题
例3 如图,设地球表面某地正午太阳高度角为,为此时太阳直射纬度,为该地的纬度值,那
么这三个量之间的关系是 =90 -| - |.当地夏半年取正值,冬半年取负值.
如果在北京地区(纬度数约为北纬40 )的一幢高为h0的楼房北面盖一新楼,要使新楼一层正午
的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?
本题是研究楼高与楼在地面的投影长的关系问题,是将实际问题直接抽象为与三角函数有关的简单函数模型,然后根据所得的模型解决问题。应当注意在复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题。
例4海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通
常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节
每天的时间与水深的关系表:
时刻 水深/米 时刻 水深/米 时刻 水深/米
0:00 5.0 9:00 2.5 18:00 5.0
3:00 7.5 12:00 5.0 21:00 2.5
6:00 5.0 15:00 7.5 24:00 5.0
选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值
(精确到0.001).
一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船
底与洋底的距离) ,该船何时能进入港口?在港口能呆多久?
若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的 “思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材P65面3题
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型.
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
四、作业《习案》作业十四及十五。
补充例题:
一半径为3m的水轮如右图所示,水轮圆心O距离水面2m,已知水轮每分钟转动4圈,如果当水轮上P点从水中浮现时(图中P0)点开始计算时间.
求P点相对于水面的高度h(m)与时间t(s)之间的函数关系式;
P点第一次达到最高点约要多长时间
PAGE
12. 5平面向量应用举例
一、教材分析
向量概念有明确的物理背景和几何背景,物理背景是力、速度、加速度等,几何背景是有向线段,可以说向量概念是从物理背景、几何背景中抽象而来的,正因为如此,运用向量可以解决一些物理和几何问题,例如利用向量计算力沿某方向所做的功,利用向量解决平面内两条直线平行、垂直位置关系的判定等问题。
二、教学目标
1.通过应用举例,让学生会用平面向量知识解决几何问题的两种方法-----向量法和坐
标法,可以用向量知识研究物理中的相关问题的“四环节” 和生活中的实际问题
2.通过本节的学习,让学生体验向量在解决几何和物理问题中的工具作用,增强学生的
积极主动的探究意识,培养创新精神。
三、教学重点难点
重点:理解并能灵活运用向量加减法与向量数量积的法则解决几何和物理问题.
难点:选择适当的方法,将几何问题或者物理问题转化为向量问题加以解决.
四、学情分析
在平面几何中,平行四边形是学生熟悉的重要的几何图形,而在物理中,受力分析则是其中最基本的基础知识,那么在本节的学习中,借助这些对于学生来说,非常熟悉的内容来讲解向量在几何与物理问题中的应用。
五、教学方法
1.例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。
2.学案导学:见后面的学案
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
1.学生的学习准备:预习本节课本上的基本内容,初步理解向量在平面几何和物理中的
应用
2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标
教师首先提问:(1)若O为重心,则++=
(2)水渠横断面是四边形,=,且|=|,则这个四边形
为等腰梯形.类比几何元素之间的关系,你会想到向量运算之间都有什么关系
(3) 两个人提一个旅行包,夹角越大越费力.为什么?
教师:本节主要研究了用向量知识解决平面几何和物理问题;掌握向量法和坐标法,以及用向量解决平面几何和物理问题的步骤,已经布置学生们课前预习了这部分,检查学生预习情况并让学生把预习过程中的疑惑说出来。
(设计意图:步步导入,吸引学生的注意力,明确学习目标。)
(三)合作探究、精讲点拨。
探究一:(1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?(2)由学生举出几个具有线性运算的几何实例.
教师:平移、全等、相似、长度、夹角等几何性质可以由向量线性运算及数量积表示出来: 例如,向量数量积对应着几何中的长度.如图: 平行四边行中,设=,=,则(平移),,(长度).向量,的夹角为.因此,可用向量方法解决平面几何中的一些问题。通过向量运算研究几何运算之间的关系,如距离、夹角等.把运算结果"翻译"成几何关系.本节课,我们就通过几个具体实例,来说明向量方法在平面几何中的运用
例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.
已知:平行四边形ABCD.
求证:.
分析:用向量方法解决涉及长度、夹角的问题时,我们常常要考虑向量的数量积.注意到, ,我们计算和.
证明:不妨设a,b,则
a+b,a-b,|a|2,|b|2.
得 ( a+b)·( a+b)
= a·a+ a·b+b·a+b·b= |a|2+2a·b+|b|2. ①
同理   |a|2-2a·b+|b|2. ②
①+②得 2(|a|2+|b|2)=2().
所以,平行四边形两条对角线的平方和等于四条边的平方和.
师:你能用几何方法解决这个问题吗?
让学生体会几何方法与向量方法的区别与难易情况。
师:由于向量能够运算,因此它在解决某些几何问题时具有优越性,他把一个思辨过程变成了一个算法过程,可以按照一定的程序进行运算操作,从而降低了思考问题的难度.
用向量方法解决平面几何问题,主要是下面三个步骤,
⑴建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
⑵通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
⑶把运算结果“翻译”成几何关系.
变式训练:中,D、E、F分别是AB、BC、CA的中点,BF与CD交于点O,设(1)证明A、O、E三点共线;(2)用表示向量。
例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
分析:由于R、T是对角线AC上两点,所以要判断AR、RT、TC之间的关系,只需要分别判断AR、RT、TC与AC之间的关系即可.
解:设a,b,则a+b.
由 与共线,因此。存在实数m,使得 =m(a+b).
又 由与共线
因此  存在实数n,使得 =n= n(b- a).
由= n,得m(a+b)= a+ n(b- a).
整理得      a+b=0.
由于向量a、b不共线,所以有 ,解得.
所以           .
同理           .
于是           .
所以           AR=RT=TC.
说明:本例通过向量之间的关系阐述了平面几何中的方法,待定系数法使用向量方法证明平面几何问题的常用方法.
探究二:(1)两个人提一个旅行包,夹角越大越费力.
(2)在单杠上做引体向上运动,两臂夹角越小越省力. 这些问题是为什么?
师:向量在物理中的应用,实际上就是把物理问题转化为向量问题,然后通过向量运算解决向量问题,最后再用所获得的结果解释物理现象.
例3.在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?
分析:上面的问题可以抽象为如右图所示的数学模型.只要分析清楚F、G、三者之间的关系(其中F为F1、F2的合力),就得到了问题的数学解释.
解:不妨设|F1|=|F2|, 由向量加法的平行四边形法则,理的平衡原理以及直角三角形的指示,可以得到
|F1|=.
通过上面的式子我们发现,当由逐渐变大时,由逐渐变大,的值由大逐渐变小,因此,|F1|有小逐渐变大,即F1、F2之间的夹角越大越费力,夹角越小越省力.
师:请同学们结合刚才这个问题,思考下面的问题:
⑴为何值时,|F1|最小,最小值是多少?
⑵|F1|能等于|G|吗?为什么?
例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸.已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0.1min)?
分析:如果水是静止的,则船只要取垂直于对岸的方向行驶,就能使行驶航程最短,所用时间最短.考虑到水的流速,要使船的行驶航程最短,那么船的速度与水流速度的合速度v必须垂直于对岸.(用《几何画板》演示水流速度对船的实际航行的影响)
解:=(km/h),
所以, (min).
答:行驶航程最短时,所用的时间是3.1 min.
本例关键在于对“行驶最短航程”的意义的解释,即“分析”中给出的穿必须垂直于河岸行驶,这是船的速度与水流速度的合速度应当垂直于河岸,分析清楚这种关系侯,本例就容易解决了。
变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为,(1)写出此时粒子B相对粒子A的位移s;(2)计算s在方向上的投影。
九、板书设计
§2.5 平面向量应用举例
例⒈   用向量法解平面几何 例2 变式训练
问题的“三步曲”
例3. 例4
变式训练
十、教学反思
本小节主要是例题教学,要让学生体会思路的形成过程,体会数学思想方法的应用。教学中,教师创设问题情境,引导学生发现解题方法,展示思路的形成过程,总结解题规律。指导学生搞好解题后的反思,从而提高学生综合应用知识分析和解决问题的能力.
十一、学案设计(见下页)
2.5平面向量应用举例
课前预习学案
预习目标
预面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。
预习内容
阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:
例1如果不用向量的方法,还有其他证明方法吗?
利用向量方法解决平面几何问题的“三步曲”是什么?
3. 例3中,⑴为何值时,|F1|最小,最小值是多少?
⑵|F1|能等于|G|吗?为什么?
提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习内容
1.运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析
几何中直线或线段的平行、垂直、相等、夹角和距离等问题.
2.运用向量的有关知识解决简单的物理问题.
二、学习过程
探究一:(1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?
(2)举出几个具有线性运算的几何实例.
例1.证明:平行四边形两条对角线的平方和等于四条边的平方和.
已知:平行四边形ABCD.
求证:.
试用几何方法解决这个问题
利用向量的方法解决平面几何问题的“三步曲”?
建立平面几何与向量的联系,
通过向量运算,研究几何元素之间的关系,
把运算结果“翻译”成几何关系。
变式训练:中,D、E、F分别是AB、BC、CA的中点,BF与CD交于点O,设
(1)证明A、O、E三点共线;
(2)用表示向量。
例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的
中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
探究二:两个人提一个旅行包,夹角越大越费力.在单杠上做引体向上运动,两臂夹角越小越省力. 这些力的问题是怎么回事?
例3.在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力.你能从数学的角度解释这种现象吗?
请同学们结合刚才这个问题,思考下面的问题:
⑴为何值时,|F1|最小,最小值是多少?
⑵|F1|能等于|G|吗?为什么?
例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸.已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0.1min)?
变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为
,(1)写出此时粒子B相对粒子A的位移s; (2)计算s在方向上的投影。
反思总结
结合图形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题
代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等平行、垂直等问题常用此法。
本节主要研究了用向量知识解决平面几何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。
当堂检测
1.已知,求边长c。
2.在平行四边形ABCD中,已知AD=1,AB=2,对角线BD=2,求对角线AC的长。
3.在平面上的三个力作用于一点且处于平衡状态,的夹角为,求:(1)的大小;(2)与夹角的大小。
课后练习与提高
选择题
1.给出下面四个结论:
若线段AC=AB+BC,则向量;
若向量,则线段AC=AB+BC;
若向量与共线,则线段AC=AB+BC;
若向量与反向共线,则.
其中正确的结论有 ( )
A. 0个 B.1个 C.2个 D.3个
2.河水的流速为2,一艘小船想以垂直于河岸方向10的速度驶向对岸,则小
船的静止速度大小为 ( )
A.10 B. C. D.12
3.在中,若=0,则为 ( )
A.正三角形 B.直角三角形 C.等腰三角形 D.无法确定
二、填空题
4.已知两边的向量,则BC边上的中线向量用、表示为
5.已知,则、、两两夹角是
PAGE
9平面向量基本定理、平面向量的正交分解和坐标表示及运算
教学目的:
(1)了解平面向量基本定理;理解平面向量的坐标的概念;
(2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法;
(3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
教学重点:平面向量基本定理.
教学难点:平面向量基本定理的理解与应用. 向量的坐标表示的理解及运算的准确性.
教学过程:
复习引入:
1.实数与向量的积:实数λ与向量的积是一个向量,记作:λ
(1)|λ|=|λ|||;
(2)λ>0时λ与方向相同;λ<0时λ与方向相反;λ=0时λ=
2.运算定律
结合律:λ(μ)=(λμ) ;分配律:(λ+μ)=λ+μ, λ(+)=λ+λ
3. 向量共线定理 向量与非零向量共线则:有且只有一个非零实数λ,使=λ.
二、讲解新课:
1.思考:(1)给定平面内两个向量,,请你作出向量3+2,-2,
(2)同一平面内的任一向量是否都可以用形如λ1+λ2的向量表示?
平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2.
2.探究:
(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2) 基底不惟一,关键是不共线;
(3) 由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4) 基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量
3.讲解范例:
例1 已知向量, 求作向量2.5+3
例2
本题实质是
4.练习1:
1.设e1、e2是同一平面内的两个向量,则有( D )
A.e1、e2一定平行 B.e1、e2的模相等 C.同一平面内的任一向量a都有a =λe1+μe2(λ、μ∈R)
D.若e1、e2不共线,则同一平面内的任一向量a都有a =λe1+ue2(λ、u∈R)
2.已知向量a = e1-2e2,b =2e1+e2,其中e1、e2不共线,则a+b与c =6e1-2e2的关系(B )
A.不共线 B.共线 C.相等 D.无法确定
3.已知λ1>0,λ2>0,e1、e2是一组基底,且a =λ1e1+λ2e2,则a与e1不共线,a与e2不共线.
(填共线或不共线).
5.向量的夹角:已知两个非零向量、,作,,则∠AOB=,叫向量、的夹角,当=0°,、同向,当=180°,、反向,当=90°,与垂直,记作⊥。
6.平面向量的坐标表示
(1)正交分解:把向量分解为两个互相垂直的向量。
(2)思考:在平面直角坐标系中,每一个点都可以用一对有序实数表示,平面内的每一个向量,如何表示呢?
如图,在直角坐标系内,我们分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得…………
我们把叫做向量的(直角)坐标,记作…………
其中叫做在轴上的坐标,叫做在轴上的坐标,式叫做向量的坐标表示.与相等的向量的坐标也为. 特别地,,,.
如图,在直角坐标平面内,以原点O为起点作,则点的位置由唯一确定.
设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.
7.讲解范例:
例2.教材P96面的例2。
8.课堂练习:P100面第3题。
三、小结:(1)平面向量基本定理;
(2)平面向量的坐标的概念;
四、课后作业:《习案》作业二十一
O
A
B
P
PAGE
1第二章 平面向量复习课(一)
一、教学目标
1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。
2. 了解平面向量基本定理.
3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4. 了解向量形式的三角形不等式:|||-||≤|±|≤||+||(试问:取等号的条件是什么 )和向量形式的平行四边形定理:2(||+||)=|-|+|+|.
5. 了解实数与向量的乘法(即数乘的意义):
6. 向量的坐标概念和坐标表示法
7. 向量的坐标运算(加.减.实数和向量的乘法.数量积)
8. 数量积(点乘或内积)的概念,·=||||cos=xx+yy注意区别“实数与向量的乘法;向量与向量的乘法”
二、知识与方法
向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直
三、教学过程
(一)重点知识:
1. 实数与向量的积的运算律:
2. 平面向量数量积的运算律:
3. 向量运算及平行与垂直的判定:

4. 两点间的距离:
5. 夹角公式:
6. 求模:
(二)习题讲解:第二章 复习参考题
(三)典型例题
例1. 已知O为△ABC内部一点,∠AOB=150°,∠BOC=90°,设=,=,=,
且||=2,||=1,| |=3,用与表示
解:如图建立平面直角坐标系xoy,其中, 是单位正交基底向量, 则B(0,1),C(-3,0),
设A(x,y),则条件知x=2cos(150°-90°),y=-2sin(150°-90°),即A(1,-),也就是= -, =, =-3所以-3=3+|即=3-3
(四)基础练习:
(五)、小结:掌握向量的相关知识。
(六)、作业:
第二章 平面向量复习课(二)
一、教学过程
(一)习题讲解:
(二)典型例题
例1.已知圆C:及点A(1,1),M是圆上任意一点,点N在线段MA的延长线上,且,求点N的轨迹方程。
练习:1. 已知O为坐标原点,=(2,1),=(1,7),=(5,1),=x,y=· (x,y∈R) 求点P(x,y)的轨迹方程;
2. 已知常数a>0,向量,经过定点A(0,-a)以为方向向量的直线与经过定点B(0,a)以为方向向量的直线相交于点P,其中.求点P的轨迹C的方程;
例2.设平面内的向量, , ,点P是直线OM上的一个动点,求当取最小值时,的坐标及APB的余弦值.
解 设.∵ 点P在直线OM上,
∴ 与共线,而,∴ x-2y=0即x=2y,
有.∵ ,,

= 5y2-20y+12
= 5(y-2)2-8.
从而,当且仅当y=2,x=4时,取得最小值-8,
此时,,.
于是,,,

小结:利用平面向量求点的轨迹及最值。
作业:2. 4.2平面向量数量积的坐标表示、模、夹角
一、教材分析
本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。
二.教学目标
1.学会用平面向量数量积的坐标表达式,会进行数量积的运算。理解掌握向量的模、夹角等公式。能根据公式解决两个向量的夹角、垂直等问题。
2.(1)通出问题,把问题的求解与探究贯穿整堂课,学生在自主探究中发现了结论
(2)通过对向量平行与垂直的充要条件的坐标表示的类比,教给了学生类比联想的记忆方法。
3.经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现
向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神、
三、教学重点难点
重点:平面向量数量积的坐标表示.
难点:向量数量积的坐标表示的应用.
四、学情分析
此之前学生已学面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。因此结合中学生的认知结构特点和学生实际。我将本节教学目标确定为:1、理解掌握平面向量数量积的坐标表达式,会进行数量积的运算。理解掌握向量的模、夹角等公式。能根据公式解决两个向量的夹角、垂直等问题2、经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。
五、教学方法
1.实验法:多媒体、实物投影仪。
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习。
六、课前准备
1.学生的学习准备:预习学案。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
七、课时安排:1课时
八、教学过程
(一)预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
(二)情景导入、展示目标。
创设问题情景,引出新课
⑴a与b的数量积 的定义?⑵向量的运算有几种 应怎样计算?
出示学习目标:1、理解掌握平面向量数量积的坐标表示、向量的 夹角、模的 公式.2、两个向量垂直的坐标表示3、运用两个向量的数量积的坐标表示初步解决处理有关长度垂直的几个问题.
(三)合作探究,精讲点拨
探究一:已知两个非零向量a=(x1,x2),b=(x2,y2),怎样用a与b的坐标表示数量积a·b呢?
a·b=(x1,y1)·(x2,y2)=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2=x1x2+y1y2
即:两个向量的数量积等于它们对应坐标的乘积的和
师生:学生回答提出的问题,教师点评
学生:合作探索提出的问题。
教师:巡视辅导学生,解决遇到的困难,估计学生对正交单位基向量i,j的运算可能有困难,点拨学:i2=1,j2=1,i·j=0
师生:学生展示探究结果,教师给予点评
设计意图:回顾平面向量数量积的意义,为探究数量积的坐标表示做好准备。
创设情境激发学生的学习兴趣,出示学习目标使学生了解本课的任务
问题引领,培养学生的探索研究能力
探究二:探索发现向量的模的坐标表达式
若a=(x,y),如何计算向量的模|a|呢?
若A(x1,x2),B(x2,y2),如何计算向量AB的模两点A、B间的距离呢?
教师提出问题学生:独立思考探究合作交流让学生展示探究的结论,教师总结
设计意图:在向量数量积的坐标表示基础上,探索发现向量的模
例1、如图,以原点和A(5, 2)为顶点作等腰直角△OAB,使B = 90,求点B和向量的坐标.
解:设B点坐标(x, y),则= (x, y),= (x5, y2)
∵ ∴x(x5) + y(y2) = 0即:x2 + y2 5x 2y = 0
又∵|| = || ∴x2 + y2 = (x5)2 + (y2)2即:10x + 4y = 29

∴B点坐标或;=或
评述:用向量的垂直关系的坐标表示作为此题的突破点。
变式:已知
探究三:向量夹角、垂直、坐标表示
设a,b都是非零向量,a=(x1,y1),b(x2,y2),如何判定a⊥b或计算a与b的夹角呢?
1、向量夹角的坐标表示
2、a⊥b<=>a·b=0<=>x1x2+y1y2=0
3、a∥b <=>X1y2-x2y1=0
学生:独立思考、探究,合作交流,师生:让学生展示探究的结论,教师总结
提醒学生a⊥b与a∥b坐标表达式的不同
设计意图:在向量数量积的坐标表示基础上两向量垂直,两向量夹角的坐标表达式
例2 在△ABC中,=(2, 3),=(1, k),且△ABC的一个内角为直角,求k值.
解:当A = 90时,= 0,∴2×1 +3×k = 0 ∴k =
当B = 90时,= 0,== (12, k3) = (1, k3)
∴2×(1) +3×(k3) = 0 ∴k =
当C = 90时,= 0,∴1 + k(k3) = 0 ∴k =
评述:熟练应用向量的夹角公式。
变式:已知,当k为何值时,(1)垂直?
(2)平行吗?平行时它们是同向还是反向?
(四)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(五)发导学案、布置预习。
我们已经学习数量积的坐标运算。模。夹角。下节学习平面向量应用举例这节课后大家可以先预习这一部分,着重体会向量是一种处理几何问题。物理问题的工具增强应用意识提高解题能力
九、板书设计
十、教学反思
1.教学方法:结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题。在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦。
2.教学手段:利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣。
十一、学案设计(见下页)
2.4.2平面向量数量积的坐标表示、模、夹角
课前预习学案
一、预习目标:
预习平面向量数量积的坐标表达式,会进行数量积的运算。了解向量的模、夹角等公式。
二、预习内容:
1.平面向量数量积(内积)的坐标表示
2.引入向量的数量积的坐标表示,我们得到下面一些重要结论:
(1)向量模的坐标表示:
能表示单位向量的模吗?
(2)平面上两点间的距离公式:
  向量a的起点和终点坐标分别为A(x1,y1),B(x2,y2)
AB=
(3)两向量的夹角公式cos =
3. 向量垂直的判定(坐标表示)
4.向量平行的判定(坐标表示)
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
学会用平面向量数量积的坐标表达式,会进行数量积的运算。掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.
学习重难点:平面向量数量积及运算规律.平面向量数量积的应用
二、学习过程
(一)创设问题情景,引出新课
a与b的数量积 的定义?⑵向量的运算有几种 应怎样计算?
(二)合作探究,精讲点拨
探究一:已知两个非零向量a=(x1,x2),b=(x2,y2),怎样用a与b的坐标表示数量积a·b呢?
a·b=(x1,y1)·(x2,y2)=(x1i+y1j)·(x2i+y2j)=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2=x1x2+y1y2
教师:巡视辅导学生,解决遇到的困难,估计学生对正交单位基向量i,j的运算可能有困难,点拨学生:i2=1,j2=1,i·j=0
探究二:探索发现向量的模的坐标表达式
若a=(x,y),如何计算向量的模|a|呢?
若A(x1,x2),B(x2,y2),如何计算向量AB的模两点A、B间的距离呢?
例1、如图,以原点和A(5, 2)为顶点作等腰直角△OAB,使B = 90,求点B和向量的坐标.
变式:已知
探究三:向量夹角、垂直、坐标表示
设a,b都是非零向量,a=(x1,y1),b(x2,y2),如何判定a⊥b或计算a与b的夹角呢?
1、向量夹角的坐标表示
2、a⊥b<=> <=>x1x2+y1y2=0
3、a∥b <=>X1y2-x2y1=0
例2 在△ABC中,=(2, 3),=(1, k),且△ABC的一个内角为直角,求k值.
变式:已知,当k为何值时,(1)垂直?
(2)平行吗?平行时它们是同向还是反向?
(三)反思总结
(四)当堂检测
1.已知|a|=1,|b|=,且(a-b)与a垂直,则a与b的夹角是( )
A.60° B.30° C.135° D.45°
2.已知|a|=2,|b|=1,a与b之间的夹角为,那么向量m=a-4b的模为( )
A.2 B.2 C.6 D.12
3、a=(5,-7),b=(-6,-4),求a与b的 数量积
4、设a=(2,1),b=(1,3),求a·b及a与b的夹角
5、已知向量a=(-2,-1),b=(λ,1)若a与b的夹角为钝角,则λ取值范围是多少
课后练习与提高
1.已知则(  )
A.23 B.57 C.63 D.83
2.已知则夹角的余弦为(  )
 A. B. C. D.
3.则__________。
4.已知则__________。
5.则_______ _______
6.与垂直的单位向量是__________
 A. B.
D.
7.则方向上的投影为_________
8.A(1,2),B(2,3),C(2,0)所以为( )
A.直角三角形      B.锐角三角形
C.钝角三角形      D.不等边三角形
9.已知A(1,0),B(5,-2),C(8,4),D.(4.6)则四边形ABCD为(  )
 A.正方形   B.菱形   C.梯形   D. 矩形
10.已知点A(1,2),B(4,-1),问在y轴上找点C,使∠ABC=90 若不能,说明理由;若能,求C坐标。
平面向量数量积的坐标表示、模、夹角
(一)平面向量数量积的坐标表示 二、平面向量的模
例1:
概念强调 (1)记法 例2:
(2)“规定” 三、平面向量数量积的夹角
PAGE
92.2.3 向量的数乘运算及几何意义(1)
一、教学目标:1.掌握实数与向量的积的定义;
2.掌握实数与向量的积的运算律,并进行有关的计算;
二、教学重、难点:1.实数与向量的积的定义及其运算律。
三、教学过程:
(一)复习:
已知非零向量,求作和.
如图:,.
(二)新课讲解:
1.实数与向量的积的定义:
一般地,实数与向量的积是一个向量,记作,它的长度与方向规定如下:
(1);
(2)当时,的方向与的方向相同;
当时,的方向与的方向相反;
当 时,.
2.实数与向量的积的运算律:
(1)(结合律);
(2)(第一分配律);
(3)(第二分配律).
3.例1 计算:(1); (2);
(3).
解:(1)原式=; (2)原式=; (3)原式=.
例2.已知向量和向量,求作向量
4.练习
计算: (1)
(2)
(3)教材P90面5题
5.思考
例3.
例4.教材例7。
三、课堂练习:教材P90面1、2、3、4题
四、小结:1.掌握实数与向量的积的定义;
2.掌握实数与向量的积的运算律,并进行有关的计算;
3.向量共线的条件
五、作业:《习案》作业二十。
PAGE
11. 2.1 任意角的三角函数< 第一课时>
班级 姓名
学习目标
1.通过借助单位圆理解并掌握任意角的三角函数定义,理解三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域,理解并掌握正弦、余弦、正切函数在各象限内的符号.
2.能初步应用定义分析和解决与三角函数值有关的一些简单问题.
重点难点
教学重点:任意角的正弦、余弦、正切的定义。.
教学难点:用角的终边上的点的坐标来刻画三角函数及三角函数符号。
教学过程
(一)提出问题
问题1:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗
问题2:你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗
问题3:如果改变终边上的点的位置,这三个比值会改变吗 为什么
问题4:你利用已学知识能否通过取适当点而将上述三角函数的表达式简化
(二)新课导学
1、单位圆的概念:
.在直角坐标系中,我们称以 为圆心,以 为半径的圆为单位圆.
2、三角函数的概念
我们可以利用单位圆定义任意角的三角函数.
图2
如图2所示,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:
(1)y叫做α的正弦,记作sinα,即sinα=y;
(2)x叫做α的余弦,记作cosα,即cosα=x;
(3)叫做α的正切,记作tanα,即tanα=(x≠0).
所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.
注意:(1)正弦、余弦、正切、都是以角为自变量,以比值为函数值的函数.
(2)sinα不是sin与α的乘积,而是一个比值;三角函数的记号是一个整体,离开自变量的“sin”“tan”等是没有意义的.
(3)由相似三角形的知识,对于确定的角α,这三个比值不会随点P在α的终边上的位置的改变而改变.
3、例1:已知角α的终边与单位圆的交点是 求角α的正弦、余弦和正切值。
练习1:已知角α的终边经过点 ,求角α正弦、余弦和正切值。
例2 求 的正弦、余弦和正切值.
练习2:用三角函数的定义求 的三个三角函数值
4、定义推广:
设角是一个任意角,P(x,y)是其终边上的任意一点,
点P与原点的距离
4、 探究 .三角函数的定义域
三角函数 定义域



5、例题讲解
已知角的终边经过点P(-3,-4),求角的正弦、余弦和正切值 .
练习3. 已知角的终边过点P(-12,5) ,求的正弦、余弦和正切三个三角函数值.
5、探究三角函数值在各象限的符号
6、例题讲解
例4、 求证:当且仅当下列不等式组成立时,角θ为第三象限角.反之也对。
变式训练
(1、) (2007北京高考)已知cosθ·tanθ<0,那么角θ是( )
A.第一或第二象限角 B.第二或第三象限角
C.第三或第四象限角 D.第一或第四象限角
(2、)教材第15页第6题
(三)课堂小结 知识
能力
(四)作业布置 习题1.2A组第2,9题
如图,设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,那么它的终边在第一象限.在α的终边上任取一点P(a,b),它与原点的距离r=>0.过P作x轴的垂线,垂足为M,则线段OM的长度为a,线段MP的长度为b.
根据初中学过的三角函数定义,我们有
sinα==,cosα==,tanα==.
那么① 叫做的正弦,即
② 叫做的余弦,即
③ 叫做的正切,即
( ) )
( ) )
( ) )
( ) )
( ) )
( ) )
( ) )
( ) )
( ) )
( ) )
( ) )
PAGE
13. 2 简单的三角恒等变换
三维目标
1.通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高推理能力.
2.理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.
3.通过例题的解答,引导对变换对象目标进行对比、分析,形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高推理能力.
重点难点
教学重点:1.半角公式、积化和差、和差化积公式的推导训练.
2.三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.
教学过程
引言:
三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.
应用:
试以cos表示sin2 ,cos2, tan2.
练习:求证tan=。
例2、证明(1)sinαcosβ=[sin(α+β)+sin(α-β)];
(2)sinθ+sinφ=2sin.
练习:课后练习2(2)、3(2)、题
求函数的周期,最大值和最小值。
练习:求下列函数的最小正周期,递增区间及最大值。
(!) (2) (3)
阅读内容:
函数y=asinx+bcosx的变形与应用(辅助角公式)
函数y=asinx+bcosx=(cosx),
∵(φ,
则有asinx+bcosx=(sinxcosφ+cosxsinφ)
=sin(x+φ).因此,我们有如下结论:asinx+bcosx=sin(x+φ),其中tanφ=.
例4、 如图,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=α,求当角α取何值时,矩形ABCD的面积最大 并求出这个最大面积.
课堂小结
1、回顾前面学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.
2、本节课还研究了通过三角恒等变形,把形如y=asinx+bcosx的函数转化为形如y=Asin(ωx+φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出生活的数学和“活”的数学.
作业
课本习题3.2 A组1(2) (4)、3、5、题
PAGE
11.5函数y=Asin(ωx+φ)的图象(二)
教学目标
知识与技能目标
(1)了解三种变换的有关概念;
(2)能进行三种变换综合应用;
(3)掌握y=Asin(ωx+φ)+h的图像信息.
过程与能力目标
能运用多种变换综合应用时的图象信息解题.
情感与态度目标
 渗透函数应抓住事物的本质的哲学观点.
教学重点
处理三种变换的综合应用时的图象信息.
教学难点
处理三种变换的综合应用时的图象信息.
教学过程
一、复习
1. 如何由y=sinx的图象得到函数
函数表示一个振动量时:
A:这个量振动时离开平衡位置的最大距离,称为“振幅”.
T:
f :
称为“相位” .
x=0时的相位,称为“初相”.
三、应用
例1、教材P54面的例2。
解析:由图象可知A=2,
解:由函数图象可知
解1:以点N为第一个零点,则
解2:以点为第一个零点,则
解析式为将点M的坐标代入得
解由已知解得

又为“五点法”作图得第二个点,则有
所求函数的解析式为
四、课堂小结:
五、课后作业
1.阅读教材第53~55页;
2.教材第56页第3、4题.
作业:《习案》作业十三。
PAGE
12. 3.4 平面向量共线的坐标表示
教学目标:1.复习巩固平面向量坐标的概念和平面向量的坐标运算;
2.能说出平行(共线)向量充要条件的坐标表示,并会用它解决向量平行(共线)的有关问题;
3.弄清向量平行和直线平行的区别.
教学重点:向量平行的充要条件的坐标表示.
教学难点:对平面向量共线的坐标表示的理解
教学过程
【提出问题】
①如何用坐标表示两个共线向量
②已知=(x1,y1),=(x2,y2),其中,且向量、共线,
试证明:x1 y2—x2 y1= 。
③已知=(x1,y1),=(x2,y2),其中,且x1 y2—x2 y1=
试证明:向量、共线。
【得出结论】当且仅当x1y2-x2y1=0时向量、 (≠0)共线.
从而向量共线有两种表述形式:若=(x1,y1),=(x2,y2),则有
∥ (≠)= x1 y2—x2 y1=
【应用示例】
例1、已知=(4,2), =(6,y),且∥,求y.
练习1:已知A(-1,-1),B(1,3),C(2,5),试判断A、B、C三点之间的位置关系.
例2、设点P是线段P1P2上的一点,P1、P2的坐标分别是(x1,y1)、(x2,y2).
(1)当点P是线段P1P2的中点时,求点P的坐标;
(2)当点P是线段P1P2的一个三等分点时,求点P的坐标.
练习2:①已知=(2,3),=(6,-3),点P是线段AB的三等分点,求P点坐标。
②已知A(2,3),B(4,-3)点P在线段AB的延长线上,且=,求P点坐标。
例3、在△ABC中,已知点A(3,7)、B(-2,5).若线段AC、BC的中点都在坐标轴上,求点C的坐标.
练习3、已知点A(1,2),B(4,5),O为坐标原点,=+t.若点P在第二象限,求实数t的取值范围.
【课堂小结】
1、复习平面向量的和、差、数乘的坐标运算。
2、学习两个向量共线的坐标表示.
3、总结本节学习的数学方法和思想方法。
【作业布置】
课本习题2.3 A组5、6、7题
【课后思索】
1、如图,当时,P点坐标是什么?
2、课本习题2.3 B组1、2、3、4、题
PAGE
13.1.2 两角和与差的正弦、余弦、正切公式(一)
一、教学目标
理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.
二、教学重、难点
1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;
2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.
三、教学设想:
(一)复习式导入:
(1)大家首先回顾一下两角差的余弦公式:.
(2)?
(二)新课讲授
问题:由两角差的余弦公式,怎样得到两角差的正弦公式呢?
探究1、让学生动手完成两角和与差正弦公式.

探究2、让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)

探究3、我们能否推倒出两角差的正切公式呢?
探究4、通过什么途径可以把上面的式子化成只含有、的形式呢?
(分式分子、分母同时除以,得到.
注意:
5、将、、称为和角公式,、、称为差角公式。
(三)例题讲解
例1、已知是第四象限角,求的值.
解:因为是第四象限角,得,

于是有:
思考:在本题中,,那么对任意角,此等式成立吗?若成立你能否证明?
练习:教材P131面1、2、3、4题
例2、已知求的值.()
例3、利用和(差)角公式计算下列各式的值:
(1)、;(2)、;(3)、.
解:(1)、;
(2)、;
(3)、.
练习:教材P131面5题
(四)小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,学会灵活运用.
(五)作业:《习案》作业三十。
PAGE
12. 3.3平面向量的坐标运算
【教学目标】  
1.能准确表述向量的加法、减法、实数与向量的积的坐标运算法则,并能进行相关运算,进一步培养学生的运算能力;
2.通过学习向量的坐标表示,使学生进一步了解数形结合思想,认识事物之间的相互联系,培养学生辨证思维能力.
【教学重难点】
教学重点: 平面向量的坐标运算.
教学难点: 对平面向量坐标运算的理解.
【教学过程】
一、〖创设情境〗
以前,我们所讲的向量都是用有向线段表示,即几何的方法表示。向量是否可以用代数的方法,比如用坐标来表示呢?如果可能的话,向量的运算就可以通过坐标运算来完成,那么问题的解决肯定要方便的多。因此,我们有必要探究一下这个问题:平面向量的坐标运算。
二、〖新知探究〗
思考1:设i、j是与x轴、y轴同向的两个单位向量,若设=(x1, y1) =(x2, y2)则=x1i+y1j,=x2i+y2j,根据向量的线性运算性质,向量+,-,λ(λ∈R)如何分别用基底i、j表示?
+=(x1+x2)i+(y1+y2)j,
-=(x1-x2)i+(y1-y2)j,
λ=λx1i+λy1j.
思考2:根据向量的坐标表示,向量+,-,λ的坐标分别如何?
+=(x1+x2,y1+y2);
-=(x1-x2,y1-y2);
λ=(λx1,λy1).
两个向量和与差的坐标运算法则:
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
思考3:已知点A(x1, y1),B(x2, y2),那么向量的坐标如何?
结论:一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.
思考4:一个向量平移后坐标不变,但起点坐标和终点坐标发生了变化,这是否矛盾呢?
结论:
1:任意向量的坐标与表示该向量的有向线段的起点、终点的具体位置无关系,只与其相对位置有关。
2:当把坐标原点作为向量的起点,这时向量的坐标就是向量终点的坐标.
三、〖典型例题〗
例1 已知=(2,1), =(-3,4),求 +,-,3+4的坐标.
解:+=(2,1)+(-3,4)=(-1,5),
-=(2,1)-(-3,4)=(5,-3),
3+4=3(2,1)+4(-3,4)= (6,3)+(-12,16)=(-6,19).
点评:利用平面向量的坐标运算法则直接求解。
变式训练1:已知,,求,的坐标;
例2、已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)(3,4),求顶点D的坐标。
解:设点D的坐标为(x,y),
即 3- x=1,4-y=2
解得 x=2,y=2
所以顶点D的坐标为(2,2).
另解:由平行四边形法则可得
所以顶点D的坐标为(2,2)
点评:考查了向量的坐标与点的坐标之间的联系.
变式训练2:已知平面上三点的坐标分别为A(2, 1), B(1, 3), C(3, 4),求点D的坐标使这四点构成平行四边形四个顶点。
四、〖课堂小结〗
本节课主要学面向量的坐标运算法则:
(1)两向量和的坐标等于各向量对应坐标的和;
(2)两向量差的坐标等于各向量对应坐标的差;
(3)实数与向量积的坐标等于原向量的对应坐标乘以该实数;
五、〖反馈测评〗
1.下列说法正确的有( )个
(1)向量的坐标即此向量终点的坐标
(2)位置不同的向量其坐标可能相同
(3)一个向量的坐标等于它的始点坐标减去它的终点坐标
(4)相等的向量坐标一定相同
A.1 B.2 C.3 D.4
2.已知A(-1,5)和向量=(2,3),若=3,则点B的坐标为__________。
A.(7,4) B.(5,4) C.(7,14) D.(5,14)
3.已知点,及,,,求点、、的坐标。
〖板书设计〗
【作业布置】课本101页1---3T
2.3.3平面向量的坐标运算
课前预习学案
一、预习目标:通过预习会初步的进行向量的加法、减法、实数与向量的积的坐标运算
二、预习内容:
1、知识回顾:平面向量坐标表示
2.平面向量的坐标运算法则:
若=(x1, y1) ,=(x2, y2)则+=____________________,
-=________________________,λ=_____________________.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑内容
课内探究学案
一、学习目标:
1.能准确表述向量的加法、减法、实数与向量的积的坐标运算法则,并能进行相关运算,进一步培养学生的运算能力;
2.通过学习向量的坐标表示,使学生进一步了解数形结合思想,认识事物之间的相联系,培养学生辨证思维能力.
二、学习内容
1. 平面向量的坐标运算法则:
思考1:设i、j是与x轴、y轴同向的两个单位向量,若=(x1, y1) ,=(x2, y2),则=x1i+y1j,=x2i+y2j,根据向量的线性运算性质,向量+,-,λ(λ∈R)如何分别用基底i、j表示?
思考2:根据向量的坐标表示,向量+,-,λ的坐标分别如何?
思考3:已知点A(x1, y1),B(x2, y2),那么向量的坐标如何?
平面向量的坐标运算法则:
(1)两向量和的坐标等于_______________________;
(2)两向量差的坐标等于_______________________;
(3)实数与向量积的坐标等于__________________________;
思考4:一个向量平移后坐标不变,但起点坐标和终点坐标发生了变化,这是否矛盾呢?
2.典型例题
例1 :已知=(2,1), =(-3,4),求 +,-,3+4的坐标.
例2:已知平行四边形ABCD的三个顶点A、B、C的坐标分别为(-2,1)、(-1,3)、(3,4),求顶点D的坐标。
三、反思总结
(1)引进向量的坐标后,向量的基本运算转化为实数的基本运算,可以解方程,可以解不等式,总之问题转化为我们熟知的领域之中。
(2)要把点坐标与向量坐标区分开来,两者不是一个概念。
四、当堂检测
1.下列说法正确的有( )个
(1)向量的坐标即此向量终点的坐标
(2)位置不同的向量其坐标可能相同
(3)一个向量的坐标等于它的始点坐标减去它的终点坐标
(4)相等的向量坐标一定相同
A.1 B.2 C.3 D.4
2.已知A(-1,5)和向量=(2,3),若=3,则点B的坐标为__________。
A.(7,4) B.(5,4) C.(7,14) D.(5,14)
3.已知点,及,,,求点、、的坐标。
课后练习与提高
1.已知,,则等于( )
A. B.
C. D.
2.已知平面向量 , ,且2,则等于( )
A. B.
C. D.
3 已知,,若与平行,则等于( ).
A. 1 B. -1 C.1或-1 D.2
4.已知,,则的坐标为____________.
5.已知:点A(2,3)、B(5,4)、C(7,10),若AP=AB+λAC(λ∈R) ,则λ为_______时,点P在一、三象限角平分线上.
6 . 已知,,,,则以,为基底,求.
PAGE
6高考资源网( www.),您身边的高考专家
高考资源网( www.),您身边的高考专家
2. 2.3向量数乘运算及其几何意义
一、教学内容分析
实数与向量的积及它们的混合运算称为向量的线性运算,也叫向量的初等运算,是进一步学习向量知识和运用向量知识解决问题的基础。实数与向量的积的结果是向量,要按大小和方向这两个要素去理解。向量平行定理实际上是由实数与向量的积的定义得到的,定理为解决三点共线和两直线平行问题又提供了一种方法。特别:向量的平行要与平面中直线的平行区别开。
二、教学目标设计
1.掌握实数与向量的积的定义以及实数与向量的积的三条运算律,会利用实数与向量的积的运算律进行有关的计算;
2.理解两个向量平行的充要条件,能根据条件判断两个向量是否平行;
3.通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想。
三、教学重点与难点
重点:实数与向量的积的定义、运算律,向量平行的充要条件;
难点:理解实数与向量的积的定义,向量平行的充要条件。
四、教学用具准备
多媒体、实物投影仪
五、教学流程设计
六、教学过程设计
1.设置情境:
引入:位移、力、速度、加速度等都是向量,而时间、质量等都是数量,这些向量与数量的关系常常在物理公式中体现。如力与加速度的关系,位移与速度的关系。这些公式都是实数与向量间的关系。
  师:我们已经学习了向量的加法,请同学们作出和向量,并请同学们指出相加后,和的长度与方向有什么变化?这些变化与哪些因素有关?
  生:的长度是的长度的3倍,其方向与的方向相同,的长度是长度的3倍,其方向与的方向相反。
  师:很好!本节课我们就来讨论实数与向量的乘积问题,(板书课题:实数与向量的乘积)
2.探索研究
1)定义:
请大家根据上述问题并作一下类比,看看怎样定义实数与向量的积?(可结合教材思考)
  可根据小学算术中的解释,类比规定:实数与向量的积就是,它还是一个向量,但要对实数与向量相乘的含义作一番解释才行。
  实数与向量的积是一个向量,记作. 它的长度和方向规定如下:
  (1).
  (2)时,的方向与的方向相同;当时,的方向与的方向相反;特别地,当或时,.
2)运算律:
  问:求作向量和(为非零向量)并进行比较,向量与向量相等吗?(引导学生从模的大小与方向两个方面进行比较)
  生:,.
  师:设、为任意向量,、为任意实数,则有:
  (1); (2); (3).
通常将(2)称为结合律,(1)(3)称为分配律。
小练习1:
计算:(1); (2);
(3).
  3)向量平行的充要条件:
  请同学们观察,,回答、有何关系?
  生:因为,所以、是平行向量.
  引导:若、是平行向量,能否得出?为什么?可得出吗?为什么?
  生:可以!因为、平行,它们的方向相同或相反.
  师:由此可得向量平行的充要条件:向量与非零向量平行的充要条件是有且仅有一个实数,使得.
  对此定理的证明,是两层来说明的:
  其一,若存在实数,使,则由实数与向量乘积定义中第(2)条可知与平行,即与平行.
  其二,若与平行,且不妨令,设(这是实数概念).接下来看、方向如何:①、同向,则,②若、反向,则记,总而言之,存在实数(或)使.
小练习2:如图:已知,,试判断与是否平行.
  解:∵
  ∴与平行.
4)单位向量:
单位向量:模为1的向量.
向量()的单位向量:与同方向的单位向量,记作.
思考:如何用来表示? ()
3.例题与练习:
题1:如图,在中,是的中点,是延长线上的点,且,是根据下列要求表示向量:
用、表示; (2)用、表示.
题2:如图,在中,已知、分别是、的中点,用向量方法证明:
题3:如图,已知,,,求证:∽
练习:
P145 1、2、3、4
4.课堂小结:
(1)与的积还是向量,与是共线的;
(2)向量平行的充要条件的内容和证明思路,也是应用该结论解决问题的思路。该结论主要用于证明点共线、求系数、证直线平行等题型问题;
  (3)运算律暗示我们,化简向量代数式就像计算多项式一样去合并同类项。
5.作业布置:
练习部分 P88-89习题3 A组 2、3、4、5.
P89习题3 B组 2、3.
6.拓展思考题:
设、是两个不共线向量,已知,,若、、三点共线,求的值。
七、教学建议与说明
1.从实际问题出发引入新课,不但展示了教学的主要内容,而且还激发了学生学习兴趣。如可以通过物理中力与加速度的关系,位移与速度的关系等实际问题引入实数与向量的积。
  2.实数与向量的三个运算律,为了降低难度课本上没有证明,可以结合图形给学生直观解释,程度好的学生可以适当指导给出证明,证明的关键是向量的两要素:方向和大小。
  3.由于学生已理解平行向量,因此可以让学生观察平行向量间的关系,可以提示从方向和大小两个方面来考虑。然后指出向量平行的充要条件实质上是由实数与向量的积得到的。给学生说明定理的作用,通常用来判断三点在同一条直线上或两直线平行,要指出与平面中直线间的平行的区别。
2.2.3向量数乘运算及其几何意义
课前预习学案
预习目标:
通过对比物理中的一些向量与数量之间的运算关系,引入向量与数量之间的乘法运算,同时也为该运算赋予其物理意义。
预习内容:
引入:位移、力、速度、加速度等都是向量,而时间、质量等都是数量,这些向量与数量的关系常常在物理公式中体现。如力与加速度的关系,位移与速度的关系。这些公式都是实数与向量间的关系。
  师:我们已经学习了向量的加法,请同学们作出和向量,并请同学们指出相加后,和的长度与方向有什么变化?这些变化与哪些因素有关?
生:
师:很好!本节课我们就来讨论实数与向量的乘积问题,(板书课题:实数与向量的乘积)
课内探究学案
学习目标:
1.掌握实数与向量的积的定义以及实数与向量的积的三条运算律,会利用实数与向量的积的运算律进行有关的计算;
2.理解两个向量平行的充要条件,能根据条件判断两个向量是否平行;
3.通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想。
学习过程:
1、探索研究
1)定义:请大家根据上述问题并作一下类比,看看怎样定义实数与向量的积?(可结合教材思考)
  可根据小学算术中的解释,类比规定:实数与向量的积就是,它还是一个向量,但要对实数与向量相乘的含义作一番解释才行。
  实数与向量的积是一个向量,记作. 它的长度和方向规定如下:
  (1) .
  (2) .
2)运算律:
  问:求作向量和(为非零向量)并进行比较,向量与向量相等吗?(引导学生从模的大小与方向两个方面进行比较)
  生: .
  师:设、为任意向量,、为任意实数,则有:
  (1); (2); (3).
通常将(2)称为结合律,(1)(3)称为分配律。
小练习1:
计算:(1); (2);
(3).
  3)向量平行的充要条件:
  请同学们观察,,回答、有何关系?
  生: .
  引导:若、是平行向量,能否得出?为什么?可得出吗?为什么?
  生: .
  师:由此可得向量平行的充要条件:向量与非零向量平行的充要条件是有且仅有一个实数,使得.
  对此定理的证明,是两层来说明的:
  其一,若存在实数,使,则由实数与向量乘积定义中第(2)条可知与平行,即与平行.
  其二,若与平行,且不妨令,设(这是实数概念).接下来看、方向如何:①、同向,则,②若、反向,则记,总而言之,存在实数(或)使.
小练习2:如图:已知,,试判断与是否平行.
  解:∵
  ∴与平行.
4)单位向量:
单位向量:模为1的向量.
向量()的单位向量:与同方向的单位向量,记作.
思考:如何用来表示?
2.例题与练习:
题1:如图,在中,是的中点,是延长线上的点,且,是根据下列要求表示向量:
用、表示; (2)用、表示.
题2:如图,在中,已知、分别是、的中点,用向量方法证明:
题3:如图,已知,,,求证:∽
练习:
P145 1、2、3、4
3.课堂小结:
(1)与的积还是向量,与是共线的;
(2)向量平行的充要条件的内容和证明思路,也是应用该结论解决问题的思路。该结论主要用于证明点共线、求系数、证直线平行等题型问题;
  (3)运算律暗示我们,化简向量代数式就像计算多项式一样去合并同类项。
4.作业布置:
练习部分 P88-89习题3 A组 2、3、4、5.
P89习题3 B组 2、3.
5.拓展思考题:
设、是两个不共线向量,已知,,若、、三点共线,求的值。
向量平行的充要条件
情境设置
引入定义
数乘向量的运算律
运用与深化(例题解析、巩固练习、课后习题)
欢迎广大教师踊跃来稿,稿酬丰厚。 www.
PAGE
欢迎广大教师踊跃来稿,稿酬丰厚。 www.
- 8 -1. 4.1 正弦函数、余弦函数的图象
班级 姓名
【教学目标】
通过本节学习,理解正弦函数、余弦函数图象的画法.
通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.
【教学重点】正弦函数、余弦函数的图象.
【教学难点】将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.
【教学过程】
一、预习提案 (阅读教材第30—33页内容,完成以下问题:)
1、借助单位圆中的正弦线在下图中画出正弦函数y=sinx, x[0,2]的图象。
说明:使用三角函数线作图象时,将单位圆分的份数越多,图象越准确。在作函数图象时,自变量要采用弧度制,确保图象规范。
由上面画出的x[0,2]的正弦函数图象向两侧无限延伸得到正弦函数的图象(正弦曲线),请画出:
观察图象(正弦曲线),说明正弦函数图象的特点:
①由于正弦函数y=sinx中的x可以取一切实数,所以正弦函数图象向两侧 。
②正弦函数y=sinx图象总在直线 和 之间运动。
4、观察正弦函数y=sinx, x[0,2]的图象,找到起关键作用的五个点:
, , , ,
5、用“五点作图法”画出y=sinx, x[-,]的图象。
6、①函数 (x+1)的图象相对于函数 (x)的图象是如何变化的?
②函数y=sin(x+)的图象相对于正弦函数y=sinx的图象是如何变化的?
③由诱导公式知:sin(x+)= ,所以函数y=sin(x+)=
④请画出y=cosx的图象(余弦曲线)
7、观察余弦函数y=cosx, x[0,2]的图象,找到起关键作用的五个点:
, , , ,
8、用“五点作图法”画出y=cosx, x[-,]的图象。
二、新课讲解
例1、用“五点作图法”作出y=, x[0,2]的图象;并通过猜想画出y=在整个定义域内的图象。
练习:用“五点作图法”作出y=, x[0,2]的图象;并通过猜想画出y=在整个定义域内的图象。
例2、用“五点作图法”作出下列函数的简图;(1)y=1+sinx, x[0,2];(2)y=2cos(2x-)
练习:用“五点作图法”作出下列函数的简图;(1)y=-cosx, x[0,2];(2)y=2sin(x-)+1
三、课堂小结 1、 会用“五点法”作图熟练地画出一些较简单的函数图象.
2、关键点是指图象的最高点,最低点及与x轴的交点。
四、作业布置 习题1.4 A组第1题
y
x
o
y
o
x
x
o
y
x
y
o
y
o
x
PAGE
13. 1.3 二倍角的正弦、余弦、正切公式
三维目标
1.通过探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.
2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用,进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高分析问题、解决问题的能力.
3.通过本节学习,引导领悟寻找数学规律的方法,培养的创新意识,以及善于发现和勇于探索的科学精神.
重点难点
教学重点:二倍角公式推导及其应用.
教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式.
教学过程
(问题导入) 1、 若sinα=,α∈(,π),求sin2α,cos2α的值.并总结思想方法。
2、①请试着用sinα 或cosα,表示sin2α,cos2α。
②请试着用tanα表示tan2α。
(新知讲解)
这些公式都叫做倍角公式.倍角公式给出了α的三角函数与2α的三角函数之间的关系.
公式说明:
(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;
(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;
(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;
(Ⅳ)公式(S2α),(C2α)中的角α没有限制,都是α∈R.但公式(T2α)需在α≠kπ+和α≠kπ+(k∈Z)时才成立,但是当α=kπ+,k∈Z时,虽然tanα不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.
(Ⅴ)二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,是的二倍,3α是的二倍,是的二倍,-α是-的二倍等,所有这些都可以应用二倍角公式.
(应用示例)
例1 已知sin2α=,<α<,求sin4α,cos4α,tan4α的值.
练习1、已知cos=,8π<α<12π,求sin ,cos ,tan的值。
2、已知sin(α-π)=,求cos2α的值。
例2、已知sin2α=- sinα,α∈(,π),求tanα的值。
练习1、已知tan2α=,求tanα的值。
2、求下列各式的值:①sin15°cos15°; ②- ; ③ ;
④2cos 22.5°-1.
例3、 在△ABC中,cosA=,tanB=2,求tan(2A+2B)的值.
(课堂小结)
本节课要理解并掌握二倍角公式及其推导,明白从一般到特殊的思想,并要正确熟练地运用二倍角公式解题.在解题时要注意分析三角函数名称、角的关系,一个题目能给出多种解法,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.
(作业布置)
课本习题3.1 A组15、16、17、题
PAGE
12. 4.1平面向量的数量积的物理背景及其含义
教学目的:
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理垂直的问题;
4.掌握向量垂直的条件.
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程:
一、复习引入:
(1)两个非零向量夹角的概念:
已知非零向量与,作=,=,则∠AOB=θ(0≤θ≤π)叫与的夹角.
说明:(1)当θ=0时,与同向;
(2)当θ=π时,与反向;
(3)当θ=时,与垂直,记⊥;
(4)注意在两向量的夹角定义,两向量必须是同起点的.范围是0≤≤180
(2)两向量共线的判定定理
(3)练习
1.若=(2,3),=(4,-1+y),且∥,则y=( )
A.6 B.5 C.7 D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为( )
A.-3 B.-1 C.1 D.3
(4)力做的功:W = ||||cos,是与的夹角.
功是标量,力和位移是向量,功是由力和位移确定的,类比这种运算,我们引入“数量积”的概念。
二、讲解新课:
1.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是θ,
则数量││││cos 叫与的数量积,记作,即有= ││││cos,
(其中0≤θ≤π).
并规定:向量与任何向量的数量积为0.
探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
【平面向量数量积的几点说明】
(1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.
(2)两个向量的数量积称为内积,写成;书写时要特别注意:.符号“”在向量运算中不是乘号,既不能省略,也不能用“×”代替.
(3)在实数中,若a0,且ab=0,则b=0;但是在数量积中,若,且=0,不能推出=因为其中cos有可能为0.
(4)已知实数a、b、c(b0),则ab=bc a=c.但是==
如右图:= ││││cos = │││OA│,
= │ │││cos = │││OA│
= 但
(5)在实数中,有(ab)c = a(bc),但是() ()
显然,这是因为左端是与共线的向量,而右端是与共线的向量,而一般与不共线.
2.“投影”的概念:作图
定义:││cos叫做向量在方向上的投影.投影是一个数量,不是向量;
当为锐角时投影为正值; 当为钝角时投影为负值; 当为直角时投影为0;
当 = 0时投影为││; 当 = 180时投影为 ││.
3.向量的数量积的几何意义:
数量积等于的长度与在方向上投影││cos的乘积.
探究1、:两个向量的数量积的性质:设、为两个非零向量,
1、 = 0
2、当与同向时, = ||||; 当与反向时, = ||||.
特别的= ||2或 │ │ ≤|||| cos =
探究2、:平面向量数量积的运算律
(1).交换律: =
(2).数乘结合律:() =() = ()
(3).分配律:(+)=+
说明:(1)一般地,(·)≠(·)
(2)·=·,≠=
(3)有如下常用性质:2=||2,
(+)(+)=·+·+·+·
三、讲解范例:
例1.证明:①(+)2=2+2·+2 ②(+)(-)=2-2
例2.已知││=12,││=9,,求与的夹角θ。
例3.已知││=6,││=4,与的夹角为60o求:(1)(+2)·(-3).
(2)│+│与│-│.
( 利用 )
例4.已知││=3,││=4, 且与不共线,k为何值时,向量+k与-k互相垂直.
四、课堂练习:
1.课后练习1、2、3、题
2.已知││=8,││=10,│+│=16,与的夹角θ的余弦.
五、课堂小结:
1.平面向量的数量积及其几何意义;
2.平面向量数量积的重要性质及运算律;
3.向量垂直的条件.
六、作业布置:习题2.4 A组1、2、3、题
PAGE
11.1.2弧度制
教学目标
知识与技能目标
理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.
过程与能力目标
能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题
情感与态度目标
通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.
教学重点
弧度的概念.弧长公式及扇形的面积公式的推导与证明.
教学难点
“角度制”与“弧度制”的区别与联系.
教学过程
一、复习角度制:
初中所学的角度制是怎样规定角的度量的
规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.
二、新课:
1.引 入:
由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?
2.定 义
我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?
(2)引导学生完成P6的探究并归纳:
弧度制的性质:
①半圆所对的圆心角为 ②整圆所对的圆心角为
③正角的弧度数是一个正数. ④负角的弧度数是一个负数.
⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=
4.角度与弧度之间的转换:
①将角度化为弧度:
; ;;.
②将弧度化为角度:
;;;.
5.常规写法:
① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.
② 弧度与角度不能混用.
6.特殊角的弧度
角度 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°
弧度 0
7.弧长公式
弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.
例1.把67°30'化成弧度.
例2.把化成度.
例3.计算:
;.
例4.将下列各角化成0到2π的角加上2kπ(k∈Z)的形式:
;.
例5.将下列各角化成2kπ + α(k∈Z,0≤α<2π)的形式,并确定其所在的象限.
;.
解: (1)
而是第三象限的角,是第三象限角.
(2) 是第二象限角.
证法一:∵圆的面积为,∴圆心角为1rad的扇形面积为,又扇形弧长为l,半径为R,
∴扇形的圆心角大小为rad, ∴扇形面积.
证法二:设圆心角的度数为n,则在角度制下的扇形面积公式为,又此时弧长,∴.
可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.
7.课堂小结①什么叫1弧度角 ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.
8.课后作业:
①阅读教材P6 –P8;
②教材P9练习第1、2、3、6题;
③教材P10面7、8题及B2、3题.
PAGE
12. 3.4平面向量共线的坐标表示
【教学目标】  
1.会推导并熟记两向量共线时坐标表示的充要条件;
2.能利用两向量共线的坐标表示解决有关综合问题。
3.通过学习向量共线的坐标表示,使学生认识事物之间的相互联系,培养学生辨证思维能力.
【教学重难点】
教学重点: 向量共线的坐标表示及直线上点的坐标的求解.
教学难点: 定比分点的理解和应用.
【教学过程】
一、〖创设情境〗
前面,我们学面向量可以用坐标来表示,并且向量之间可以进行坐标运算。这就为解决问题提供了方便。我们又知道共线向量的条件是当且仅当有一个实数λ使得=λ,那么这个条件是否也能用坐标来表示呢?因此,我们有必要探究一下这个问题:两向量共线的坐标表示。
二、〖新知探究〗
思考:共线向量的条件是当且仅当有一个实数λ使得=λ,那么这个条件是否也能用坐标来表示呢?
设=(x1, y1) =(x2, y2)( ) 其中
由=λ , (x1, y1) =λ(x2, y2) 消去λ:x1y2-x2y1=0
结论:∥ ()x1y2-x2y1=0
注意:1消去λ时不能两式相除,∵y1, y2有可能为0, ∵,
∴x2, y2中至少有一个不为0.
2充要条件不能写成 ∵x1, x2有可能为0.
3从而向量共线的充要条件有两种形式:∥ ()
三、〖典型例题〗
例1. 已知,,且,求.
解:∵,∴.∴.
点评:利用平面向量共线的充要条件直接求解.
变式训练1:已知平面向量 , ,且,则等于_________.
例2: 已知,,,求证:、、三点共线.
证明:,,
又,∴.∵直线、直线有公共点,
∴,,三点共线。
点评:若从同一点出发的两个向量共线,则这两个向量的三个顶点共线.
变式训练2:若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为_________.
例3:设点P是线段P1P2上的一点, P1、P2的坐标分别是(x1,y1),(x2,y2).
当点P是线段P1P2的中点时,求点P的坐标;
当点P是线段P1P2的一个三等分点时,求点P的坐标.
解:(1)=
所以,点P的坐标为
(2)当时,可求得:点的坐标为:
当时,可求得:点的坐标为:
点评:此题实际上给出了线段的中点坐标公式和线段三等分点坐标公式.
变式训练3:当时,点P的坐标是什么?
四、〖课堂小结〗
1.熟悉平面向量共线充要条件的两种表达形式;
2.会用平面向量平行的充要条件的坐标形式证明三点共线和两直线平行;
3.明白判断两直线平行与两向量平行的异同。
五、〖反馈测评〗
1.已知=+5,=-2+8,=3(-),则( )
A. A、B、D三点共线 B .A、B、C三点共线
C. B、C、D三点共线 D. A、C、D三点共线
2.若向量=(-1,x)与=(-x, 2)共线且方向相同,则x为________.
3.设,,,且,求角.
【板书设计】
【作业布置】课本 P108 4、5、6、7
2.3.4平面向量共线的坐标表示
课前预习学案
一、预习目标:通过预习会初步利用两向量共线时坐标表示的充要条件进行预算.
二、预习内容:
1、知识回顾:平面向量共线定理________________________________________.
2.平面向量共线的坐标表示:
设=(x1, y1) =(x2, y2)( ) 其中,
则∥ ()_____________________.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标:
1.会推导并熟记两向量共线时坐标表示的充要条件;
2.能利用两向量共线的坐标表示解决有关综合问题。
3.通过学习向量共线的坐标表示,使学生认识事物之间的相互联系,培养学生辨证思维能力.
二、学习内容
1.思考:共线向量的条件是当且仅当有一个实数λ使得=λ,那么这个条件是否也能用坐标来表示呢?
设=(x1, y1), =(x2, y2)( ) 其中
由=λ ,得___________________,即__________________________,消去λ后得:
__________________________________.这就是说,当且仅当___________________时,向量与共线.
2.典型例题
例1 已知,,且,求.
例2: 已知,,,求证、、三点共线.
例3:设点P是线段P1P2上的一点, P1、P2的坐标分别是(x1,y1),(x2,y2).
当点P是线段P1P2的中点时,求点P的坐标;
当点P是线段P1P2的一个三等分点时,求点P的坐标.
三、反思总结
1.平面向量共线充要条件的两种表达形式是什么
2.如何用平面向量共线的充要条件的坐标形式证明三点共线和两直线平行
3.判断两直线平行与两向量平行有什么异同
四、当堂检测
1.已知=+5,=-2+8,=3(-),则( )
A. A、B、D三点共线 B .A、B、C三点共线
C. B、C、D三点共线 D. A、C、D三点共线
2.若向量=(-1,x)与=(-x, 2)共线且方向相同,则x为________.
3.设,,,且,求角.
课后练习与提高
1.若=(2,3),=(4,-1+y),且∥,则y=( )
A.6 B.5 C.7 D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为( )
A.-3 B.-1 C.1 D.3
3.若=i+2j, =(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量). 与共线,则x、y的值可能分别为( )
A.1,2 B.2,2 C.3,2 D.2,4
4.已知=(4,2),=(6,y),且∥,则y= .
5.已知=(1,2),=(x,1),若+2与2-平行,则x的值为
6.已知A(-1, -1), B(1,3), C(1,5) ,D(2,7) ,向量与平行吗?直线AB与平行于直线CD吗?
PAGE
61.4.3正切函数的性质与图象
教学目的:
知识目标:1.用单位圆中的正切线作正切函数的图象;2.用正切函数图象解决函数有关的性质;
能力目标:1.理解并掌握作正切函数图象的方法;2.理解用函数图象解决有关性质问题的方法;
教学重点:用单位圆中的正切线作正切函数图象;
教学难点:正切函数的性质。
教学过程:
一、复习引入:
问题:1、正弦曲线是怎样画的? 2、练习:画出下列各角的正切线:

下面我们来作正切函数的图象.
二、讲解新课:
1.正切函数的定义域是什么?
2.正切函数是不是周期函数?

∴是的一个周期。
是不是正切函数的最小正周期?下面作出正切函数图象来判断。
3.作,的图象
说明:(1)正切函数的最小正周期不能比小,正切函数的最小正周期是;
(2)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数
,且的图象,称“正切曲线”。
(3)正切曲线是由被相互平行的直线所隔开的无穷多支曲线组成的。
4.正切函数的性质 引导学生观察,共同获得:
(1)定义域:;
(2)值域:R 观察:当从小于,时,
当从大于,时,。
(3)周期性:;
(4)奇偶性:由知,正切函数是奇函数;
(5)单调性:在开区间内,函数单调递增。
5.讲解范例:
例1比较与的大小
解:,,内单调递增,
例2:求下列函数的周期:
(1) 答:。 (2) 答:。
说明:函数的周期.
例3:求函数的定义域、值域,指出它的周期性、奇偶性、单调性,
解:1、由得,所求定义域为
2、值域为R,周期,
3、在区间上是增函数。
思考1:你能判断它的奇偶性吗? (是非奇非偶函数),
练习1:求函数的定义域、周期性、奇偶性、单调性。
略解:定义域:
值域:R 奇偶性:非奇非偶函数
单调性:在上是增函数
练习2:教材P45面2、3、4、5、6题
解:画出y=tanx在(-,)上的图象,在此区间上满足tanx>0的x的范围为:0<x<
结合周期性,可知在x∈ R,且x≠kπ+上满足的x的取值范围为(kπ,kπ+)(k∈Z)
思考2:你能用图象求函数的定义域吗?
解:由 得 ,利用图象知,所求定义域为,
亦可利用单位圆求解。
四、小结:本节课学习了以下内容:
1.因为正切函数的定义域是,所以它的图象被等相互平行的直线所隔开,而在相邻平行线间的图象是连续的。
2.作出正切函数的图象,也是先作出长度为一个周期(-π/2,π/2)的区间内的函数的图象,然后再将它沿x轴向左或向右移动,每次移动的距离是π个单位,就可以得到整个正切函数的图象。
五、作业《习案》作业十一。
y
0
x
0
0
T
A
PAGE
12. 3.1 平面向量基本定理
学习目标
1.通过探究活动,能推导并理解平面向量基本定理.
2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.
3.了解向量的夹角与垂直的概念。
重点难点
教学重点:平面向量基本定理、向量的夹角与垂直的定义。
教学难点:平面向量基本定理的运用.
教学过程
引子:在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?
问题:如图,设、是同一平面内两个不共线的向量,是这一平面内的任一向量,我们通过作图研究与、之间的关系.
请完成:
给定平面内任意两个不共线的非零向量、,请你作出向量=3+2、=-2.
由①可知可以用平面内任意两个不共线的非零向量、来表示向量,那么
平面内的任一向量是否都可以用形如λ1+λ2的向量表示呢
【由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量、表示出来.当、确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.】
由此可得:
【平面向量基本定理】:
如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数λ1、λ2,使=λ1+λ2.
【定理说明】:
(1)我们把不共线向量、叫做表示这一平面内所有向量的一组基底;
(2)基底不唯一,关键是不共线;
(3)由定理可将任一向量在给出基底、的条件下进行分解;
(4)基底给定时,分解形式唯一.
提出问题
平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗?
已知两个非零向量和 (如图),作=,=,则∠AOB=θ(0°≤θ≤180°)叫做向量与的夹角.
显然,当θ=0°时, 与同向;当θ=180°时, 与反向.因此,两非零向量的夹角在区间[0°,180°]内.
如果与的夹角是90°,我们说与垂直,记作⊥.
②对平面中的任意一个向量能否用两个互相垂直的向量来表示?
例1、已知向量、 (如图),求作向量-2.5+3.
练习:
1.设、是同一平面内的两个向量,则有( )
A. 、一定平行 B. 、的模相等 C.同一平面内的任一向量都有 =λ+μ (λ、μ∈R)
D.若、不共线,则同一平面内的任一向量都有=λ+u (λ、u∈R)
2.已知向量 =-2, =2+,其中、不共线,则+与 =6-2的关系( )
A.不共线 B.共线 C.相等 D.无法确定
3.已知λ1>0,λ2>0,、是一组基底,且=λ1+λ2,则与 ,与 .(填“共线”或“不共线”).
4.下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )
A.①② B.②③ C.①③ D.①②③
5.设与是两个不共线向量, =3+4,=-2+5,若实数λ、μ满足λ+μ=5-,求λ、μ的值.
6.【能力提升题】已知G为△ABC的重心,设=,=,试用、表示向量.
课堂小结
1.回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,
2.总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.
作业布置
已知向量、 (如图),求作向量(1)+2. (2)-+3
PAGE
13.1.3 二倍角的正弦、余弦和正切公式
一、教学目标
以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.
二、教学重、难点
教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;
教学难点:二倍角的理解及其灵活运用.
三、教学设想:
(一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式,
练习:(1)在△ABC中,,则△ABC为( )
A.直角三角形 B.钝角三角形 C.锐角三角形 D.等腰三角形
(2) ( )
A. 0 B.2 C. D.
思考:已知,,,求
我们由此能否得到的公式呢?(学生自己动手,把上述公式中看成即可),
(二)公式推导:


思考:把上述关于的式子能否变成只含有或形式的式子呢?



注意:
(三)例题讲解
例1、已知求的值.
解:由得.
又因为.
于是;
;.
例2.在△ABC中,,
例3.已知求的值.
解:,由此得
解得或.
例4.已知
(四)练习:教材P135面1、2、3、4、5题
(五)小结:本节我们学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.
(六)作业:《习案》作业三十二。
PAGE
11. 3.2三角函数诱导公式(二)
【教材分析】
《三角函数的诱导公式》是普通高中课程标准实验教科书必修四第一章第三节,其主要内容是三角函数的诱导公式中的公式二至公式六。这节是诱导公式(二)的推导,在诱导公式(一)的推导中用到了一次对称变换,这节是利用两次对称变换推导到的诱导公式,充分体现对称变换思想在数学中的应用,在练习中加以应用,让学生进一步体会的任意性;综合诱导公式(一)、(二)总结出记忆诱导公式的口诀:“奇变偶不变,符号看象限”,了解从特殊到一般的数学思想的探究过程,培养学生用联系、变化的辩证唯物主义观点去分析问题的能力。诱导公式在三角函数化简、求值中具有非常重要的工具作用,要求学生能熟练的掌握和应用。
【教学目标】
1.借助单位圆,推导出正弦、余弦第五、六组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题
2.通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
3. 培养学生的化归思想,使学生认识到转化“矛盾”是解决问题的一条行之有效的途径.
【教学重点难点】
教学重点:掌握角的正弦、余弦的诱导公式及其探求思路
教学难点:角的正弦、余弦诱导公式的推导.
【学情分析】
学生在前面第一类诱导公式学习中感受了数形结合思想、对称变换思想在研究数学问题中的应用,初步形成用对称变换思想思考问题的习惯,对于两次对称变换思想的应用是上一节课的深化;学生对高中数学知识有了一定了解和掌握,也形成了自己的学习方法和习惯,对学习高中数学有了一定兴趣和信心,且具有了一定的分析、判断、理解能力和交流沟通能力。但由于诱导公式多,学生记忆困难,应用时易错,应该渗透归纳总结的学习方法,让学生找规律,体现自主探究、共同参与的新课改理念。
【教学方法】
1.学案导学:见后面的学案。
2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
【课前准备】
1.学生的学习准备:预习“三角函数的诱导公式”,完成预习学案。
2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。
3.教学手段:利用计算机多媒体辅助教学.
【课时安排】1课时
【教学过程】
一、预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
二、复 习导入、展示目标
1.创设情境:
问题1:请同学们回顾一下前一节我们学习的与、、的三角函数关系。
设置意图:利用几何画板的演示回顾旧知及公式推导过程中所涉及的重要思想方法(对
称变换,数形结合)激发学生学习动机。
学生活动:结合几何画板的演示,学生回忆诱导公式(一)的推导过程,回答诱导公式(一)
的内容。
多媒体使用:几何画板;PPT
问题2: 如果两个点关于直线y=x对称,它们的坐标之间有什么关系呢?若两个点关
于y轴对称呢?
设置意图:检验学生对两种对称变换的点的坐标的变化规律的掌握程度,为后面的教学
作铺垫。通过分析问题情境,提出本节课研究的问题。
学生活动:点P(a,b) 关于直线y=x的对称点Q的坐标为(b,a);点P(a,b) 关于y轴的对称点R的坐标为(-a,b)。
2.探究新知:
问题1:如图:设的终边与单位圆相交于点P,则P点坐标为 ,点P关于直线y=x的轴对称点为M,则M点坐标为 , 点M关于y轴的对称点N,则N的坐标为 ,
∠XON的大小与的关系是什么呢?点N的坐标又可以怎么表示呢?

设置意图:结合几何画板的演示利用同一点的坐标变换,导出诱导公式,渗透对称变换思想和数形结合思想。
学生活动:学生看图口答
P(,),M(,),N(-,),∠XON=
N(,)
(教师在引导学生分析问题过程中,积极观察学生的反映,适时进行激励性评价)
多媒体使用:几何画板;PPT
问题2:观察点N的坐标,你从中发现什么规律了?
设置意图:让学生总结出公式=-,=
三、例题分析
例1 利用上面所学公式求下列各式的值:
(1) (2) (3) (4)
解析:直接利用公式解决问题
解:
变式训练1:将下列三角函数化为到之间的三角函数:
(1) (2) (3)
思考:我们学习了的诱导公式,还知道的诱导公式,那么对于,又有怎样的诱导公式呢?
设置意图:利用已学诱导公式推导新公式。
学生活动:

例2 已知方程sin( 3) = 2cos( 4),求的值
解析:先利用诱导公式化简
解: ∵sin( 3) = 2cos( 4) ∴ sin(3 ) = 2cos(4 )
∴ sin( ) = 2cos( ) ∴sin = 2cos 且cos 0

变式训练2:已知,求的值。
四、课堂练习
1.利用上面所学公式求下列各式的值:
(1) (2)
2.将下列三角函数化为到之间的三角函数:
(1) (2)
五、反思总结
请学生从以下几方面总结:
知识:前一节课我们学习了,,,的诱导公式,这节我们又学习了,的诱导公式
思想方法:从特殊到一般;数形结合思想;对称变换思想;
规律: “奇变偶不变,符号看象限”。 你对这句话怎么理解?
设置意图:引导学生养成自己归纳总结的习惯及方法,体会知识的形成、发展、应用的过程。
学生活动:观察、思考、口答。
达标检测:1.已知,则值为( )
A. B. — C. D. —
2.cos (+α)= —,<α<,sin(-α) 值为( )
A. B. C. D. —
3.化简:得( )
A. B. C. D.±
4.已知,,那么的值是
5.如果且那么的终边在第 象限
6.求值:2sin(-1110 ) -sin960 +=      .
7.已知方程sin( 3) = 2cos( 4),求的值。
练习答案:1.C 2.A 3.C 4. 5.二 6.-2
7.解: ∵sin( 3) = 2cos( 4)
∴ sin(3 ) = 2cos(4 )
∴ sin( ) = 2cos( )
∴sin = 2cos 且cos 0

六、发导学案、布置作业
1. 若,则 。
2.求的值。
【板书设计】
三角函数的诱导公式(二)
一、诱导公式1-6 例一
二、探究新知 例二
三、练习
【教学反思】
通过本节内容的教学,在诱导公式与的教学过程中经历对对称有关的图形进行观察、分析、操作、抽象概括,探索旋转变换的性质,探求如何运用“一个图形经旋转变换后都可以分解为两个轴对称变换的乘积”方法和过程,体验“以局部带整体”的作图思想方法,进一步发展学生对对称图形的欣赏和探索能力,使学生体会旋转变换在现实生活的意义,激发学生的数学学习兴趣,增强审美观念,培养学生的科学探究精神。
诱导公式沟通了任意角三角函数值与锐角三角函数值以及终边有特殊位置关系的角的三角函数值之间的联系.在求任意角的三角函数值,解决有关的三角变换等方面有重要的作用,特别是诱导公式中的角可以是任意角,即,它在终边具有某种对称性的角的三角函数变换中,应用广泛,如后续课中,画余弦曲线就是利用诱导公式把正弦曲线向左平移个长度单位而得到的.
在教学方式上采用自主探索,创造性解决问题,并激发学生积极主动参与课堂活动,提高学生学习数学的兴趣,使学生在活动过程中,积极探索发现。为了完成与三角函数间的关系这一节的教学任务,我采用让学生自主学习的教学方法。面对这个问题,学生的兴趣立刻被触发了,求知欲也十分强烈,大家都跃跃欲试,争着进行推倒.。当学生做完三道例题时,马上提出对于与三角函数间的关系如何推导,这时课堂气氛十分热烈,学生的思维十分活跃,大家竞相发言,课堂高潮跌起。待同学们弄明白后,及时引导学生从特殊到一般,问与三角函数间的关系如何,最后总结出:“奇变偶不变,符号看象限”整个课堂得到升华。
§1.3.2三角函数诱导公式(二)
课前预习学案
一、预习目标
熟记正弦、余弦和正切的诱导公式,理解公式的由来并能正确地运用这些公式进行任意角的正弦、余弦和正切值的求解、简单三角函数式的化简
二、复习与预习
1.利用单位圆表示任意角的正弦值和余弦值;____________________
2.诱导公式一及其用途:
______________________________
______________________________
______________________________
3、对于任何一个内的角,以下四种情况有且只有一种成立(其中为锐角):
4、 诱导公式二:
5、诱导公式三:
6、诱导公式四:
7、诱导公式五:
8、诱导公式六:
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1.通过本节内容的教学,使学生进一步理解和掌握四组正弦、余弦和正切的诱导公式,并能正确地运用这些公式进行任意角的正弦、余弦和正切值的求解、简单三角函数式的化简与三角恒等式的证明;
2.通过公式的应用,培养学生的化归思想,运算推理能力、分析问题和解决问题的能力;
学习重难点:
重点:诱导公式及诱导公式的综合运用.
难点:公式的推导和对称变换思想在学生学习过程中的渗透.
二、学习过程
创设情境:
问题1:请同学们回顾一下前一节我们学习的与、、的三角函数关系。
问题2: 如果两个点关于直线y=x对称,它们的坐标之间有什么关系呢?若两个点关于y轴对称呢?
探究新知:
问题1:如图:设的终边与单位圆相交于点P,则P点坐标为 ,点P关于直线y=x的轴对称点为M,则M点坐标为 , 点M关于y轴的对称点N,则N的坐标为 ,
∠XON的大小与的关系是什么呢?点N的坐标又可以怎么表示呢?

问题2:观察点N的坐标,你从中发现什么规律了?

例1 利用上面所学公式求下列各式的值:
(1) (2) (3) (4)
变式训练1: 将下列三角函数化为到之间的三角函数:
(1) (2) (3)
思考:我们学习了的诱导公式,还知道的诱导公式,那么对于,又有怎样的诱导公式呢?
例2 已知方程sin( 3) = 2cos( 4),求的值
变式训练2:已知,求的值。
课堂练习
1.利用上面所学公式求下列各式的值:
(1) (2)
2.将下列三角函数化为到之间的三角函数:
(1) (2)
归纳总结:
课后练习与提高
1.已知,则值为( )
A. B. — C. D. —
2.cos (+α)= —,<α<,sin(-α) 值为( )
A. B. C. D. —
3.化简:得( )
A. B. C. D.±
4.已知,,那么的值是
5.如果且那么的终边在第 象限
6.求值:2sin(-1110 ) -sin960 +=      .
7.已知方程sin( 3) = 2cos( 4),求的值。
PAGE
102. 2.1 向量的加法运算及其几何意义
教学目标:
1、掌握向量的加法运算,并理解其几何意义;
2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;
3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;
教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.
教学难点:理解向量加法的定义.
学 法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.
教 具:多媒体或实物投影仪,尺规
授课类型:新授课
教学过程:
一、设置情景:
复习:向量的定义以及有关概念
强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置
情景设置:
(1)某人从A到B,再从B按原方向到C,
则两次的位移和:
(2)若上题改为从A到B,再从B按反方向到C,
则两次的位移和:
(3)某车从A到B,再从B改变方向到C,
则两次的位移和:
(4)船速为,水速为,则两速度和:
二、探索研究:
1、向量的加法:求两个向量和的运算,叫做向量的加法.
2、三角形法则(“首尾相接,首尾连”)
如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即 a+b,规定: a + 0-= 0 + a
探究:(1)两相向量的和仍是一个向量;
(2)当向量与不共线时,+的方向不同向,且|+|<||+||;
(3)当与同向时,则+、、同向,且|+|=||+||,当与反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则+的方向与相同,且|+b|=||-||.
(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加
3.例一、已知向量、,求作向量+
作法:在平面内取一点,作 ,则.
4.加法的交换律和平行四边形法则
问题:上题中+的结果与+是否相同? 验证结果相同
从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)
2)向量加法的交换律:+=+
5.向量加法的结合律:(+) +=+ (+)
证:如图:使, ,
则(+) +=,+ (+) =
∴(+) +=+ (+)
从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.
三、应用举例:
例二(P94—95)略
练习:P95
四、小结
1、向量加法的几何意义;
2、交换律和结合律;
3、注意:|+| ≤ || + ||,当且仅当方向相同时取等号.
五、课后作业:
P103第2、3题
六、板书设计(略)
2.2.1 向量的加法运算及其几何意义
课前预习学案
预习目标:
通过复习提问回顾向量定义及有关概念;利用问题情景提出向量加法运算、给出实际背景。
预习内容:
复习:提问向量的定义以及有关概念。
强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置
2、情景设置:
(1)某人从A到B,再从B按原方向到C,
则两次的位移和: 。
(2)若上题改为从A到B,再从B按反方向到C,
则两次的位移和: 。
(3)某车从A到B,再从B改变方向到C,
则两次的位移和: 。
(4)船速为,水速为,则两速度和:

3、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
学习目标
1、掌握向量的加法运算,并理解其几何意义;
2、会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;
3、通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;
学习过程:
1、向量的加法: 叫做向量的加法.
2、三角形法则(“ ”)
如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即 a+b,规定: 。
探究:(1)两相向量的和仍是 ;
(2)当向量与不共线时,+的方向 ,且|+| ||+||;
(3)当与同向时,则+、、 且|+| ||+||,当与反向时,若||>||,则+的方向与相同,且|+| ||-||;若||<||,则+的方向与相同,且|+b| ||-||.
(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加
3.例1、已知向量、,求作向量+
作法:
4.加法的交换律和平行四边形法则
问题:上题中+的结果与+是否相同?
从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)
2)向量加法的交换律:
5.向量加法的结合律:
证:
6、应用举例:
例二(P94—95)
练习:P95
课后练习与提高
1、一艘船从A点出发以的速度向垂直于对岸的方向行驶,船的实际航行的速度的大小为,求水流的速度.
2、一艘船距对岸,以的速度向垂直于对岸的方向行驶,到达对岸时,船的实际航程为8km,求河水的流速.
3、一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,船的实际航行的速度的大小为,方向与水流间的夹角是,求和.
4、一艘船以5km/h的速度在行驶,同时河水的流速为2km/h,则船的实际航行速度大小最大是km/h,最小是km/h
5、已知两个力F1,F2的夹角是直角,且已知它们的合力F与F1的夹角是60,|F|=10N求F1和F2的大小.
6、用向量加法证明:两条对角线互相平分的四边形是平行四边形
参考答案:略
A B C
C A B
A B
C
A B
C
a
a
A
B
C
a+b
a+b
a
a
b
b
a


a+b
a
O
A
B
a
a
a
b
b
b
A B C
C A B
A B
C
A B
C
A
B
C
a+b
a+b
a
a
b
b
a


a+b
a
O
A
B
a
a
a
b
b
b
PAGE
72. 2.2 向量的减法运算及其几何意义
教学目标:
1、 了解相反向量的概念;
2、掌握向量的减法,会作两个向量的减向量,并理解其几何意义;
3、通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.
教学重点:向量减法的概念和向量减法的作图法.
教学难点:减法运算时方向的确定.
学 法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量.
教 具:多媒体或实物投影仪,尺规
授课类型:新授课
教学思路:
复习:向量加法的法则:三角形法则与平行四边形法则
向量加法的运算定律:
例:在四边形中,CB+BA+BC= .
解:CB+BA+BC=CB+BA+AD=CD .
提出课题:向量的减法
用“相反向量”定义向量的减法
(1) “相反向量”的定义:与a长度相同、方向相反的向量.记作 -a
(2) 规定:零向量的相反向量仍是零向量.-(-a) = a.
任一向量与它的相反向量的和是零向量.a + (-a) = 0
如果a、b互为相反向量,则a = -b, b =-a, a + b = 0
(3) 向量减法的定义:向量a加上的b相反向量,叫做a与b的差.
即:a - b = a + (-b) 求两个向量差的运算叫做向量的减法.
用加法的逆运算定义向量的减法:
向量的减法是向量加法的逆运算:
若b + x = a,则x叫做a与b的差,记作a - b
求作差向量:已知向量a、b,求作向量
∵(a-b) + b = a + (-b) + b = a + 0 = a
作法:在平面内取一点O,
作= a, = b
则= a - b
即a - b可以表示为从向量b的终点指向向量a的终点的向量.
注意:1表示a - b.强调:差向量“箭头”指向被减数
2用“相反向量”定义法作差向量,a - b = a + (-b)
显然,此法作图较繁,但最后作图可统一.
探究:
如果从向量a的终点指向向量b的终点作向量,那么所得向量是b - a.
2)若a∥b, 如何作出a - b ?
例题:
例1、(P97 例三)已知向量a、b、c、d,求作向量a-b、c-d.
解:在平面上取一点O,作= a, = b, = c, = d,
作, , 则= a-b, = c-d
例2、平行四边形中,a,b,
用a、b表示向量、.
解:由平行四边形法则得:
= a + b, = = a-b
变式一:当a, b满足什么条件时,a+b与a-b垂直?(|a| = |b|)
变式二:当a, b满足什么条件时,|a+b| = |a-b|?(a, b互相垂直)
变式三:a+b与a-b可能是相当向量吗?(不可能,∵ 对角线方向不同)
练习:P98
小结:向量减法的定义、作图法|
作业:P103第4、5题
板书设计(略)
2.2.2 向量的减法运算及其几何意义
课前预习学案
预习目标:
复习回顾向量的加法法则及其运算律,为本节新授内容做好铺垫。
预习内容:
向量加法的法则: 。
向量加法的运算定律: 。
例:在四边形中,CB+BA+BC= .
解:CB+BA+BC=CB+BA+AD=CD .
提出疑惑:向量有加法运算,那么它有减法吗?
课内探究学案
学习目标:
1、 了解相反向量的概念;
2、掌握向量的减法,会作两个向量的减向量,并理解其几何意义;
3、通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.
学习过程:
一、提出课题:向量的减法
用“相反向量”定义向量的减法
“相反向量”的定义: 。
规定:零向量的相反向量仍是 .-(-a) = a.
任一向量与它的相反向量的和是 .a + (-a) = 0
如果a、b互为相反向量,则a = -b, b = -a, a + b = 0
(3) 向量减法的定义: .
即: 求两个向量差的运算叫做向量的减法.
用加法的逆运算定义向量的减法:
向量的减法是向量加法的逆运算:
若b + x = a,则x叫做a与b的差,记作 。
求作差向量:已知向量a、b,求作向量
∵(a-b) + b = a + (-b) + b = a + 0 = a
作法:
注意:1表示a -b.强调:差向量“箭头”指向
2用“相反向量”定义法作差向量,a -b = 。 显然,此法作图较繁,但最后作图可统一.
探究:
如果从向量a的终点指向向量b的终点作向量,那么所得向量是 。
2)若a∥b, 如何作出a - b ?
二、例题:
例1、(P97 例三)已知向量a、b、c、d,求作向量a-b、c-d.
例2、平行四边形中,a,b,
用a、b表示向量、.
变式一:当a, b满足什么条件时,a+b与ab垂直?(|a| = |b|)
变式二:当a, b满足什么条件时,|a+b| = |ab|?(a, b互相垂直)
变式三:a+b与ab可能是相当向量吗?(不可能,∵ 对角线方向不同)
课后练习与提高
1.在△ABC中, =a, =b,则等于( )
A.a+b? B.-a+(-b) C.a-b? D.b-a
2.O为平行四边形ABCD平面上的点,设=a, =b, =c, =d,则A.a+b+c+d=0 B.a-b+c-d=0 C.a+b-c-d=0 D.a-b-c+d=0
3.如图,在四边形ABCD中,根据图示填空:
a+b= ,b+c= ,c-d= ,a+b+c-d= .
4、如图所示,O是四边形ABCD内任一点,试根据图中给出的向量,确定a、b、c、d的方向(用箭头表示),使a+b=,c-d=,并画出b-c和a+d.
参考答案:
1、D 2、D 3、f,e,f,0 4、略
A B
D C
O
a
b
B
a
b
a-b
O
A
B
a
B’
b
b
b
B
a+ (-b)
a
b
a-b
A
A
B
B
B’
O
a-b
a
a
b
b
O
A
O
B
a-b
a-b
B
A
O
-b
A
B
C
b
a
d
c
D
O
A B
D C
A B
D C
ab
A
A
B
B
B’
O
ab
a
a
b
b
O
A
O
B
ab
ab
B
A
O
b
PAGE
62.2.1 向量的加法运算及其几何意义
教学目标:
掌握向量的加法运算,并理解其几何意义;
会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;
通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;
教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.
教学难点:理解向量加法的定义.
教学思路:
一、设置情景:
复习:向量的定义以及有关概念
强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置
情景设置:
(1)某人从A到B,再从B按原方向到C, 则两次的位移和:
(2)若上题改为从A到B,再从B按反方向到C, 则两次的位移和:
(3)某车从A到B,再从B改变方向到C, 则两次的位移和:
(4)船速为,水速为,则两速度和:
二、探索研究:
1、向量的加法:求两个向量和的运算,叫做向量的加法.
2、三角形法则(“首尾相接,首尾连”)
如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即 a+b, 规定: a + = + a
3.例1、已知向量、,求作向量+
练习:已知向量、,求作向量+
(1)
(2)
(3)
探究:(1)两向量的和与两个数的和有什么不同?
(2)当向量与不共线时, |+|<||+||;什么时候|+|=||+||,
什么时候|+|=||-||,
当向量与不共线时,,,+的方向不同,且|+|<||+||;
当向量与共线时,
① 当与同向时,则+、、同向,且|+|=||+||,
②当与反向时,若||>||,则+的方向与相同,且|+|=||-||;
若||<||,则+的方向与相同,且|+b|=||-||.
(3)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加
4.加法的交换律和平行四边形法则
已知向量、,求作向量+,+
问题:上题中+的结果与+是否相同?
从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)
2)向量加法的交换律:+=+
5.你能证明:向量加法的结合律:(+) +=+ (+) 吗?
6.由以上证明你能得到什么结论? 多个向量的加法运算可以按照任意的次序、任意的组合来进行.
三、应用举例:
例2、长江两岸之间没有大桥的地方,常常通过轮渡进行运输。现有一艘船从长江南岸A点出发,以5km/h的速度向垂直于对岸的方向行驶,同时江水的速度为向东2km/h
试用向量表示江水速度、船速及船实际航行的速度(保留两个有效数字);
求船实际航行的速度的大小与方向(用与江水速度之间的夹角表示,精确到度)。
变式1、一艘船从A点出发以的速度向垂直于对岸的方向行驶,船的实际航行速度的大小为,求水流的速度.
变式2、一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,船的实际航行的速度的大小为,方向与水流间的夹角是,求和.
练习:课本第84页1、2、3、4题
四、小结
1、向量加法的几何意义;
2、交换律和结合律;
3、|+| ≤ || + ||,当且仅当方向相同时取等号.
五、课后作业
习题2.2A组第二题
A B
C
A B
C
A B C
C A B
A
B
C
a+b
a+b
a
a
b
b
a


a+b
a
b
a
PAGE
12. 2.3向量数乘运算及其几何意义
学习目标:1.掌握向量数乘的定义,理解向量数乘的几何意义;
2.掌握向量数乘的运算律;
3.理解两个向量共线的充要条件,能够运用两向量共线的条件判定两向量是否平行.
教学重点:理解向量数乘的几何意义.
教学重点:向量共线的充要条件及其应用.
教学过程
情景平台
已知非零向量a,把a+a+a记作3a,(-a)+(-a)+(-a)记作-3a,试作出3a和
-3a.
概念导入
我们规定 这种运算叫做向量的数乘,记作 ,它的长度和方向规定如下:
(1)
(2)
有上可知:=0时,a=
向量数乘的几何意义是把向量a沿a的方向或a的反方向放大或缩小.
运算律
完成以下三个问题
(1)已知非零向量a,求作向量2(3a)和6a,并进行比较.
(2)已知非零向量a,求作向量5a和2a+3a,并进行比较
a
(3)已知非零向量a,b,求作向量2(a+b)和2a+2b,并把结果进行比较分析.
总结运算律:设为实数,那么
能力平台
例1.计算:
(1)(-3)×4a
(2)3(a+b)-2(a-b)-a
(3)(2a+3b-c)-(3a-2b+c)
变式训练
1、点C在线段AB上,且,则= ,= .
2、课本练习3、5题
3、若3m+2n=a,m-3n=b,其中a,b是已知向量,求m,n.
问题引导
1、引入向量数乘运算后,你能发现数乘向量与原向量之间的位置关系吗
怎样理解两向量平行?与两直线平行有什么异同?
2、如果a(a≠0)、b,如果有一个实数λ,使b=λa. 那么由向量数乘的定义,知a与b具有怎样的位置关系
3、已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的μ倍,即|b|=μ|a|,那么当a与b同方向时,有b= , 当a与b反方向时,有b= .
有上可知:
两个向量共线的等价条件是:
能力平台
例2 如图,已知任意两个非零向量a、b,试作=a+b,=a+2b,=a+3b.你能判断A、B、C三点之间的位置关系吗 为什么
例3 如图, ABCD的两条对角线相交于点M,且=a,=b,你能用a、b表示和吗
变式训练
1、课本练习第4题
2、课本练习第6题
【小结】
1°定义实数与向量的积
与a同向,且|λa|=|λ||a|=λ|a|(λ>0)
λa= 与a反向,且|λa|=|λ||a|=-λ|a|(λ<0)
a=0(λ=0)
2°实数与向量积的运算律.
3°向量b与非零向量a共线的充要条件是有且只有一个实数λ,使b=λa.
作业:习题2.2 A组第9、10题
课下练习:习题2.2 A组第11、12、13题
课下思考:习题2.2 B组第1、2、3、4、5题
a
a
a
b
(1);
(2)=+;
(3)=+。
特别地,我们有
(-)=-()=(-)
=-
PAGE
12.5.2向量在物理中的应用举例
教学目的:
1.通过力的合成与分解模型、速度的合成与分解模型,掌握利用向量方法研究物理中相关问题
的步骤,明了向量在物理中应用的基本题型,进一步加深对所学向量的概念和向量运算的认识;
2.通过对具体问题的探究解决,进一步培养学生的数学应用意识,提高应用数学的能力,体会
数学在现实生活中的作用.
教学重点:运用向量的有关知识对物理中的力的作用、速度分解进行相关分析来计算.
教学难点:将物理中有关矢量的问题转化为数学中向量的问题.
教学过程:
一、复习引入:
1. 讲解《习案》作业二十五的第4题.
2. 你能掌握物理中的哪些矢量?向量运算的三角形法则与四边形法则是什么?
二、讲解新课:
例1. 在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上做引体向上运动,两臂的夹角越小越省力. 你能从数学的角度解释这种形象吗?
探究1:
(1)为何值时,||最小,最小值是多少
(2)| |能等于||吗 为什么
探究2:
你能总结用向量解决物理问题的一般步骤吗
(1)问题的转化:把物理问题转化为数学问题;
(2)模型的建立:建立以向量为主体的数学模型;
(3)参数的获得:求出数学模型的有关解——理论参数值;
(4)问题的答案:回到问题的初始状态, 解决相关物理现象.
例2. 如图,一条河的两岸平行,河的宽度d=500 m,一艘船从A处出发到河对岸.已知船的速度||=10 km/h,水流速度||=2 km/h,问行驶航程最短时,所用时间是多少(精确到0.1 min)?
思考:
1. “行驶最短航程”是什么意思?
2. 怎样才能使航程最短?
三、课堂小结
向量解决物理问题的一般步骤:
(1)问题的转化:把物理问题转化为数学问题;
(2)模型的建立:建立以向量为主体的数学模型;
(3)参数的获得:求出数学模型的有关解——理论参数值;
(4)问题的答案:回到问题的初始状态, 解决相关物理现象.
四、课后作业
1. 阅读教材P.111到P.112; 2. 《习案》作业二十六.
PAGE
12.4.1平面向量的数量积的物理背景及其含义
教学目的:
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理垂直的问题;
4.掌握向量垂直的条件.
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学过程:
一、复习引入:
(1)两个非零向量夹角的概念:
已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.
说明:(1)当θ=0时,a与b同向;
(2)当θ=π时,a与b反向;
(3)当θ=时,a与b垂直,记a⊥b;
(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0≤≤180
(2)两向量共线的判定
(3)练习
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=( C )
A.6 B.5 C.7 D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为( B )
A.-3 B.-1 C.1 D.3
(4)力做的功:W = |F||s|cos,是F与s的夹角.
二、讲解新课:
1.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,
则数量|a||b|cos叫a与b的数量积,记作ab,即有ab = |a||b|cos,(0≤θ≤π).
并规定0向量与任何向量的数量积为0.
探究:1、向量数量积是一个向量还是一个数量?它的符号什么时候为正?什么时候为负?
2、两个向量的数量积与实数乘向量的积有什么区别?
(1)两个向量的数量积是一个实数,不是向量,符号由cos的符号所决定.
(2)两个向量的数量积称为内积,写成ab;今后要学到两个向量的外积a×b,而ab是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.
(3)在实数中,若a0,且ab=0,则b=0;但是在数量积中,若a0,且ab=0,不能推出b=0.因为其中cos有可能为0.
(4)已知实数a、b、c(b0),则ab=bc a=c.但是ab = bc a = c
如右图:ab = |a||b|cos = |b||OA|,bc = |b||c|cos = |b||OA|
ab = bc 但a c
(5)在实数中,有(ab)c = a(bc),但是(ab)c a(bc)
显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线.
2.“投影”的概念:作图
定义:|b|cos叫做向量b在a方向上的投影.投影也是一个数量,不是向量;
当为锐角时投影为正值; 当为钝角时投影为负值; 当为直角时投影为0;
当 = 0时投影为 |b|; 当 = 180时投影为 |b|.
3.向量的数量积的几何意义:
数量积ab等于a的长度与b在a方向上投影|b|cos的乘积.
探究:两个向量的数量积的性质:设a、b为两个非零向量,
1、ab ab = 0
2、当a与b同向时,ab = |a||b|; 当a与b反向时,ab = |a||b|.
特别的aa = |a|2或 |ab| ≤ |a||b| cos =
探究:平面向量数量积的运算律
1.交换律:a b = b a
证:设a,b夹角为,则a b = |a||b|cos,b a = |b||a|cos ∴a b = b a
2.数乘结合律:(a)b =(ab) = a(b)
证:若> 0,(a)b =|a||b|cos, (ab) =|a||b|cos,a(b) =|a||b|cos,
若< 0,(a)b =|a||b|cos() = |a||b|(cos) =|a||b|cos,(ab) =|a||b|cos,
a(b) =|a||b|cos() = |a||b|(cos) =|a||b|cos.
3.分配律:(a + b)c = ac + bc
在平面内取一点O,作= a, = b,= c, ∵a + b (即)在c方向上的投影等于a、b在c方向上的投影和,即 |a + b| cos = |a| cos1 + |b| cos2
∴| c | |a + b| cos =|c| |a| cos1 + |c| |b| cos2, ∴c(a + b) = ca + cb 即:(a + b)c = ac + bc
说明:(1)一般地,(a·b)с≠a(b·с)
(2)a·с=b·с,с≠0a=b
(3)有如下常用性质:a2=|a|2,
(a+b)(с+d)=a·с+a·d+b·с+b·d
三、讲解范例:
例1.证明:(a+b)2=a2+2a·b+b2
例2.已知|a|=12, |b|=9,,求与的夹角。
例3.已知|a|=6, |b|=4, a与b的夹角为60o求:(1)(a+2b)·(a-3b). (2)|a+b|与|a-b|.
( 利用 )
例4.已知|a|=3, |b|=4, 且a与b不共线,k为何值时,向量a+kb与a-kb互相垂直.
四、课堂练习:
1.P106面1、2、3题。
2.下列叙述不正确的是( )
A. 向量的数量积满足交换律 B. 向量的数量积满足分配律
C. 向量的数量积满足结合律 D. a·b是一个实数
3.|a|=3,|b|=4,向量a+b与a-b的位置关系为( )
A.平行 B.垂直 C.夹角为 D.不平行也不垂直
4.已知|a|=8, |b|=10, |a+b|=16,求a与b的夹角.
五、小结:
1.平面向量的数量积及其几何意义;
2.平面向量数量积的重要性质及运算律;
3.向量垂直的条件.
六、作业:《习案》作业二十三。
PAGE
11. 1.1任意角
一、教材分析
“任意角的三角函数”是本章教学内容的基本概念,它又是学好本章教学内容的关键。它是学生在学习了锐角三角函数后,对三角函数有一定的了解的基础上,进行的推广。它又是下面学习平面向量、解析几何等内容的必要准备。并且,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念。
二、教学目标
1.理解任意角的概念;
2.学会建立直角坐标系讨论任意角,判断象限角,掌握终边相同角的集合的书写。
三、教学重点难点
1.判断已知角所在象限;
2.终边相同的角的书写。
四、学情分析
五、教学方法
1.本节教学方法采用教师引导下的讨论法,通过多媒体课件在教师的带领下,学生发现就概念、就方法的不足之处,进而探索新的方法,形成新的概念,突出数形结合思想与方法在概念形成与形式化、数量化过程中的作用,是一节体现数学的逻辑性、思想性比较强的课.
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
七、课时安排:1课时
八、教学过程
(一)复习引入:
1.初中所学角的概念。
2.实际生活中出现一系列关于角的问题。
(二)新课讲解:
1.角的定义:一条射线绕着它的端点,从起始位置旋转到终止位置,形成
一个角,点 是角的顶点,射线分别是角的终边、始边。
说明:在不引起混淆的前提下,“角”或“”可以简记为.
2.角的分类:
正角:按逆时针方向旋转形成的角叫做正角;
负角:按顺时针方向旋转形成的角叫做负角;
零角:如果一条射线没有做任何旋转,我们称它为零角。
说明:零角的始边和终边重合。
3.象限角:
在直角坐标系中,使角的顶点与坐标原点重合,角的始边与轴的非负轴重合,则
(1)象限角:若角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例如:都是第一象限角;是第四象限角。
(2)非象限角(也称象限间角、轴线角):如角的终边在坐标轴上,就认为这个角不属于任何象限。例如:等等。
说明:角的始边“与轴的非负半轴重合”不能说成是“与轴的正半轴重合”。因为
轴的正半轴不包括原点,就不完全包括角的始边,角的始边是以角的顶点为其端点的射线。
4.终边相同的角的集合:由特殊角看出:所有与角终边相同的角,连同角
自身在内,都可以写成的形式;反之,所有形如的角都与角的终边相同。 从而得出一般规律:
所有与角终边相同的角,连同角在内,可构成一个集合,
即:任一与角终边相同的角,都可以表示成角与整数个周角的和。
说明:终边相同的角不一定相等,相等的角终边一定相同。
5.例题分析:
例1 在与范围内,找出与下列各角终边相同的角,并判断它们是第几象限角?
(1) (2) (3)
解:(1),
所以,与角终边相同的角是,它是第三象限角;
(2),
所以,与角终边相同的角是角,它是第四象限角;
(3),
所以,角终边相同的角是角,它是第二象限角。
例2 若,试判断角所在象限。
解:∵
∴与终边相同, 所以,在第三象限。
写出下列各边相同的角的集合,并把中适合不等式的元素
写出来: (1); (2); (3).
解:(1),
中适合的元素是
(2),
S中适合的元素是
(3)
S中适合的元素是
(三)反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(四)发导学案、布置预习。
九、板书设计
十、教学反思
以学生的学习为视角,可以对这节课的教学进行如下反思:
(1)学生对课堂提问,回答是否积极?学生能否独立或通过合作探索出问题的结果?
(2)学生处理课堂练习题情况如何?可能的原因是什么?
(3)教学任务是否完成?
下面我们着重分析一下提问的效果。
在回答教学设计中的各项提问时,大多数学生存在一定困难,特别是“问题1:任意画一个锐角α,借助三角板,找出sinα的近似值.”和“问题5:现在,角的范围扩大了,由锐角扩展到了0°~360°内的角,又扩展到了任意角,并且在直角坐标系中,使得角的顶点与原点重合,始边与x轴的正半轴重合.在这样的环境中,你认为,对于任意角α,sinα怎样定义好呢?”
对于问题1,除了由于时间久而遗忘有关知识外,学生不熟悉独立地由一个锐角α,构造直角三角形并求锐角三角函数的过程是主要原因,他们更习惯于在给定的直角三角形中解决问题。
对于问题5,教师强调“在坐标系下怎么样?”后,有学生开始尝试回答。这说明这个问题要求的思维概括水平较高,学生仅利用锐角三角函数的有关知识,难以形成当前研究任意角三角函数的思想方法。因此,教师必须要提供必要的脚手架。
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
十一、学案设计(见下页)
1.1.1任意角
课前预习学案
一、预习目标
1、认识角扩充的必要性,了解任意角的概念,与过去学习过的一些容易混淆的概念相区分;
2、能用集合和数学符号表示终边相同的角,体会终边相同角的周期性;
3、能用集合和数学符号表示象限角;
4、能用集合和数学符号表示终边满足一定条件的角.
二、预习内容
1.回忆:初中是任何定义角的?
一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到终止位置OB,就形成角α。旋转开始时的射线OA叫做角的始边,OB叫终边,射线的端点O叫做叫α的顶点。
在体操比赛中我们经常听到这样的术语:“转体720o” (即转体2周),“转体1080o”(即转体3周);再如时钟快了5分钟,现要校正,需将分针怎样旋转?如果慢了5分钟,又该如何校正?
2.角的概念的推广:?
3.正角、负角、零角概念
4.象限角
思考三个问题:
1.定义中说:角的始边与x轴的非负半轴重合,如果改为与x轴的正半轴重合行不行,为什么?
2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字?
3.是不是任意角都可以归结为是象限角,为什么?
4.已知角的顶点与坐标系原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角?
(1)4200; (2)-750; (3)8550; (4)-5100.
5.终边相同的角的表示
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
(1)推广角的概念,理解并掌握正角、负角、零角的定义;
(2)理解任意角以及象限角的概念;
(3)掌握所有与角a终边相同的角(包括角a)的表示方法;
学习重难点:
重点:理解正角、负角和零角和象限角的定义,掌握终边相同角的表示方法及判断。
难点: 把终边相同的角用集合和数学符号语言表示出来。
二、学习过程
例1. 例1在范围内,找出与角终边相同的角,并判定它是第几象限角.(注:是指)
例2.写出终边在轴上的角的集合.
例3.写出终边直线在上的角的集合,并把中适合不等式
的元素写出来.
(三)【回顾小结】
1.尝试练习
(1)教材第3、4、5题.
(2)补充:时针经过3小时20分,则时针转过的角度为 ,分针转过的角度为 。
注意: (1);(2)是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差的整数倍.
2.学习小结
你知道角是如何推广的吗
象限角是如何定义的呢
(3)你熟练掌握具有相同终边角a的表示了吗
(四)当堂检测
1.设, ,那么有( ).
  A.   B.  C.( )  D.
2.用集合表示:
  (1)各象限的角组成的集合.  (2)终边落在 轴右侧的角的集合.
3.在~ 间,找出与下列各角终边相同的角,并判定它们是第几象限角
(1) ;(2) ;(3) .
3.解:(1)∵
    ∴与 角终边相同的角是 角,它是第三象限的角;
  (2)∵
    ∴与 终边相同的角是 ,它是第四象限的角;
  (3)
  所以与 角终边相同的角是 ,它是第二象限角.
课后练习与提高
1. 若时针走过2小时40分,则分针走过的角是多少?
2. 下列命题正确的是: ( )
(A)终边相同的角一定相等。 (B)第一象限的角都是锐角。
(C)锐角都是第一象限的角。 (D)小于的角都是锐角。
3. 若a是第一象限的角,则是第 象限角。
4.一角为 ,其终边按逆时针方向旋转三周后的角度数为_ _.
5.集合M={α=k,k∈Z}中,各角的终边都在( )
  A.轴正半轴上,     B.轴正半轴上,
  C. 轴或 轴上,     D. 轴正半轴或 轴正半轴上
6.设 ,     
    C={α|α= k180o+45o ,k∈Z} ,     
    
则相等的角集合为_ _.
参考答案
1. 解:2小时40分=小时,
故分针走过的角为480。
2. C 3. 一或三 4. 5. C 6. _B=D,C=E
PAGE
71.3诱导公式(一)
教学目标
(一)知识与技能目标
⑴理解正弦、余弦的诱导公式.
⑵培养学生化归、转化的能力.
(二)过程与能力目标
(1)能运用公式一、二、三的推导公式四、五.
(2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.
(三)情感与态度目标
通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质.
教学重点
掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式.
教学难点
运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.
教学过程
一、复习:
诱导公式(一)
诱导公式(二)
诱导公式(三)
诱导公式(四)
对于五组诱导公式的理解 :

②这四组诱导公式可以概括为:
总结为一句话:函数名不变,符号看象限
练习1:P27面作业1、2、3、4。
2:P25面的例2:化简
二、新课讲授:
1、诱导公式(五)
2、诱导公式(六)
总结为一句话:函数正变余,符号看象限
例1.将下列三角函数转化为锐角三角函数:
练习3:求下列函数值:
例2.证明:(1)
(2)
例3.化简:
解:
小结:
①三角函数的简化过程图:
②三角函数的简化过程口诀:
负化正,正化小,化到锐角就行了.
练习4:教材P28页7.
三.课堂小结
①熟记诱导公式五、六;
②公式一至四记忆口诀:函数名不变,正负看象限;
③运用诱导公式可以将任意角三角函数转化为锐角三角函数.
四.课后作业:
①阅读教材;
②《习案》作业七.
公式一或二或四
任意负角的
三角函数
任意正角的
三角函数
00~3600间角
的三角函数
00~900间角
的三角函数
查表
求值
公式一或三
PAGE
12.3.3平面向量的坐标运算
教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
教学过程:
一、复习引入:
1.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量
二、讲解新课:
1.平面向量的坐标运算
思考1:已知:,,你能得出、、的坐标吗?
设基底为、,则
即,同理可得
(1) 若,,则,
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
(2)若和实数,则.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
设基底为、,则,即
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
思考2:已知,,怎样求的坐标?
(3) 若,,则
==( x2, y2) (x1,y1)= (x2 x1, y2 y1)
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.
思考3:你能标出坐标为(x2 x1, y2 y1)的P点吗?
向量的坐标与以原点为始点、点P为终点的向量的坐标是相同的。
三、讲解范例:
例1 已知=(2,1), =(-3,4),求+,-,3+4的坐标.
例2 已知平面上三点的坐标分别为A(2, 1), B(1, 3), C(3, 4),求点D的坐标使这四点构成平行四边形四个顶点.
解:当平行四边形为ABCD时,由得D1=(2, 2)
当平行四边形为ACDB时,得D2=(4, 6),当平行四边形为DACB时,得D3=(6, 0)
例3已知三个力 (3, 4), (2, 5), (x, y)的合力++=,求的坐标.
解:由题设++= 得:(3, 4)+ (2, 5)+(x, y)=(0, 0)
即: ∴ ∴(5,1)
四、课堂练习:
1.若M(3, -2) N(-5, -1) 且 , 求P点的坐标
2.若A(0, 1), B(1, 2), C(3, 4) , 则2= .
3.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) , 求证:四边形ABCD是梯形.
五、小结:平面向量的坐标运算;
六、课后作业:《习案》作业二十
PAGE
11. 4.3 正切函数的性质与图象
班级 姓名
学习目标:
1、用单位圆中的正切线作正切函数的图象;
2、用正切函数图象解决函数有关的性质;
3、理解并掌握作正切函数图象的方法;
4、理解用函数图象解决有关性质问题的方法;
教学重点:正切函数的性质与图象的简单应用.
教学难点:正切函数性质的深刻理解及其简单应用.
教学过程:
知识探究(一):正切函数的性质:
思考1:正切函数的定义域是__________,
思考2:根据诱导公式与周期函数的定义,你能判断正切函数是周期函数吗?若是,其最小正周期 T=_______
思考3: 函数的周期T=__ ,
一般地,函数 的周期T=____.
思考4:根据相关诱导公式,你能判断正切函数具有奇偶性吗?
思考5:观察右图中的正切线,当角x在 ()内增加时,
正切函数值发生什么变化
由此反映出一个什么性质
思考6:结合正切函数的周期性,正切函数的单调性如何?
正切函数在开区间( )()内都是 (增、减)函数。
思考7:正切函数在整个定义域内是增函数吗?
正切函数会不会在某一区间内是减函数?
思考8:当x大于且无限接近时,正切值如何变化?
当x小于且无限接近时, 正切值又如何变化?
由此分析,正切函数的值域是什么
知识探究(二):正切函数的图象:
思考1:类比正弦函数图象的作法,可以利用正切线作正切函数y=tanx,
x∈()的图象,具体应如何操作?
思考2:右图中,直线x= 和x= 与正切函数的图象的位置关系如何?
思考3:结合正切函数的周期性, 如何画出正切函数在整个定义域内的图象?
思考4:正切函数y=tanx,x∈R,x≠+kπ , 的图象叫做正切曲线.因为正切函数是奇函数,所以正切曲线关于原点对称,此外,正切曲线是否还关于其它的点和直线对称?
思考5:根据正切曲线如何理解正切函数的基本性质?
一条平行于x轴的直线与相邻两支曲线的交点的距离为多少?
应用示例
例1 比较大小. (1)tan138°与tan143°; (2)tan()与tan().
练习:比较大小. (1)tan1519°与tan1493°; (2)tan与tan().
例2 求函数y=tan(x+)的定义域、周期和单调区间.
变式训练 求函数y=tan(x+)的定义域,值域,单调区间,周期性.
课堂小结 知识:正切函数的性质有哪些?正切函数的图象怎么画?
能力:正切函数的性质和图象的应用及数形结合法。
作业
课本习题1.4 A组6、8、(1) (4)9.(2)
课后练习:本节后的练习题
T1
O
x
v
A
T2
O
y
O
x
y
O
x
PAGE
1§1.4.1正弦函数,余弦函数的图象
【教材分析】
《正弦函数,余弦函数的图象》是高中新教材人教A版必修四的内容,作为函数,它是已学过的一次函数、二次函数、指数函数与对数函数的后继内容,是在已有三角函数线知识的基础上,来研究正余弦函数的图象与性质的,它是学习三角函数图象与性质的入门课,是今后研究余弦函数、正切函数的图象与性质、正弦型函数的图象的知识基础和方法准备。因此,本节的学习在全章中乃至整个函数的学习中具有极其重要的地位与作用。
本节共分两个课时,本课为第一课时,主要是利用正弦线画出的图象,考察图象的特点,用“五点作图法”画简图,并掌握与正弦函数有关的简单的图象平移变换和对称变换;再利用图象研究正余弦函数的部分性质(定义域、值域等)
【教学目标】
1.学会用单位圆中的正弦线画出正余弦函数的图象,通过对正弦线的复习,来发现几何作图与描点作图之间的本质区别,以培养运用已有数学知识解决新问题的能力。
2. 掌握正余弦函数图象的“五点作图法”;
3. 渗透由抽象到具体的思想,使学生理解动与静的辩证关系,培养辩证唯物主义观点。
【教学重点难点】
教学重点:“五点法”画长度为一个周期的闭区间上的正弦函数图象
教学难点:运用几何法画正弦函数图象。
【学情分析】
本课的学习对象为高二下学期的学生,他们经过近一年半的高中学习,已具有一定的学习基础和分析问题、解决问题的能力,思维活跃、想象力丰富、乐于尝试、勇于探索,学习欲望强的学习特点。
【教学方法】
1.学案导学:见后面的学案。
2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
【课前准备】
1.学生的学习准备:预习“正弦函数和余弦函数的性质”,初步把握性质的推导。
2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。
3.教学手段:利用计算机多媒体辅助教学.
【课时安排】1课时
【教学过程】
一、预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
二、复 习导入、展示目标。
1.创设情境:
问题1:三角函数的定义及实质?三角函数线的作法和作用?
设置意图:把问题作为教学的出发点,引起学生的好奇,用操作性活动激发学生求知欲,为发现新知识创设一个最佳的心理和认识环境,关注学生动手能力培养,使教学目标与实验的意图相一致。
学生活动:教师提问,学生回答,教师对学生作答进行点评
多媒体使用:几何画板;PPT
问题2:根据以往学习函数的经验,你准备采取什么方法作出正弦函数的图象?作图过程中有什么困难?
设置意图:为学生提供一个轻松、开放的学习环境,有助于有效地组织课堂学习,有助于带动和提高全体学习的积极性、主动性,更有助于培养学生的集体荣誉感,以及他们的竞争意识
学生活动:给每位同学发一张纸,组织他们完成下面的步骤:描点、连线。
加入竞争机制看谁画得又快又好!
2.探究新知:根据学生的认知水平,正弦曲线的形成分了三个层次:
引导学生画出点 问题一:你是如何得到的呢?如何精确描出这个点呢?
问题二:请大家回忆一下三角函数线,看看你是否能有所启发?什么是正弦线?如何作出点展示幻灯片
设置意图:由浅入深、由易到难,帮助学生体会从三角函数线出发,“以已知探求未知”的数学思想方法,培养学生的思维能力。通过对正弦线的复习,来发现几何作图与描点作图之间的本质区别,以培养运用已有数学知识解决新问题的能力。
数形结合,扫清了学生的思维障碍,更好地突破了教学的重难点
学生活动:引导学生由单位圆的正弦线知识,只要已知角x的大小,就可以由几何法作出相应的正弦值来。
(教师在引导学生分析问题过程中,积极观察学生的反映,适时进行激励性评价)
多媒体使用:几何画板;PPT
问题三:能否借用点的方法,作出的图像呢?

课件演示:正弦函数图象的几何作图法
设置意图:使学生掌握探究问题的方法,发展他们分析问题和解决问题的能力,老师的点拨,学生探究实践,进一步加深学生对几何法作正弦函数图象的理解。
通过课件演示让学生直观感受正弦函数图象的形成过程。并让学生亲自动手实践,体会数与形的完美结合。
学生活动:一方面分组合作探究,展示动手结果,上台板演,同时回答同学们提出的问题。
利用尺规作出图象,后用课件演示
问题四:如何得到的图象?
展示幻灯片
设置意图:引导学生想到正弦函数是周期函数,且最小正周期是
问题五:这个方法作图象,虽然比较精确,但不太实用,如何快捷地画出正弦函数的图象呢?
学生活动:请同学们观察,边口答在的图象上,起关键作用的点有几个?引导学生自然得到下面五个:
组织学生描出这五个点,并用光滑的曲线连接起来,很自然得到函数的简图,称为“五点法”作图。
“五点法”作图可由师生共同完成
设置意图:积极的师生互动能帮助学生看到知识点之间的联系,有助于知识的重组和迁移。
把学生推向问题的中心,让学生动手操作,直观感受波形曲线的流畅美,对称美,使学生体会事物不断变化的奥秘。
通过讲解使学生明白“五点法”如何列表,怎样画图象。
小结作图步骤:1、列表2、描点3、连线
思考:如何快速做出余弦函数图像?
根据诱导公式,还可以把正弦函数x=sinx的图象向左平移单位即得余弦函数y=cosx的图象.
三、例题分析
例1、画出下列函数的简图:y=1+sinx ,x∈〔0,2π〕
解析:利用五点作图法按照如下步骤处理1、列表2、描点3、连线
解:(1) 按五个关键点列表:
x 0 π 2π
Sinx 0 1 0 -1 0
1+ Sinx 1 2 1 0 1
描点、连线,画出简图。
变式训练:y=-cosx ,x∈〔0,2π〕
解:按五个关键点列表:
x 0 π 2π
Cosx 1 0 1 0 1
- Cosx -1 0 1 0 -1
点评:目的有二:(1)巩固新知;(2)从层次上逐层深化、拾级而上,为往后学习三角函数图像的变换打下一定的基础。
四、反思总结与当堂检测:
1、五点(画图)法
(1)作法 先作出五个关键点,再用平滑的曲线将它们顺次连结起来。
(2)用途 只有在精确度要求不高时,才能使用“五点法”作图。
(3)关键点 横坐标:0 π/2 π 3π/2 2π
2、图形变换 平移、翻转等
设置意图:进一步提升学生对本节课重点知识的理解和认识,并体会其应用。
学生活动:学生分组讨论完成
3、画出下列函数的简图:(1) y=|sinx|, (2)y=sin|x|
五、发导学案、布置预习
思考:若从函数
1. 的图像变换分析的图象可由的图象怎样得到?
2.可用什么方法得到的图像? 1、“五点法”2、翻折变换
六、板书设计
正弦函数和余弦函数的图像
一、正弦函数的图像 例1
二、作图步骤 1、列表2、描点3、连线 练习:
三、余弦函数
教学反思
学生的学习是一个积极主动的建构过程,而不是被动地接受知识的过程。由于学生已具备初等函数、三角函数线知识,为研究正弦函数图象提供了知识上的积累;因此本教学设计理念是:通过问题的提出,引起学生的好奇,用操作性活动激发学生求知欲,为发现新知识创设一个最佳的心理和认识环境,引导学生关注正弦函数的图象及其作法;并借助电脑多媒体使教师的设计问题与活动的引导密切结合,强调学生“活动”的内化,以此达到使学生有效地对当前所学知识的意义建构的目的,感觉效果很好。
学生们大多数都能完成得很好,但学生对自己的评价还比较保守,表现不太自信,另外我应肯定一下普遍完成任务的所有同学,不只是肯定那几个高手。
但有些同学还是忽视理论探讨,急于动手做,因此总会出现这样或那样的问题,如何让学生少走弯路,对知识理解透彻,在正确的理论引导下顺利完成任务,这是个值得研究的问题。
九、学案设计(见下页)
§1.4.1正弦函数,余弦函数的图象
课前预习学案
一、预习目标
理解并掌握作正弦函数图象的方法,会用五点法作正余弦函数简图.
二、复习与预习
1.正、余弦函数定义:____________________
2.正弦线、余弦线:______________________________
3. 10.正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是: 、 、  、  、  .
20.作在上的图象时,五个关键点是 、 、  、  、  .
步骤:_____________,_______________,____________________.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
(1)利用单位圆中的三角函数线作出的图象,明确图象的形状;
(2)根据关系,作出的图象;
(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题;
学习重难点:
重点::“五点法”画长度为一个周期的闭区间上的正弦函数图象;
难点:运用几何法画正弦函数图象。
二、学习过程
1.创设情境:
问题1:三角函数的定义及实质?三角函数线的作法和作用?
问题2:根据以往学习函数的经验,你准备采取什么方法作出正弦函数的图象?作图过程中有什么困难?
2.探究新知: 问题一:如何 作出的图像呢?

问题二:如何得到的图象?

问题三:这个方法作图象,虽然比较精确,但不太实用,如何快捷地画出正弦函数的图象呢?
组织学生描出这五个点,并用光滑的曲线连接起来,很自然得到函数的简图,称为“五点法”作图。
“五点法”作图可由师生共同完成
小结作图步骤:
思考:如何快速做出余弦函数图像?
例1、画出下列函数的简图:y=1+sinx ,x∈〔0,2π〕
解析:利用五点作图法按照如下步骤处理1、列表2、描点3、连线
变式训练:y=-cosx ,x∈〔0,2π〕
三、反思总结
1、数学知识:
2、数学思想方法:
四、当堂检测
画出下列函数的简图:(1) y=|sinx|, (2)y=sin|x|
思考:可用什么方法得到的图像?
课后练习与提高
1. 用五点法作的图象.
2. 结合图象,判断方程的实数解的个数.
3.分别利用函数的图象和三角函数线两种方法,求满足下列条件的x的集合:
PAGE
73.2简单的三角恒等变换(二)
一、教学目标
1、通过三角恒等变形,形如的函数转化为的函数;
2、灵活利用公式,通过三角恒等变形,解决函数的最值、周期、单调性等问题。
二、教学重点与难点
重点:三角恒等变形的应用。
难点:三角恒等变形。
三、教学过程
(一)复习:二倍角公式。
(二)典型例题分析
例1: ;.
解:(1)由得
(2)
例2.
解:
.
例3.已知函数
求的最小正周期,(2)当时,求的最小值及取得最小值时的集合.
点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数
的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.
例4.若函数上的最大值为6,求常数m的值及此函数当时的最小值及取得最小值时的集合。
(三)练习:教材P142面第4题。
(四)小结:(1) 二倍角公式:
(2)二倍角变式:
(3)三角变形技巧和代数变形技巧
常见的三角变形技巧有
①切割化弦;
②“1”的变用;
③统一角度,统一函数,统一形式等等.
(五)作业:《习案》作业三十四
PAGE
1
21世t纪教育网资源(ww.21cnjy.com)
21世t纪教育网资源(ww.21cnjy.com)
21世t纪教育网资源(ww.21cnjy.com)
21世t纪教育网资源(ww.21cnjy.com)
21世t纪教育网资源(ww.21cnjy.com)
21世t纪教育网资源(ww.21cnjy.com)
21世t纪教育网资源(ww.21cnjy.com)
21世t纪教育网资源(ww.21cnjy.com)
21世t纪教育网资源(ww.21cnjy.com)
21世t纪教育网资源(ww.21cnjy.com)2.2.1 向量的加法运算及其几何意义
教学目标:
掌握向量的加法运算,并理解其几何意义;
会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力;
通过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;
教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.
教学难点:理解向量加法的定义.
教学思路:
一、设置情景:
复习:向量的定义以及有关概念
强调:向量是既有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置
情景设置:
(1)某人从A到B,再从B按原方向到C, 则两次的位移和:
(2)若上题改为从A到B,再从B按反方向到C, 则两次的位移和:
(3)某车从A到B,再从B改变方向到C, 则两次的位移和:
(4)船速为,水速为,则两速度和:
二、探索研究:
1、向量的加法:求两个向量和的运算,叫做向量的加法.
2、三角形法则(“首尾相接,首尾连”)
如图,已知向量a、b.在平面内任取一点,作=a,=b,则向量叫做a与b的和,记作a+b,即 a+b, 规定: a + 0-= 0 + a
探究:(1)两向量的和与两个数的和有什么关系? 两向量的和仍是一个向量;
(2)当向量与不共线时, |+|<||+||;什么时候|+|=||+||,什么时候|+|=||-||,
当向量与不共线时,+的方向不同向,且|+|<||+||;
当与同向时,则+、、同向,且|+|=||+||,
当与反向时,若||>||,则+的方向与相同,且|+|=||-||;
若||<||,则+的方向与相同,且|+b|=||-||.
(3)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n个向量连加
3.例一、已知向量、,求作向量+
作法:在平面内取一点,作 ,则.
4.加法的交换律和平行四边形法则
问题:上题中+的结果与+是否相同? 验证结果相同
从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)
2)向量加法的交换律:+=+
5.你能证明:向量加法的结合律:(+) +=+ (+) 吗?
6.由以上证明你能得到什么结论? 多个向量的加法运算可以按照任意的次序、任意的组合来进行.
三、应用举例:
例二(P83—84)略
变式1、一艘船从A点出发以的速度向垂直于对岸的方向行驶,船的实际航行速度的大小为,求水流的速度.
变式2、一艘船从A点出发以的速度向垂直于对岸的方向行驶,同时河水的流速为,船的实际航行的速度的大小为,方向与水流间的夹角是,求和.
练习:P84面1、2、3、4题
四、小结
1、向量加法的几何意义;2、交换律和结合律;3、|+| ≤ || + ||,当且仅当方向相同时取等号.
五、课后作业:《习案》作业十八。
六、备用习题 思考:你能用向量加法证明:两条对角线互相平分的四边形是平行四边形吗?
A B
C
A B
C
A B C
C A B
A
B
C
a+b
a+b
a
a
b
b
a


a+b
a
a
a
O
A
B
a
a
a
b
b
b
PAGE
11. 2.2同角的三角函数的基本关系
一、教学目标:
⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;
2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;
3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.
二、教学重、难点
重点:公式及的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.
难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.
三、学法与教学用具
利用三角函数线的定义, 推导同角三角函数的基本关系式: 及,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.
教学用具:圆规、三角板、投影
四、教学过程
【创设情境】
与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.
【探究新知】
探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一
下同一个角不同三角函数之间的关系吗
如图:以正弦线,余弦线和半径三者的长构成直角三角形,而且.由勾股定理由,因此,即.
根据三角函数的定义,当时,有.
这就是说,同一个角的正弦、余弦的平方等于1,商等于角的正切.
【例题讲评】
例1化简:
解:原式
例2 已知
解:
(注意象限、符号)
例3求证:
分析:思路1.把左边分子分母同乘以,再利用公式变形;思路2:把左边分子、分母同乘以(1+sinx)先满足右式分子的要求;思路3:用作差法,不管分母,只需将分子转化为零;思路4:用作商法,但先要确定一边不为零;思路5:利用公分母将原式的左边和右边转化为同一种形式的结果;思路6:由乘积式转化为比例式;思路7:用综合法.
证法1:左边=右边,
∴原等式成立
证法2:左边==
=右边
证法3:
∵,

证法4:∵cosx≠0,∴1+sinx≠0,∴≠0,
∴===1,
∴.
∴左边=右边 ∴原等式成立.
例4已知方程的两根分别是,

解:
(化弦法)
例5已知,

解:
【课堂练习】
化简下列各式
3.
练习答案:
解:(1)原式=


(2)原式=


【学习小结】
(1)同角三角函数的关系式的前提是“同角”,因此,.
(2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.
作业:习题1.2A组第10,13题.
熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关
系式;注意三角恒等式的证明方法与步骤.
【课后作业】见学案
【板书设计】略
【教学反思】
1.2.2同角的三角函数的基本关系
课前预习学案
预习目标:
通过复习回顾三角函数定义和单位圆中的三角函数线,为本节所要学习的同角三角函数的基本关系式做好铺垫。
预习内容:
复习回顾三角函数定义和单位圆中的三角函数线:

提出疑惑:
与初中学习锐角三角函数一样,我们能不能研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化呢?

课内探究学案
学习目标:
⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;
2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;
3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.
学习过程:
【创设情境】
与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.
【探究新知】
探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一
下同一个角不同三角函数之间的关系吗
如图:以正弦线,余弦线和半径三者的长构成直角三角形,而且.由勾股定理由,因此,即 .
根据三角函数的定义,当时,有 .
这就是说,同一个角的正弦、余弦的平方等于1,商等于角的正切.
【例题讲评】
例1化简:
例2 已知
例3求证:
例4已知方程的两根分别是,

例5已知,

【课堂练习】
化简下列各式
3.
课后练习与提高
1已知sinα+cosα=,且0<α<π,则tanα的值为( )
2若sin4θ+cos4θ=1,则sinθ+cosθ的值为( )
A0 B1 C-1 D±1
3若tanθ+cotθ=2,则sinθ+cosθ的值为( )
A0 B C- D±
4若=10,则tanα的值为
5若tanα+cotα=2,则sin4α+cos4α=
6若tan2α+cot2α=2,则sinαcosα=
同角的三角函数的基本关系
教学目的:
⒈掌握同角三角函数的基本关系式,理解同角公式都是恒等式的特定意义;
2 通过运用公式的训练过程,培养学生解决三角函数求值、化简、恒等式证明的解题技能,提高运用公式的灵活性;
3 注意运用数形结合的思想解决有关求值问题;在解决三角函数化简问题过程中,注意培养学生思维的灵活性及思维的深化;在恒等式证明的教学过程中,注意培养学生分析问题的能力,从而提高逻辑推理能力.
教学重点:同角三角函数的基本关系
教学难点:(1)已知某角的一个三角函数值,求它的其余各三角函数值时正负号的选择;(2)三角函数式的化简;(3)证明三角恒等式.
授课类型:新授课
知识回顾:同角三角函数的基本关系公式:
—————————————————— —————————————————
—————————————————— —————————————————
典型例题:
已知sin=2,求α的其余三个三角函数值.
例2.已知:且,试用定义求的其余三个三角函数值.
例3.已知角的终边在直线y=3x上,求sin和cos的值.
说明:已知某角的一个三角函数值,求该角的其他三角函数值时要注意:
角所在的象限;
用平方关系求值时,所求三角函数的符号由角所在的象限决定;
(3)若题设中已知角的某个三角函数值是用字母给出的,则求其他函数值时,要对该字母分类讨论.
四、小结 几种技巧
五、课后作业:
六、板书设计(略)
七、课后记:
O
x
y
P
M
1
A(1,0)
O
x
y
P
M
1
A(1,0)
PAGE
74-1.2.2同角三角函数的基本关系
教学目的:
知识目标:1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系;
2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力;
教学重点:同角三角函数的基本关系式
教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用
教学过程:
一、复习引入:
1.任意角的三角函数定义:
设角是一个任意角,终边上任意一点,它与原点的距离为
,那么:,,,
2.当角α分别在不同的象限时,sinα、cosα、tgα的符号分别是怎样的?
3.背景:如果,A为第一象限的角,如何求角A的其它三角函数值;
4.问题:由于α的三角函数都是由x、y、r 表示的,则角α的三个三角函数之间有什么关系?
二、讲解新课:
(一)同角三角函数的基本关系式:
(板书课题:同角的三角函数的基本关系)
由三角函数的定义,我们可以得到以下关系:
(1)商数关系: (2)平方关系:
说明:
①注意“同角”,至于角的形式无关重要,如等;
②注意这些关系式都是对于使它们有意义的角而言的,如;
③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:
, , 等。
2.例题分析:
一、求值问题
例1.(1)已知,并且是第二象限角,求.
(2)已知,求.
解:(1)∵, ∴
又∵是第二象限角, ∴,即有,从而

(2)∵, ∴,
又∵, ∴在第二或三象限角。
当在第二象限时,即有,从而,;
当在第四象限时,即有,从而,.
总结:
已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。
解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。
例2.已知为非零实数,用表示.
解:∵,,
∴,即有,
又∵为非零实数,∴为象限角。
当在第一、四象限时,即有,从而,

当在第二、三象限时,即有,从而,

例3、已知,求
解:
强调(指出)技巧:1 分子、分母是正余弦的一次(或二次)齐次式
注意所求值式的分子、分母均为一次齐次式,把分子、分母同除以,将分子、分母转化为的代数式;
2 “化1法”
可利用平方关系,将分子、分母都变为二次齐次式,再利用商数关系化归为的分式求值;
小结:化简三角函数式,化简的一般要求是:
(1)尽量使函数种类最少,项数最少,次数最低;
(2)尽量使分母不含三角函数式;
(3)根式内的三角函数式尽量开出来;
(4)能求得数值的应计算出来,其次要注意在三角函数式变形时,常将式子中的“1”作巧妙的变形,
二、化简
练习1.化简.
解:原式.
练习2.
三、证明恒等式
例4.求证:.
证法一:由题义知,所以.
∴左边=右边.
∴原式成立.
证法二:由题义知,所以.
又∵,
∴.
证法三:由题义知,所以.

∴.
总结:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边;
(2)证明左右两边同等于同一个式子;
(3)证明与原式等价的另一个式子成立,从而推出原式成立。
四、小 结:本节课学习了以下内容:
1.同角三角函数基本关系式及成立的条件;
2.根据一个角的某一个三角函数值求其它三角函数值;
五、课后作业:《习案》作业第 五 课时
参考资料
化简.
解:原式

思考1.已知,求
解:1 由
由 联立:
2
2、已知 求
解:∵sin2 + cos2 = 1 ∴
化简,整理得:
当m = 0时,
当m = 8时,
PAGE
11. 5 函数y=Asin(ωx+φ)的图象
班级 姓名
学习目标:
1、理解φ对y=sin(x+φ)的图象的影响,ω对y=sin(ωx+φ)的图象的影响,A对y=Asin(ωx+φ)的图象的影响.
2.通过探究图象变换,会用图象变换法画出y=Asin(ωx+φ)图象的简图,并会用“五点法”画出函数y=Asin(ωx+φ)的简图.
教学重点:讨论字母φ、ω、A变化时对函数图象的形状和位置的影响,掌握函数y=Asin(ωx+φ)图象的简图的作法.
教学难点::由正弦曲线y=sinx到y=Asin(ωx+φ)的图象的变换过程.
教学过程:
<引入>:从图象上看,函数y=sinx与函数y=Asin(ωx+φ)存在着怎样的关系
接下来,我们就分别探索φ、ω、A对y=Asin(ωx+φ)的图象的影响.
探索A对y=Asin(ωx+φ),的图象的影响。【振幅变换】
例1画出函数y=2sinx, x∈R ,y= sinx,x∈R的简图
结论:一般地,函数y=Asinx, x∈R (其中A>0且A≠1)的图象,可以看作把正弦曲线上所有点的纵坐标伸长(当A>1时)或缩短(当0<A<1时)到原来的A倍(横坐标不变)而得到。函数y=Asinx, x∈R 的值域是[-A,A],最大值是A,最小值是-A。
注:A引起图象的纵向伸缩,它决定函数的最大(最小) 值,我们把A 叫做振幅。
探索φ对y=Asin(ωx+φ),的图象的影响。【相位变换】
例2画出函数 Y=Sin (X+ ),X∈R , Y=Sin(X- ) ,X∈R 的简图。
结论:函数 y=sin(x+)(0) 的图象可以看作是把y=sinx 的图象上所有的点向左(当>0时)或向右(当<0时)平行移动||个单位而得到的.
注: 引起图象的左右平移,它改变图象的位置,不改变图象的形状.φ叫做初相, 故这种变换叫做相位变换
练习:1. 若将某函数的图象向右平移 以后所得到的图象的函数式是y=sin(x+),则原来的函数表达式为( )
A. y=sin(x+ ) B. y=sin(x+)
C. y=sin(x- ) D. y=sin(x+)-
2、已知函数的图象为C,为了得到函数的图象,只要把C上的所有点( )。
A向右平行移动个单位长度。B向左平行移动个单位长度。
C向右平行移动个单位长度。D向左平行移动个单位长度。
探索ω对y=Asin(ωx+φ),的图象的影响。【周期变换】
例3画出函数y=sin2x, x∈R ,y= sin x,x∈R的简图
列表:






结论:函数y=sinωx (其中ω>0) 的图象,可看 作把y=sinx图象上所有点的横坐标伸长
(当 0<ω<1)或缩短(当ω>1)到原来的 倍(纵坐标不变)而得到.
注: ①ω决定函数的周期T=,它引起横向伸缩(可简记为:小伸大缩).
画出函数y=3sin(2x+),x∈R的简图
(五点法)
x
2x+
3sin(2x+ )
2、(图象变化法)如何由y=sinx ,x∈R 变换得y=Asin(ωx+φ),x∈R ,的图象
方法1:(先伸缩再平移)
函数y=sinx ,x∈R的图象y=Sin2x,x∈R的图象
y=Sin(2x+ ), x∈R的图象
y=3Sin(2x+ ),x∈R的图象
方法2:(先平移再伸缩)
函数y=sinx ,x∈R的图象y=sin(x+),x∈R 的图象
y=sin(2x+)x∈R的图象
y=3Sin(2x+ ), x∈R的图象.
总结: y=sinx ,x∈R图象 y=Asin(ωx+φ),x∈R图象。
方法1:(先伸缩再平移)
方法2:(先平移再伸缩)
【思考】
练习:
A.横坐标伸长到原来的5倍,纵坐标不变.
B.横坐标缩短到原来的倍,纵坐标不变.
C.纵坐标伸长到原来的5倍,横坐标不变.
D.纵坐标缩短到原来的倍,横坐标不变.
A.横坐标伸长到原来的4倍,纵坐标不变.
B.横坐标缩短到原来的倍,纵坐标不变.
C.纵坐标伸长到原来的4倍,横坐标不变.
D.纵坐标缩短到原来的倍,横坐标不变。
3、要得到函数的图象,只需将函数的图象( )
A.向左平移个单位 B.向右平移个单位
C.向左平移个单位 D.向右平移个单位
刚才我们分别探索了参数φ、ω、A对函数y=Asin(ωx+φ)的图象的影响及“五点法”作图.现在我们进一步熟悉掌握函数y=Asin(ωx+φ)(其中A>0,ω>0,φ≠0)的图象变换及其物理背景.
了解常数A、ω、φ与简谐运动的某些物理量的关系,得出本章开头提到的“简谐运动的图象”所对应的函数解析式有如下形式:y=Asin(ωx+φ),x∈[0,+∞),其中A>0,ω>0.物理中,描述简谐运动的物理量,如振幅、周期和频率等都与这个解析式中的常数有关:
A就是这个简谐运动的振幅,它是做简谐运动的物体离开平衡位置的最大距离;
这个简谐运动的周期是T=,这是做简谐运动的物体往复运动一次所需要的时间;
这个简谐运动的频率由公式f==给出,
它是做简谐运动的物体在单位时间内往复运动的次数;
ωx+φ称为相位;x=0时的相位φ称为初相.
例1 图7是某简谐运动的图象.试根据图象回答下列问题:
(1)这个简谐运动的振幅、周期和频率各是多少
(2)从O点算起,到曲线上的哪一点,表示完成了一次往复运动 如从A点算起呢
(3)写出这个简谐运动的函数表达式.
课堂小结:
一、作函数y=Asin(x+) 的图象:
(1)用“五点法”作图。1、列五点表2、描点 3 、连线
(2)利用变换关系作图。
二、函数 y = sinx 的图象与函数 y=Asin(x+)的图象间的变换关系。
x
y=sinx
y=sinx
横坐标缩短>1 (伸长0<<1)到原来的1/倍
纵坐标不变
向左>0 (向右<0)
平移||/个单位
y=Asin(x+)
横坐标不变
纵坐标伸长A>1 (缩短0横坐标缩短>1 (伸长0<<1)到原来的1/倍
向左>0 (向右<0)
y=sin(x+)
y=sinx
y=Asin(x+)
纵坐标伸长A>1 (缩短0横坐标不变
y=sin(x+)
纵坐标不变
平移||个单位
点的(  )
1.为了得到函数
的图象,只需把正弦曲线上的所有的
2.为了得到函数
的图象,只需把正弦曲线上的所有的
PAGE
11. 1.1任意角
班级 姓名
一、学习目标:1.理解并掌握任意角、象限角、终边相同的角的定义。2.会写终边相同的角的集合并且会利用终边相同的角的集合判断任意角所在的象限。
二、重点、难点:任意角、象限角、终边相同的角的定义是本节课的重点,用集合和符号来表示终边相同的角是本节课的难点
三、知识链接:
1.初中是如何定义角的?
2.什么是周角,平角,直角,锐角,钝角?
四、学习过程:
(一)阅读课本1-3页解决下列问题。
问题1、按 方向旋转形成的角叫做正角,按 - 方向旋转形成的角叫做负角,如果一条射线没有作____旋转,我们称它形成了一个零角。零角的 与
重合。如果是零角,那么= 。
问题2、
问题3、画出下列各角
(1)780o (2) -120o (3) -660o (4) 1200o
问题4、象限角与象限界角
 为了讨论问题的方便,我们总是把任意大小的角放到平面直角坐标系内加以讨论,具体做法是:(1)使角的顶点和坐标 重合;(2)使角的始边和轴 重合.这时,角的终边落在第几象限,就说这个角是 的角(有时也称这个角属于第几象限);如果这个角的终边落在坐标轴上,那么这个角就叫做 ,这个角不属于任何一个象限。
问题5、在平面直角坐标系中作出下列各角并指出它们是第几象限角:
(1)420o (2) -75o (3) 855o (4) -510o
问题6、把角放到平面直角坐标系中后,给定一个角,就有唯一的终边与之对应。反之,对于直角坐标系内任意一条射线,以它为终边的角是否唯一?如果不唯一,终边相同的角有什么关系?为解决这些问题,请先完成下题:
在直角坐标系中作出下列各角:
(1)-32o (2) 328o (3) -392o (4) 688o (4) -752o
问题7、以上各角的终边有什么关系?这些有相同的始边和终边的角,叫做 。
把与-32o角终边相同的所有角都表示为 ,所有与角 终边相同的角,连同角 在内可构成集合为 .。即任一与角终边相同的角,都可以表示成角与整数个周角的和。
例1. 在~之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:
(1);
(2);
(3).
变式练习 1、 在~之间,找出与下列各角终边相同的角,并分别指出它们是第几象限角:
(1)420 (2)—54 18′ (3)395 8 ′ (4)—1190 30′
2、写出与下列各角终边相同的角的集合,并把集合中适合不等式-720o<360o的元素 写出来:
(1)1303o18, (2)--225o
问题8、(1)写出终边在x轴上角的集合
(2) 写出终边在y轴上角的集合
变式练习 写出终边在直线y=x上角的集合s,并把s中适合不等式-3600
<720o元素写出来。
问题9、思考:
第一象限角的集合可表示为___________________.
第二象限角的集合可表示为___________________.
第三象限角的集合可表示为___________________.
第四象限角的集合可表示为___________________.
探究:设θ为第一象限角,求2θ, ,–θ所在的象限.
当堂检测:
1、以原点为角的顶点,x轴正方向为角的始边,终边在坐标轴上的角等于( )
(A)00、900或2700 (B)k3600(kZ)
(C)k1800(kZ) (D)k900(kZ)
2、如果x是第一象内的角,那么( )
(A)x一定是正角 (B)x一定是锐角
(C)-3600x-2700或00x900 (D)xxk3600xk3600+900 kZ
3、设A=为正锐角,B=为小于900的角}, C={为第一象限的角}
D={为小于900的正角}。则下列等式中成立的是( )
(A)A=B (B)B=C (C)A=C (D)A=D
4、在直角坐标系中,若与的终边互相垂直,那么与的关系为( )
(A)=+900 (B)=900 (C)=+900+k·3600 (D)=±900+ k·3600 kZ
5、设是第二象限角,则是 象限角。
6、与角-1560°终边相同角的集合中最小的正角是 .
7、如果是第三象限角,则x在第 象限和 半轴。
8、若α为锐角,则180°+α在第__________象限,-α在第______________象限.
9、写出与370°23′终边相同角的集合S,并把S中在-720°~360°间的角写出来.
10、钟表经过4小时,时针与分针各转了 度
课堂小结:1、任意角的概念与分类。
2、象限角的概念及第一,二,三,四象限角的表示。
3、终边相同角的集合表示。
课后练习:习题1.1A组第5题。
作业布置:习题1.1A组第1,3题。
任意角
PAGE
41. 5函数的图象
一、教材分析
三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础.本节课是在学习了任意角的三角函数,正、余弦函数的图象和性质后,进一步研究函数y=Asin(ωx+φ)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映.
二、教学目标
1. 分别通过对三角函数图像的各种变换的复习和动态演示进一步让学生了解三角函数图像各种变换的实质和内在规律。
2. 通过对函数y = Asin(wx+4)(A>0,w>0)图象的探讨,让学生进一步掌握三角函数图像各种变换的内在联系。
3. 培养学生观察问题和探索问题的能力。
三、教学重点难点
重点:通过五点作图法正确找出函数y=sin x到y=sin(ωx+φ)的图象变换规律。
难点:对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解.
四、学法分析
本节课是在学习了三角函数的性质和图象的基础上来学习的图像,应用三角函数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。
在教师的引导下,积极、主动地提出问题,自主分析,再合作交流,达到殊途同归.在思维训练的过程中,感受数学知识的魅力,成为学习的主人.
五、教法分析
教学的目的是以知识为平台,全面提升学生的综合能力.本节课突出体现了以学生能力的发展为主线,应用启发式、讲述式引导学生层层深入,培养学生自主探索以发现问题、分析问题和解决问题的能力,注重利用非智力因素促进学生的学习,实现数学知识价值、思维价值和人文价值的高度统一。
六、课时安排:2课时
七、教学程序及设计意图
(一)复习引入:在现实生活中,我们常常会遇到形如y=Asin(ωx+)的函数解析式(其中A,ω,都是常数)下面我们讨论函数y=Asin(ωx+),x∈R的简图的画法
(二)讲解新课:
例 1、 画出函数y=sin(x+),x∈R,y=sin(x-),x∈R的简图
解:列表
x -
x+ 0 2
sin(x+) 0 1 0 –1 0
描点画图:
x
x- 0 2
sin(x–) 0 1 0 –1 0
通过比较,发现:
(1)函数y=sin(x+),x∈R的图象可看作把正弦曲线上所有的点向左平行移动个单位长度而得到
(2)函数y=sin(x-),x∈R的图象可看作把正弦曲线上所有点向右平行移动个单位长度而得到
一般地,函数y=sin(x+),x∈R(其中≠0)的图象,可以看作把正弦曲线上所有点向左(当>0时)或向右(当<0时=平行移动||个单位长度而得到 (用平移法注意讲清方向:“加左”“减右”)
y=sin(x+)与y=sinx的图象只是在平面直角坐标系中的相对位置不一样,这一变换称为相位变换
设计意图:引导学生学习y=sin(x+),x∈R,y=sin(x-),x∈R
图象上点的坐标和y=sinx的图象上点的坐标的关系,获得对y=sin(x+)的图象的影响的具体认识。
例2、画出函数y=2sinx xR;y=sinx xR的图象(简图)
解:画简图,我们用“五点法”
∵这两个函数都是周期函数,且周期为2π
∴我们先画它们在[0,2π]上的简图列表:
x 0 2
sinx 0 1 0 -1 0
2sinx 0 2 0 -2 0
sinx 0 0 - 0
作图:
(1)y=2sinx,x∈R的值域是[-2,2]
图象可看作把y=sinx,x∈R上所有点的纵坐标伸长到原来的2倍而得(横坐标不变)
(2)y=sinx,x∈R的值域是[-,]
图象可看作把y=sinx,x∈R上所有点的纵坐标缩短到原来的倍而得(横坐标不变)
设计意图:研究函数中A对图象的影响。
结论:
1.y=Asinx,xR(A>0且A1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(02.它的值域[-A, A] 最大值是A, 最小值是-A
例3、画出函数y=sin2x xR;y=sinx xR的图象(简图)
解:函数y=sin2x,x∈R的周期T==π
我们先画在[0,π]上的简图,在[0, ]上作图,列表:
2x 0 2
x 0
y=sin2x 0 1 0 -1 0
作图:
函数y=sinx,x∈R的周期T==4π
我们画[0,4π]上的简图,列表:
0 2
x 0 2 3 4
sin 0 1 0 -1 0
(1)函数y=sin2x,x∈R的图象,可看作把y=sinx,x∈R上所有点的横坐标缩短到原来的倍(纵坐标不变)而得到的
(2)函数y=sin,x∈R的图象,可看作把y=sinx,x∈R上所有点的横坐标伸长到原来的2倍(纵坐标不变)而得到
设计意图:研究ω对函数图象的影响。
结论:与y=sinx的图象作比较
函数y=sinωx, xR (ω>0且ω1)的图象,可看作把正弦曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的倍(纵坐标不变)
例4、画出函数y=3sin(2x+),x∈R的简图
解:(五点法)由T=,得T=π 列表:
x –
2x+ 0 π 2π
3sin(2x+ 0 3 0 –3 0
描点画图:
(三)小结:
八、小试牛刀,当堂检测
已知函数
(1)作出简图;2)指出经过怎样的变换可得到的图象.
设计意图:教师组织学生反思总结本节课的主要内容,并进行当堂检测。
九、发导学案、布置预习。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
十、板书设计
三角函数模型的简单应用
例1.例2 例3.例4. 练习:小结:
十一、教后反思
新理念下数学课堂教学的探索是一个长期的过程,充分挖掘数学的应用价值、思维价值和人文价值,需要我们教育工作者的不断创新,与时俱进.
1.5函数的图象
课前预习学案
一、预习目标
预习图像变换的过程,初步了解图像的平移。
二、预习内容
1.函数,(其中)的图象,可以看作是正弦曲线上所有的点_________(当>0时)或______________(当<0时)平行移动个单位长度而得到.
2.函数(其中>0且)的图象,可以看作是把正弦曲线 上所有点的横坐标______________(当>1时)或______________(当0<<1时)到原来的 倍(纵坐标不变)而得到.
3.函数>0且A1)的图象,可以看作是把正弦曲线上所有点的纵坐标___________(当A>1时)或__________(当04. 函数其中的(A>0,>0)的图象,可以看作用下面的方法得到:先把正弦曲线上所有的点___________(当>0时)或___________(当<0时)平行移动个单位长度,再把所得各点的横坐标____________(当>1时)或____________(当0<<1)到原来的 倍(纵坐标不变),再把所得各点的纵横坐标____________(当A>1时)或_________(当0课内探究学案
一、学习目标
1.会用 “五点法”作出函数以及函数的图象的图象。
2.能说出对函数的图象的影响.
3.能够将的图象变换到的图象,并会根据条件求解析式.
学习重难点:
重点:由正弦曲线变换得到函数的图象。
难点:当时,函数与函数的关系。
二、学习过程
1、复习巩固;
作业评讲——作出函数在一个周期内的简图并回顾作图方法?
2、自主探究;
问题一、函数图象的左右平移变换
如在同一坐标系下,作出函数和的简图,并指出它们与图象之间的关系。
问题二、函数图象的纵向伸缩变换
如在同一坐标系中作出及的简图,并指出它们的图象与的关系。
问题三、函数图象的横向伸缩变换
如作函数及的简图,并指出它们与图象间的关系。
问题四、作出函数的图象
问题五、作函数的图象主要有以下两种方法:
(1)用“五点法”作图
(2)由函数的图象通过变换得到的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”。
(三)规律总结
①由正弦曲线变换到函数的图象需要进行三种变换,顺序可任意改变;先平移变换后周期变换时平移个单位,先周期变换后平移变换时平移个单位。
②常用变换顺序——先平移变换再周期变换后振幅变换(平移的量只与有关)。
(四)当堂检测
1、请准确叙述由正弦曲线变换得到下列函数图象的过程?
① ②
2、已知函数的图象为C,为了得到函数的图象,只需把C的所有点( )
A、横坐标伸长到原来的10倍,纵坐标不变。 B、横坐标缩短到原来的倍,纵坐标不变。
C、纵坐标伸长到原来的10倍,横坐标不变。 D、纵坐标缩短到原来的倍,横坐标不变。
3、已知函数的图象为C,为了得到函数的图象,只需把C的所有点( )
A、横坐标伸长到原来的4倍,纵坐标不变。 B、横坐标缩短到原来的倍,纵坐标不变。
C、纵坐标伸长到原来的4倍,横坐标不变。 D、纵坐标缩短到原来的倍,横坐标不变。
4、已知函数的图象为C,为了得到函数的图象,只需把C的所有点( )
A、向左平移个单位长度 B、向右平移个单位长度
C、向左平移个单位长度 D、向右平移个单位长度
5、将正弦曲线上各点向左平移个单位,再把横坐标伸长到原来的2倍,纵坐标不变,则所得图象解析式为( )
A、 B、 C、 D、
课后练习与提高
一、选择题
1、已知函数图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得的图形沿着x轴向左平移个单位,这样得到的曲线与的图象相同,那么已知函数的解析式为(  ).
  A.  B.
C. D.
2、把函数的图象向右平移后,再把各点横坐标伸长到原来的2倍,所得到的函数的解析式为(  ).
   A. B.
C. D.
  3、函数的图象,可由函数的图象经过下述________变换而得到(  ).
   A.向右平移个单位,横坐标缩小到原来的,纵坐标扩大到原来的3倍
B.向左平移个单位,横坐标缩小到原来的,纵坐标扩大到原来的3倍
C. 向右平移个单位,横坐标扩大到原来的2倍,纵坐标缩小到原来的
D.向左平移个单位,横坐标缩小到原来的,纵坐标缩小到原来的
4、函数的周期是_________,振幅是__________,当x=____________________时,__________;当x=____________________时,__________.
  5、已知函数(A>0,>0,0<)的两个邻近的最值点为()和(),则这个函数的解析式为____________________.
  6、已知函数(A>O, >0,<)的最小正周期是,最小值是-2,且图象经过点(),求这个函数的解析式.
PAGE
93.2简单的三角恒等变换(三)
教学目标
知识与技能目标
熟练掌握三角公式及其变形公式.
过程与能力目标
抓住角、函数式得特点,灵活运用三角公式解决一些实际问题.
情感与态度目标
培养学生观察、分析、解决问题的能力.
教学重点
和、差、倍角公式的灵活应用.
教学难点
如何灵活应用和、差、倍角公式的进行三角式化简、求值、证明.
教学过程
例1:教材P141面例4
例1. 如图,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=,求当角取何值时,矩形ABCD的面积最大?并求出这个最大面积.
例2:把一段半径为R的圆木锯成横截面为矩形的木料,怎样锯法能使横截面的面积最大?(分别设边与角为自变量)
解:(1)如图,设矩形长为l,则面积,
所以当且仅当
即时,取得最大值,此时S取得最大值,矩形的宽为
即长、宽相等,矩形为圆内接正方形.
(2)设角为自变量,设对角线与一条边的夹角为,矩形长与宽分别为
、,所以面积.
而,所以,当且仅当时,S取最大值,所以当且仅当即时, S取最大值,此时矩形为内接正方形.
变式:已知半径为1的半圆,PQRS是半圆的内接矩形如图,问P点在什么位置时,矩形的面积最大,并求最大面积时的值.
解:设则
故S四边形PQRS
故为时,
课堂小结
建立函数模型利用三角恒等变换解决实际问题.
课后作业
1. 阅读教材P.139到P.142; 2. 《习案》作业三十五.
θ
P
Q
R
S
O
PAGE
12.3.4 平面向量共线的坐标表示
教学目的:
(1)理解平面向量共线的坐标表示;
(2)掌握平面上两点间的中点坐标公式及定点坐标公式;
(3)会根据向量的坐标,判断向量是否共线.
教学重点:平面向量公线的坐标表示及定点坐标公式,
教学难点:向量的坐标表示的理解及运算的准确性
教学过程:
一、复习引入:
1.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2
(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;
(2)基底不惟一,关键是不共线;
(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;
(4)基底给定时,分解形式惟一. λ1,λ2是被,,唯一确定的数量
2.平面向量的坐标表示
分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得
把叫做向量的(直角)坐标,记作
其中叫做在轴上的坐标,叫做在轴上的坐标, 特别地,,,.
2.平面向量的坐标运算
(1)若,,
则,,
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
. 实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标。
(2)若,,则
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.
向量的坐标与以原点为始点、点P为终点的向量的坐标是相同的。
3.练习:
1.若M(3, -2) N(-5, -1) 且 , 求P点的坐标
2.若A(0, 1), B(1, 2), C(3, 4) , 则2= .
3.已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) ,
如何求证:四边形ABCD是梯形.?
二、讲解新课:
1、思考:(1)两个向量共线的条件是什么?
(2)如何用坐标表示两个共线向量?
设=(x1, y1) ,=(x2, y2) 其中.
由=λ得, (x1, y1) =λ(x2, y2) 消去λ,x1y2-x2y1=0
∥ ()的充要条件是x1y2-x2y1=0
探究:(1)消去λ时能不能两式相除?
(不能 ∵y1, y2有可能为0, ∵ ∴x2, y2中至少有一个不为0)
(2)能不能写成 ? (不能。 ∵x1, x2有可能为0)
(3)向量共线有哪两种形式? ∥ ()
三、讲解范例:
例1已知=(4,2),=(6, y),且∥,求y.
例2已知A(-1, -1), B(1,3), C(2,5),试判断A,B,C三点之间的位置关系.
思考:你还有其它方法吗?
例3若向量=(-1,x)与=(-x, 2)共线且方向相同,求x
解:∵=(-1,x)与=(-x, 2) 共线 ∴(-1)×2- x (-x)=0
∴x=± ∵与方向相同 ∴x=
例4 已知A(-1, -1), B(1,3), C(1,5) ,D(2,7) ,向量与平行吗?直线AB平行于直线CD吗?
解:∵=(1-(-1), 3-(-1))=(2, 4) , =(2-1,7-5)=(1,2)
又 ∵2×2-4×1=0 ∴∥
又 ∵ =(1-(-1), 5-(-1))=(2,6) ,=(2, 4),2×4-2×60 ∴与不平行
∴A,B,C不共线 ∴AB与CD不重合 ∴AB∥CD
例5设点P是线段P1P2上的一点, P1、P2的坐标分别是(x1,y1),(x2,y2).
当点P是线段P1P2的中点时,求点P的坐标;
当点P是线段P1P2的一个三等分点时,求点P的坐标.
思考:(1)中 P1P:PP2=? (2)中P1P:PP2=? 若P1P:PP2=如何求点P的坐标?
四、课堂练习:P101面4、5、6、7题。
五、小结 :(1)平面向量共线的坐标表示;
(2)平面上两点间的中点坐标公式及定点坐标公式;
(3)向量共线的坐标表示.
六、课后作业:《习案》二十二。
思考:
1.若a=(2,3),b=(4,-1+y),且a∥b,则y=( C )
A.6 B.5 C.7 D.8
2.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为( B )
A.-3 B.-1 C.1 D.3
3.若=i+2j, =(3-x)i+(4-y)j(其中i、j的方向分别与x、y轴正方向相同且为单位向量). 与共线,则x、y的值可能分别为( B )
A.1,2 B.2,2 C.3,2 D.2,4
4.已知a=(4,2),b=(6,y),且a∥b,则y= 3 .
5.已知a=(1,2),b=(x,1),若a+2b与2a-b平行,则x的值为
6.已知□ABCD四个顶点的坐标为A(5,7),B(3,x),C(2,3),D(4,x),则x= 5
PAGE
14-1.2.1任意角的三角函数(二)
教学目的:
知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式;
2.利用三角函数线表示正弦、余弦、正切的三角函数值;
3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
能力目标:掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。
德育目标:学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;
教学重点:正弦、余弦、正切线的概念。
教学难点:正弦、余弦、正切线的利用。
教学过程:
一、复习引入:
1. 三角函数的定义
2. 诱导公式
练习1. D
练习2. B
练习3. C
二、讲解新课:
当角的终边上一点的坐标满足时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
1.有向线段:
坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
规定:与坐标轴方向一致时为正,与坐标方向相反时为负。
有向线段:带有方向的线段。
2.三角函数线的定义:
设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点,
过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延
长线交与点.
由四个图看出:
当角的终边不在坐标轴上时,有向线段,于是有
, ,
我们就分别称有向线段为正弦线、余弦线、正切线。
说明:
(1)三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦线在轴上;正切线在过单位圆与轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。
(2)三条有向线段的方向:正弦线由垂足指向的终边与单位圆的交点;余弦线由原点指向垂
足;正切线由切点指向与的终边的交点。
(3)三条有向线段的正负:三条有向线段凡与轴或轴同向的为正值,与轴或轴反向的
为负值。
(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。
4.例题分析:
例1.作出下列各角的正弦线、余弦线、正切线。
(1); (2); (3); (4).
解:图略。
例2.
例5. 利用单位圆写出符合下列条件的角x的范围.
答案:(1);(2);
三、巩固与练习:P17面练习
四、小 结:本节课学习了以下内容:
1.三角函数线的定义;
2.会画任意角的三角函数线;
3.利用单位圆比较三角函数值的大小,求角的范围。
五、课后作业: 作业4
参考资料
例1.利用三角函数线比较下列各组数的大小:
1 与 2 与
解: 如图可知:
tan tan
例2.利用单位圆寻找适合下列条件的0到360的角
1 sin≥ 2 tan
解: 1 2
30≤≤150
3090或210270
补充:1.利用余弦线比较的大小;
2.若,则比较、、的大小;
3.分别根据下列条件,写出角的取值范围:
(1) ; (2) ; (3).
(Ⅰ)
(Ⅱ)
(Ⅳ)
(Ⅲ)
x
y
o
T
A
210
30
x
y
o
P1
P2
PAGE
23. 1.3 二倍角的正弦、余弦和正切公式
一、教学目标
以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.
二、教学重、难点
教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;
教学难点:二倍角的理解及其灵活运用.
三、学法与教学用具
学法:研讨式教学
四、教学设想:
(一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式,



我们由此能否得到的公式呢?(学生自己动手,把上述公式中看成即可),
(二)公式推导:


思考:把上述关于的式子能否变成只含有或形式的式子呢?;


注意:
(三)例题讲解
例1、已知求的值.
解:由得.
又因为.
于是;
;.
例2、已知求的值.
解:,由此得
解得或.
(四)课堂练习:详见学案
(五)小结:本节我们学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.
(六)作业:
§3.1.3 二倍角的正弦、余弦和正切公式
课前预习学案
一、预习目标
复习回顾两角和正弦、余弦和正切公式,为推到二倍角的正弦、余弦和正切公式做好铺垫。
二、预习内容
请大家首先回顾一下两角和的正弦、余弦和正切公式:



三、提出疑惑
我们由此能否得到的公式呢?(学生自己动手,把上述公式中看成即可)。
课内探究学案
一、公式推导:


思考:把上述关于的式子能否变成只含有或形式的式子呢?;


注意:
二、例题讲解
例1、已知求的值.
例2、已知求的值.
三、课堂练习
1.sin2230’cos2230’=__________________;
2._________________;
3.____________________;
4.__________________.
5.__________________;
6.____________________;
7.___________________;
8.______________________.
课后练习与提高
1、已知180°<2α<270°,化简=( )
A、-3cosα B、cosα C、-cosα D、sinα-cosα
2、已知,化简+= ( )
A、-2cos B、2cos C、-2sin D、2sin
3、已知sin=,cos=-,则角是 ( )
A、第一象限角 B、第二象限角 C、第三象限角 D、第四象限角
4、若tan = 3,求sin2 cos2 的值。
5、已知,求sin2,cos2,tan2的值。
6、已知求的值。
7、已知,,求的值。
PAGE
51. 6三角函数模型的简单应用
一、教材分析
本节课是在学习了三角函数图象和性质的前提下来学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力
二、教学目标
1、通过对三角函数模型的简单应用的学习,使学生初步学会由图象求解析式的方法;
2、根据解析式作出图象并研究性质;
3、体验实际问题抽象为三角函数模型问题的过程,体会三角函数是描述周期变化现象的重要函数模型.
4.让学生体验一些具有周期性变化规律的实际问题的数学建模思想,从而培养学生的建模、分析问题、数形结合、抽象概括等能力。
三、教学重点难点
重点:精确模型的应用——由图象求解析式,由解析式研究图象及性质
难点:分析、整理、利用信息,
从实际问题中抽取基本的数学关系来建立数学模型,
并调动相关学科的知识来解决问题.由图象求解析式时的确定。
四、学法分析
本节课是在学习了三角函数的性质和图象的基础上来学习三角函数模型的简单应用,学生已经了解了数学建摸的基本思想和方法,应用三角函数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。
在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。
五、教法分析
数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是三角函数的应用,所以应让学生多参与,让其自主探究分析问题,然后由老师启发、总结、提炼,升华为分析和解决问题的能力。
六、教学程序及设计意图
(一)创设情境、激活课堂
生活中普遍存在着周期性变化规律的现象,昼夜交替四季轮回,潮涨潮散、云卷云舒,情绪的起起落落,庭前的花开花谢,一切都逃不过数学的眼睛!这节课我们就来学习如何用数学的眼睛洞察我们身边存在的周期现象-----1.6三角函数模型的简单应用。
(二)由图象探求三角函数模型的解析式
例1.如图,某地一天从6~14时的温度变化曲线近似满足函数.
(1)求这一天6~14时的最大温差;
(2)写出这段曲线的函数解析式
设计意图:切入本节课的课题,让学生明确学习任务和目标。同时以设问和探索的方式导入新课,创设情境,激发思维,做好基础铺垫,让学生带着问题,有目的地参与后续
教学活动。
解:(1)由图可知:这段时间的最大温差是;
(2)从图可以看出:从6~14是的
半个周期的图象,
∴∴
∵,∴
又∵ ∴

将点代入得:,
∴,
∴,取,
∴。
【问题的反思】:
①一般地,所求出的函数模型只能近似刻画这天某个时段的温度变化情况,因此应当特
别注意自变量的变化范围;
②与学生一起探索的各种求法;(这是本题的关键!也是难点!)
设计意图:提出问题,有学生动脑分析,自主探究,培养学生数形结合的数学思考习惯。
③如何根据图像求解析式中的待定参数
设计意图:通过总结归纳出解题的思路方法,培养学生的概括能力。
④探究其他解法:或 等
设计意图:培养学生多角度考虑问题的习惯,培养学生的发散思维,培养学生的学习兴趣。
⑤借助三角函数模型研究的思想方法研究一些较复杂的三角函数。
设计意图:升华为思想方法。
(三)由解析式作出图象并研究性质
例2.画出函数的图象并观察其周期.
设计意图:通过画函数的图象来研究性质。由已知函数模型来研究函数,培养学生应用已知函数解决问题方法。
分析与简解:如何画图?
法1:去绝对值,化为分段函数(体现转化与化归!);
法2:图象变换——对称变换,可类比的作法.
从图中可以看出,函数是以为周期的波浪形曲线.
反思与质疑:
①利用图象的直观性,通过观察图象而获得对函数性质的认识,是研究数学问题的常用
方法;本题也可用代数方法即周期性定义验证:
 
∴的周期是.(体现数形结合思想!)
②变式思考:的周期是 .
的周期是       .
    的周期是           .
设计意图:变式练习,开阔思路,启迪思维,培养能力。数行结合求周期。
(四)应用数学知识解决实际问题
例3.如图,设地球表面某地正午太阳高度角为,为此时太阳直射纬度,为该地的纬度值,那么这三个量之间的关系是.当地夏半年取正值,冬半年取负值.
如果在北京地区(纬度数约为北纬)的一幢高为的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?
解:A、B、C分别为太阳直射北回归线、赤道、南回归线时楼
顶在地面上的投影点。要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度为-23°26′,依题意,两楼的间距不小于MC,根据太阳高度的定义,有:
 ∠C=90°-|40°-(-23°26′)|=26°34′
MC==2h0
即盖楼时,为命使后楼不被前楼遮挡,要留出当于楼高两倍的间距。
设计意图:利用三角函数解决生活中的实际问题,培养解决实际问题的能力、分析与简解:(用几何画板展示变化过程)
设计意图:运用信息技术直观展示问题的实质。
与学生一起学习并理解教材解法(地理课中已学习过),指出该实际问题用到了三角函
数的有关知识.
设计意图:优化学生的知识结构,使之系统化、条理化,加强知识间内在联系的理解和认识。知识性、方法性内容的小结,可把课堂所学知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质。
七、小试牛刀,当堂检测
某动物种群数量1月1日低至最小值700,7月1日高至最大值900,其总量在此两值之间变化,且总量与月份的关系可以用函数()来刻画,试求该函数表达式。
设计意图:教师组织学生反思总结本节课的主要内容,并进行当堂检测。
八、发导学案、布置预习。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计
三角函数模型的简单应用
例1. 例2.例3. 练习:小结:
十、教后反思
以问题引导教学,让学生听有所思,思有所获,获有所感。问题串的设计,使学习内容在难度和强度上循序渐进而又螺旋上升,并通过互动逐一达成教学目标,突出重点,突破难点,较好的提高了课堂教学的有效性。
1.6三角函数模型的简单应用
课前预习学案
一、预习目标
预习三角函数模型的简单问题,初步了解三角函数模型的简单应用
二、预习内容
1、三角函数可以作为描述现实世界中_________现象的一种数学模型.
2、是以____________为周期的波浪型曲线.
课内探究学案
一、学习目标
1、会用三角函数解决一些简单的问题,体会三角函数是描述周期变化现象的重要函数模型.
2通过对三角函数的应用,发展数学应用意识,求对现实世界中蕴涵的一些数学模型进行思考和作出判断.
学习重难点:
重点:精确模型的应用——由图象求解析式,由解析式研究图象及性质
难点:分析、整理、利用信息,
从实际问题中抽取基本的数学关系来建立数学模型
二、学习过程
自主探究;
问题一、如图,某地一天从6~14时的温度变化曲线近似满足函数.
(1)求这一天6~14时的最大温差;
(2)写出这段曲线的函数解析式
问题二、画出函数的图象并观察其周期.
问题三、如图,设地球表面某地正午太阳高度角为,为此时太阳直射纬度,为该地的纬度值,那么这三个量之间的关系是.当地夏半年取正值,冬半年取负值.
如果在北京地区(纬度数约为北纬)的一幢高为的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?
三、当堂检测
1、以一年为一个周期调查某商品出厂价格及该商品在商店的销售价格时发现:该商品的出厂价格是在6元基础上按月份随正弦曲线波动的,已知3月份出厂价格最高为8元,7月份出厂价格最低为4元,而该商品在商店的销售价格是在8元基础上按月随正弦曲线波动的,并已知5月份销售价最高为10元,9月份销售价最低为6元,假设某商店每月购进这种商品m件,且当月售完,请估计哪个月盈利最大?并说明理由.
课后练习与提高
1、设是某港口水的深度关于时间t(时)的函数,其中,下表是该港口某一天从0至24时记录的时间t与水深y的关系.
t 0 3 6 9 12 15 18 21 24
y 12 15.1 12.1 9.1 11.9 14.9 11.9 8.9 12.1
经长期观察,函数的图象可以近似地看成函数的图象.
根据上述数据,函数的解析式为( )
A. B.
C. D.
2、从高出海面hm的小岛A处看正东方向有一只船B,俯角为看正南方向的一船C的俯角为,则此时两船间的距离为( ).
A. B. C. D.
3、如图表示电流 I 与时间t的函数关系式: I =在同一周期内的图象。
(1)根据图象写出I =的解析式;
(2)为了使I =中t在任意-段秒的时间内电流I能同时取得最大值和最小值,那么正整数的最小值是多少?
答案:
预习内容:1、周期 2、
自主探究:
问题二、
问题三、解:A、B、C分别为太阳直射北回归线、赤道、南回归线时楼
顶在地面上的投影点。要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回归线的情况考虑,此时的太阳直射纬度为-23°26′,依题意,两楼的间距不小于MC,根据太阳高度的定义,有:
 ∠C=90°-|40°-(-23°26′)|=26°34′
MC==2h0
即盖楼时,为命使后楼不被前楼遮挡,要留出当于楼高两倍的间距。
当堂检测:由条件可得:出厂价格函数为,
销售价格函数为
则利润函数为:
所以,当时,Y=(2+)m,即6月份盈利最大.
课后练习与提高
1、A
2、A
3、解:(1)由图知A=300,,
由得
(2)问题等价于,即
,∴正整数的最小值为314。
PAGE
72. 3.2 平面向量的正交分解及坐标表示
学习目标
能将平面向量的基本定理应用于平面向量的正交分解中。
会把向量正交分解,会用坐标表示向量.
重点难点
教学重点:平面向量的正交分解、平面向量的坐标表示.
教学难点: 理解平面向量的坐标表示.
教学过程
对平面中的任意一个向量能否用两个互相垂直的向量来表示?——上节课针对这一问题我们做出了肯定的回答,接下来我们共同探究:把任意一个向量用两个互相垂直的向量来表示会给解决问题带来哪些方便。
正交分解:把向量分解为两个互相垂直的向量。
提出问题
我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢 能不能象点一样也用坐标来表示?
解答问题
如图,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量、作为基底.对于平面内的一个向量,由平面向量基本定理可知,有且只有一对实数x、y,使得
=x+y ①
这样,平面内的任一向量都可由x、y唯一确定,我们把有序数对(x,y)叫做向量的坐标,记作 =(x,y) ②
其中x叫做在x轴上的坐标,y叫做在y轴上的坐标,②式叫做向量的坐标表示.
显然, =(1,0), =(0,1),=(0,0).
提出问题
在平面直角坐标系中,一个向量和坐标是否是一一对应的?
解答问题
如图,在直角坐标平面内,以原点为起点作,则点的位置由唯一确定.
设,则向量的坐标就是点的坐标;反过来,点的坐标也就是向量的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.
例题讲解
例1、 如图,分别用基底、表示向量、、、,并求出它们的坐标.
例2、请在平面直角坐标系中作出向量、,其中=(1,-3)、=(-3,-1).
课堂小结:(1)什么是正交分解?
(2)平面直角坐标系中,向量与坐标有什么关系?
(3)如何根据平面直角坐标系中的向量求出其坐标?如何根据给出的坐标在平面直角坐标系中画出其对应的向量?
2.3.3平面向量的坐标运算
教学目的:
(1)理解平面向量的坐标的概念;
(2)掌握平面向量的坐标运算;
教学重点:平面向量的坐标运算
教学难点:向量的坐标表示的理解及运算的准确性.
教学过程:
情景平台:我们用有向线段表示向量时会进行线性运算,现在我们用坐标来表示向量还能不能进行线性运算?
讲解新课:
1.平面向量的坐标运算
思考1:已知: ,,你能得出、、的坐标吗?
结论:(1) 若,,
则,
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.
结论:(2)若和实数,则.
实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.
思考2:已知,,怎样求的坐标?
结论:(3) 若,,则
( x2, y2) (x1,y1)(x2 x1, y2 y1)
一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.
思考3:你能标出坐标为(x2 x1, y2 y1)的P点吗?
结论:(4)向量的坐标与以原点为始点、点P为终点的向量的坐标是相同的。
讲解范例:
例1 已知=(2,1), =(-3,4),求+,-,3+4的坐标.
练习1、课后练习1,2,3题
例2 已知平面上三点的坐标分别为A(2, 1), B(1, 3), C(3, 4),求点D的坐标使这四点构成平行四边形四个顶点.
练习2已知:四点A(5, 1),B(3, 4), C(1, 3), D(5, -3) ,求证:四边形ABCD是梯形.
例3已知三个力 =(3, 4), =(2, 5), =(x, y)的合力++,求的坐标.
课堂小结:平面向量的坐标运算;
课后作业:习题2.3 A组1,2,3题
PAGE
11.4.1正弦、余弦函数的图象
教学目的:
知识目标:(1)利用单位圆中的三角函数线作出的图象,明确图象的形状;
(2)根据关系,作出的图象;
(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题;
能力目标:(1)理解并掌握用单位圆作正弦函数、余弦函数的图象的方法;
(2)理解并掌握用“五点法”作正弦函数、余弦函数的图象的方法;
德育目标:通过作正弦函数和余弦函数图象,培养学生认真负责,一丝不苟的学习和工作精神;
教学重点:用单位圆中的正弦线作正弦函数的图象;
教学难点:作余弦函数的图象。
教学过程:
一、复习引入:
1. 弧度定义:长度等于半径长的弧所对的圆心角称为1弧度的角。
2.正、余弦函数定义:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)
P与原点的距离r()
则比值叫做的正弦 记作:
比值叫做的余弦 记作:
3.正弦线、余弦线:设任意角α的终边与单位圆相交于点P(x,y),过P作x轴的垂线,垂足为M,则有

向线段MP叫做角α的正弦线,有向线段OM叫做角α的余弦线.
二、讲解新课:
1、用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.
(1)函数y=sinx的图象
第一步:在直角坐标系的x轴上任取一点,以为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x值—弧度制下角与实数的对应).
第二步:在单位圆中画出对应于角,,,…,2π的正弦线正弦线(等价于“列表” ).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点” ).
第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.
根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象.
把角x的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=sinx的图象.
(2)余弦函数y=cosx的图象
探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变换得到余弦函数的图象?
根据诱导公式,可以把正弦函数y=sinx的图象向左平移单位即得余弦函数y=cosx的图象. (课件第三页“平移曲线” )
正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.
思考:在作正弦函数的图象时,应抓住哪些关键点?
2.用五点法作正弦函数和余弦函数的简图(描点法):
正弦函数y=sinx,x∈[0,2π]的图象中,五个关键点是:(0,0) (,1) (,0) (,-1) (2,0)
余弦函数y=cosx x[0,2]的五个点关键是哪几个?(0,1) (,0) (,-1) (,0) (2,1)
只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正弦函数和余弦函数的简图,要求熟练掌握.
优点是方便,缺点是精确度不高,熟练后尚可以
3、讲解范例:
例1 作下列函数的简图
(1)y=1+sinx,x∈[0,2π],  (2)y=-COSx
●探究2. 如何利用y=sinx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到
(1)y=1+sinx ,x∈〔0,2π〕的图象;
(2)y=sin(x- π/3)的图象?
小结:函数值加减,图像上下移动;自变量加减,图像左右移动。
探究3.
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=-cosx ,
x∈〔0,2π〕的图象?
小结:这两个图像关于X轴对称。
●探究4.
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=2-cosx ,x∈〔0,2π〕的图象?
小结:先作 y=cos x图象关于x轴对称的图形,得到 y=-cosx的图象,
再将y=-cosx的图象向上平移2个单位,得到 y=2-cosx 的图象。
●探究5.
不用作图,你能判断函数y=sin( x - 3π/2 )和y=cosx的图象有何关系吗?请在同一坐标系中画出它们的简图,以验证你的猜想。
小结:sin( x - 3π/2 )= sin[( x - 3π/2 ) +2 π] =sin(x+π/2)=cosx
这两个函数相等,图象重合。
例2 分别利用函数的图象和三角函数线两种方法,求满足下列条件的x的集合:
三、巩固与练习
四、小 结:本节课学习了以下内容:
1.正弦、余弦曲线 几何画法和五点法
2.注意与诱导公式,三角函数线的知识的联系
五、课后作业:《习案》作业:八
PAGE
22.4.2平面向量数量积的坐标表示、模、夹角
教学目的:
1.掌握平面向量数量积运算规律;
2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;
3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.
教学重点:平面向量数量积及运算规律.
教学难点:平面向量数量积的应用
教学过程:
一、复习引入:
1.平面向量数量积(内积)的定义:
2.两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量.
1 ea = ae =|a|cos; 2 ab ab = 0
3 当a与b同向时,ab = |a||b|;当a与b反向时,ab = |a||b|. 特别的aa = |a|2或
4cos = ; 5|ab| ≤ |a||b|
3.练习:
(1)已知|a|=1,|b|=,且(a-b)与a垂直,则a与b的夹角是( )
A.60° B.30° C.135° D.45°
(2)已知|a|=2,|b|=1,a与b之间的夹角为,那么向量m=a-4b的模为( )
A.2 B.2 C.6 D.12
二、讲解新课:
探究:已知两个非零向量,,怎样用和的坐标表示?.
1、平面两向量数量积的坐标表示
两个向量的数量积等于它们对应坐标的乘积的和.即
2. 平面内两点间的距离公式
(1)设,则或.
(2)如果表示向量的有向线段的起点和终点的坐标分别为、,
那么(平面内两点间的距离公式)
向量垂直的判定
设,,则
两向量夹角的余弦()
cos =
二、讲解范例:
例1 已知A(1, 2),B(2, 3),C(2, 5),试判断△ABC的形状,并给出证明.
例2 设a = (5, 7),b = (6, 4),求a·b及a、b间的夹角θ(精确到1o)
分析:为求a与b夹角,需先求a·b及|a|·|b|,再结合夹角θ的范围确定其值.
例3 已知a=(1,),b=(+1,-1),则a与b的夹角是多少
分析:为求a与b夹角,需先求a·b及|a|·|b|,再结合夹角θ的范围确定其值.
解:由a=(1,),b=(+1,-1)
有a·b=+1+(-1)=4,|a|=2,|b|=2.
记a与b的夹角为θ,则cosθ= 又∵0≤θ≤π,∴θ=
评述:已知三角形函数值求角时,应注重角的范围的确定.
三、课堂练习:1、P107面1、2、3题
2、已知A(3,2),B(-1,-1),若点P(x,-)在线段AB的中垂线上,则x= .
四、小结: 1、
2、平面内两点间的距离公式
3、向量垂直的判定:
设,,则
五、课后作业:《习案》作业二十四。
思考:
1、如图,以原点和A(5, 2)为顶点作等腰直角△OAB,使B = 90,求点B和向量的坐标.
解:设B点坐标(x, y),则= (x, y),= (x5, y2)
∵ ∴x(x5) + y(y2) = 0即:x2 + y2 5x 2y = 0
又∵|| = || ∴x2 + y2 = (x5)2 + (y2)2即:10x + 4y = 29

∴B点坐标或;=或
2 在△ABC中,=(2, 3),=(1, k),且△ABC的一个内角为直角,求k值.
解:当A = 90时,= 0,∴2×1 +3×k = 0 ∴k =
当B = 90时,= 0,== (12, k3) = (1, k3)
∴2×(1) +3×(k3) = 0 ∴k =
当C = 90时,= 0,∴1 + k(k3) = 0 ∴k =
PAGE
1§1.4.3正切函数的图像与性质
【教材分析】
正切函数的图象和性质》 它前承正、余弦函数,后启必修五中的直线斜率问题。研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升,同时又为后续的学习奠定了基石。教材单刀直入,直接进入画图工作,没有给出任何提示。正切函数与正弦函数在研究方法上类似,我采用以类比的方式,让学生回忆正弦曲线的作图过程与方法,进而启发、引导学生发现作正切曲线的一种方法。教材上直接圈定了区间(),这样限制了学生的思维,我把空间留给学生,采用让学生自己选择周期,设计一个得到正切曲线的方法。这样,不仅发挥了学生的能动性,增强动脑、动手绘图的能力,而且,在此过程中,学生会注意到画正切曲线的细节。在得到图象后,单调性是一个难点,我设计了几个判断题帮助学生理解该性质,并用比大小的题型启发学生从代数和几何两种角度看问题。
【教学目标】
正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题。本着课改理念,养成学生对知识的勇于探索精神,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标:
  1.会用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质,用数形结合的思想理解和处理问题。
  2.首先学生自主绘图,通过投影仪纠正图像,投影完整的正确图象,然后再让学生观察,类比正弦,探索知识。
  3.在得到正切函数图像的过程中,学会一类周期性函数的研究方式,通过自己动手得到图像让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
【教学重点难点】
教学重点:正切函数的图象及其主要性质。
  教学难点:利用正切线画出函数y=tanx的图象,对直线x=,是y=tanx的渐近线的理解,对单调性这个性质的理解。
【学情分析】
知识结构:在函数中我们学习了如何研究函数,而对正弦函数的研究又再一次做了一个模板,所以学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。但在画正切函数图象时,还有许多需要注意的地方,这又提升了学生分析问题的能力及严密认真的态度。
  心理特征:高一学生已经初步形成了是非观,具备了分辨是非的能力及语言表达能力。能够通过讨论、合作交流、辩论得到正确的知识。但在处理问题时学生很容易“想当然”用事,考虑问题不深入,往往会造成错误的结果。
【教学方法】
1.学案导学:见后面的学案。
2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
【课前准备】
1.学生的学习准备:预习“正切函数的图像与性质”,初步把握作图的方法与性质的推导。
2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。
【课时安排】1课时
【教学过程】
一、预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
二、复 习导入、展示目标。
问题1:就我们前面所学的内容中,正切函数与正余弦函数的有何区别?
三角函数 y=sinx y=cosx y=tanx
定义域 R R
值域 [-1,1] [-1,1] R
周期性及周期 2 2
奇偶性 奇 偶 奇
大家怎么知道正切函数的值域是R
通过单位圆中的正切线可以得到。
那请同学们回忆正切线在每一个象限的画法。
(设计意图:①通过此问题确定本节课的一个基调:类比学习;②通过此问题来复习我们已经研究过的正切函数的性质;③通过比较让学生了解正切与正弦的区别,在画图像的时候注意区别;④因为在作图时必须用正切线的知识,所以在此做一个相应的复习和准备工作,顺应学生的思维在知识链接处提问)
  问题2:我们用什么样的方式得到正余弦函数的图像的?
利用单位圆内的正弦线,得到在一个周期,即[0,2 ]内的图象,再利用周期性得到在定义域内的图象。
问题3:请同学们根据所学知识设计一个研究正切函数图像与性质的方案。
  方案:第一步:画出正切函数的在一个周期内的图象;
  第二步:将图象向左、向右平移拓展到整个定义域上去;
第三步:根据图象总结性质。
三、合作探究、精讲点拨。
①请同学们解决方案的第一步,先画出y=tanx在一个周期内的简图。
给学生充足的时间与空间,发挥学生的主动性,这样不仅提高了学生的动手实践能力,还培养了学生对数学的兴趣。
注:有的学生可能会想到利用函数的奇偶性来画图,很多学生会画出(0.)的图象,教师暂时不予评价,等待学生形成图象。
②教师用投影仪展示作图结果,学生之间相互评价,指出优点和不足之处,并鼓励学生阐述自己的观点。教师直接在投影仪上纠正学生错误的图像;并将(0,)的图象与的图像进行比较来说明只是周期的选择不同,拓展到整个定义域上也是一致的。
通过学生之间的点评与总结,引出渐近线,并请同学们总结出:要画出一个周期内的图象,首先,选择哪段区间较好,其次,在画图象的过程中应该注意什么?
③投影仪展示完整图像。目的是规范作图,理顺思路的作用,并画出在定义域上的图象。
(设计意图:在做好整体知识方法的铺垫后,学生完全有能力自己得到图象,并且通过交流发现自己的问题,所以整体做了一个这样的处理。而根据知识的发生发展和获得结论这个过程,在最后给学生展示标准的图象以留下正确和深刻的印象)
④总结正切函数的性质。分小组根据正切函数图象去验证正切函数已有的性质,并找出其它的性质(主要就指单调性,若学生提及对称性就一起分析,若学生不提也不加以讨论,因为高考要求没有对对称性的涉及)。一组总结后,其它各小组补充或改正。培养学生之间的团结协作能力及勇于探索的精神。
有部分学生会得到正切函数在定义域上是单调增函数的结论,所以为了突破这个难点,另外又设计了三道判断题让学生小组讨论形成结果。
判断下列语句是否正确:
(1) y=tanx在定义域上是单调增函数;
(2)y=tanx在第一象限是单调增函数;
(3),而y=tanx 是单调增函数,
在整体形成应该如何理解正切函数的单调性的基础上,再完成两个比大小的问题。
不求值,判断下列各式的大小
①tan1380 tan1430, ②tan(— ) tan()
引导学生从数和形两个角度来完成,可以直接看图象,可以转化到同一个单调区间,也可以利用三角函数线来比大小。
(设计意图:根据原来的教学经验,学生在后续使用这个性质的时候经常会认为正切在定义域上是单调增函数,或者对第一象限的认识就认为是0~,所以准备这些辨析题就是让学生缩短这个反复讲解的过程,留下正确的印象,而比较大小是检验能否认识三角单调性的一个很好的工具,诱导公式的使用又将前后内容联系起来)
四、例题分析
例1.讨论函数的性质
解析:考察正切函数图像,该图像可通过正切函数图像向左平移单位得到
解:定义域:值域:R 奇偶性:非奇非偶函数
单调性:在上是增函数
点评:本题考察了图像的平移变换,培养学生的作图能力与通过图像观察性质的能力
变式训练1. 求函数y=tan2x的定义域、值域和周期
解:要使函数y=tan2x有意义,必须且只须2x≠+kπ,k∈Z
即x≠+,k∈Z ∴函数y=tan2x的定义域为{x∈R|,x≠,k∈Z}
(2)设t=2x,由x≠,k∈Z}知t≠+kπ,k∈Z
∴y=tant的值域为(-∞,+∞)即y=tan2x的值域为(-∞,+∞)
(3)由tan2(x+)=tan(2x+π)=tan2x ∴y=tan2x的周期为.
例2.求函数y=的定义域
解析:通过图像解三角不等式
解:tanx≠1且x≠kπ+,k∈Z,得x≠kπ+且x≠kπ+,k∈Z
则定义域为{x| x∈R且x≠kπ+且x≠kπ+,k∈Z}
点评:通过本题培养学生数形结合的能力
变式训练2. y=
解:tanx+1≥0,即tanx≥-1,得kπ-≤x<kπ+,k∈Z
则定义域为{x| kπ-≤x<kπ+,k∈Z}
例3. 比较tan与tan的大小
解析:通过诱导公式把角度化为同一单调区间,利用正切函数单调性比较大小
解:tan=tan ∵0<<< 又∵y=tanx在(0,)上单调递增
∴tan<tan,则tan<tan
点评:注意诱导公式的准确应用
变式训练3. tan与tan (-)
解:tan =-tan ,tan (-)=-tan =-tan
∵0<<<π 又∵y=tan x在(0,π)上单调递增
∴tan<tan,则tan>tan (-)
由学生分析,得到结论,其他学生帮助补充、纠正完成。
五、反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
课堂小结:
1、数学知识:正切函数的定义与图像,定义域、值域和周期性、奇偶性、单调性。
2、数学思想方法:数形结合。
达标检测:
1. 函数的周期是 ( )
(A) (B) (C) (D)
2.函数的定义域为 ( )
(A) (B)
(C) (D)
3.下列函数中,同时满足(1)在(0, )上递增,(2)以2为周期,(3)是奇函数的是 ( )
(A) (B) (C) (D)
4.tan1,tan2,tan3的大小关系是_______________________.
5.给出下列命题:
(1)函数y=sin|x|不是周期函数; (2)函数y=|cos2x+1/2|的周期是π/2;
(3)函数y=tanx在定义域内是增函数; (4)函数y=sin(5π/2+x)是偶函数;
(5)函数y=tan(2x+π/6)图象的一个对称中心为(π/6,0)
其中正确命题的序号是_______________(注:把你认为正确命题的序号全填上)
6.求函数y=lg(1-tanx)的定义域
参考答案:1.C 2.D 3.C 4. tan2设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。
六、发导学案、布置预习。
(1)y=|sinx|的周期变成了2,那y=|tanx|变成了什么?
(2)在书本P34有正切、余切的由来,请同学们仔细阅读,并想想为什么直阴影是余切,反阴影是正切?
七、板书设计
正切函数的图象及性质
一、正切函数图像 例1
1.画出正切函数的在一个周期内的图象; 例2
2.将图象向左、向右平移拓展到整个定义域上去; 例3
二、正切函数的性质 根据图象总结性质
八、教学反思
(1)根据知识的前后联系在本节课设计时主要采取类比学习,学生自己动手绘图、自己研究性质、自己完成辨析、判断和例题的过程。在学生能够自己独立完成的地方,教师退到幕后起到一个推波助澜的作用和汇总学生意见,形成正确知识和方法的作用。
(2)根据学生学习知识的发生发展成熟过程,在生成图象的过程中让学生自己先独立画,然后小组交流,再用投影仪来纠正学生错误图象,比较不同周期的图象,最后用投影仪展现定义域内的标准图象,充分体现了学生的主体性,让学生活起来。
九、学案设计(见下页)
§1.4.3正切函数的图像与性质
课前预习学案
一、预习目标
利用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质
二、预习内容
1.画出下列各角的正切线:
2.类比正弦函数我们用几何法做出正切函数图象:
3.把上述图象向左、右扩展,得到正切函数,且的图象,称“正切曲线”
4.观察正切曲线,回答正切函数的性质:
定义域: 值域:
最值: 渐近线:
周期性: 奇偶性
单调性: 图像特征:
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标:会用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质,用数形结合的思想理解和处理问题。
学习重难点:正切函数的图象及其主要性质。
二、学习过程
例1.讨论函数的性质
变式训练1. 求函数y=tan2x的定义域、值域和周期
例2.求函数y=的定义域
变式训练2. y=
例3. 比较tan与tan的大小
变式训练3. tan与tan (-)
三、反思总结
1、数学知识:
2、数学思想方法:
四、当堂检测
一、选择题
1. 函数的周期是 ( )
(A) (B) (C) (D)
2.函数的定义域为 ( )
(A) (B)
(C) (D)
3.下列函数中,同时满足(1)在(0, )上递增,(2)以2为周期,(3)是奇函数的是 ( )
(A) (B) (C) (D)
二、填空题
4.tan1,tan2,tan3的大小关系是_______________________.
5.给出下列命题:
(1)函数y=sin|x|不是周期函数; (2)函数y=|cos2x+1/2|的周期是π/2;
(3)函数y=tanx在定义域内是增函数; (4)函数y=sin(5π/2+x)是偶函数;
(5)函数y=tan(2x+π/6)图象的一个对称中心为(π/6,0)
其中正确命题的序号是_______________(注:把你认为正确命题的序号全填上)
三、解答题
6.求函数y=lg(1-tanx)的定义域
课后练习与提高
一、选择题
1、在定义域上的单调性为( ).
A.在整个定义域上为增函数
B.在整个定义域上为减函数
C.在每一个开区间上为增函数
D.在每一个开区间上为增函数
2、下列各式正确的是( ).
A. B.
C. D.大小关系不确定
3、若,则( ).
A. B.
C. D.
二、填空题
4、函数的定义域为 .
5、函数的定义域为 .
三、解答题
6、 函数的定义域是( ).
PAGE
81.5函数y=Asin(wx+)(A>0,w>0的图象
教学目标:
1. 分别通过对三角函数图像的各种变换的复习和动态演示进一步让学生了解三角函数图像各种变换的实质和内在规律。
2. 通过对函数y = Asin(wx+4)(A>0,w>0)图象的探讨,让学生进一步掌握三角函数图像各种变换的内在联系。
3. 培养学生观察问题和探索问题的能力。
教学重点:
函数y = Asin(wx+)的图像的画法和设图像与函数y=sinx图像的关系。
教学难点:各种变换内在联系的揭示。
教学过程:
复习旧知
1.“五点法”作函数y=sinx简图的步骤,其中“五点”是指什么?
2.的图象与的图象有什么样的关系?
二、新课讲授
1. 函数y = sin(xk)(k>0)的图象和函数y = sinx图像的关系是什么?
生答:函数y = sin(x k)(k>0)的图像可由函数y = sinx的图像向左(或右)平移k个单位而得到,这种变换实际上是纵坐标不变,横坐标增加(或减少)k个单位,这种变换称为平移变换。
2. 函数y = sinwx (w>0)的图像和函数y = sinx图像的关系是什么?
学生答:函数y = sinwx(w>0)的图像可由函数y = sinx的图像沿x轴伸长(w<1)或缩短(w>1)到原来的倍而得到,称为周期变换。
这种变化的实质是纵坐标不变,横坐标伸长(01)到原来的倍。
3. 函数y = Asinx(A>0)的图像和函数y = sinx图像的关系是什么?
学生答:函数y = Asinx的图像可由函数y = sinx的图像沿y轴伸长(A>1)或缩短(x<1)到原来的A倍而得到的,称为振幅变换。
这种变换的实质是:横坐标不变,纵坐标伸长(A> | )或缩小(0思考:上面我们学习了三种函数y = sin(x k),y = sinwx,y = Asinx的图像和函数y = sinx图像的关系,那么y = Asin(wx+)(A>0,w>0) 的图像和函数y = sinx的图像有何关系呢?
4. 函数y = Asin(wx+)的图像的画法。
为了探讨函数y = Asin(wx+)的图像和函数y = sinx图像的关系,我们先来用“五点法”作函数y = Asin(wx+)的图像。
例:作函数y = 3sin(2x+)的简图。
解:⑴设Z= 2x +,那么3xin(2x+)= 3sin,x==,分别取z = 0,,,,2,则得x为,,,,,所对应的五点为函数y=3sin(x)在一个周期[,]图象上起关键作用的点。
⑵列表x
2x+ 0 2
sin(2x+) 0 1 0 1 0
3 sin(2x+) 0 3 0 3 0
⑶描点作图,运用制好的课件演示作图过程。(图略)
归纳: 函数y=Asin(wx+)(A>0,w>0)图像和函数y=sinx图像的关系。
利用制作好的课件,运用多媒体教学手段向学生展示由函数y=sinx的图像是怎样经过平移变化→周期变换→振幅变换而得到函数y=Asin (wx+)图像的。
归纳:先把函数y = sinx图像上所有点向左平行移动个单位,得到y = sin(x +)的图像,-----再把y = sin(x +)的图像上所有的点的横坐标缩短到原来的倍(纵坐标不变),得到y = sin(2x +)的图像,-----再把y = sin(2x +)的图像上所有的点的纵坐标伸长到原来的3倍(横坐标不变),从而得到y = 3sin(2x +)图像。
三、思考探究:
上面我们学习了函数y = Asin(wx+)的图像可由y = sinx图像平移变换→周期变换→振幅变换的顺序而得到,若按下列顺序得到y = Asin(wx+)的图象吗?
⑴周期变换→平移变换→振幅变换
⑵振幅变换→平移变换→周期变换
⑶平移变换→振幅变换→周期变换
归纳2:函数y = Asin(wx+),(A>0,w>0)的图像可以看作是先把y = sinx的图像上所有的点向左(>0)或向右(<0)平移||个单位,再把所得各点的横坐标缩短(w>1)或伸长(01)或缩短(0四、变式练习
1. 作下列函数在一个周期的闭区间上的简图,并指出它的图像是如何由函数y = sinx的图像而得到的。
⑴y = 5sin(x+);⑵y =sin(3x)
2.教材P55面练习2题
3. 完成下列填空
⑴函数y = sin2x图像向右平移个单位所得图像的函数表达式为
⑵函数y = 3cos(x+)图像向左平移个单位所得图像的函数表达式为
⑶函数y = 2loga2x图像向左平移3个单位所得图像的函数表达式
⑷函数y = 2tan(2x+)图像向右平移3个单位所得图像的函数表达式为
五、归纳小结
本节课我们进一步探讨了三角函数各种变换的实质和函数y = Asin(wx+)(A>0,w>0)的图像的画法。并通过改变各种变换的顺序而发现:平移变换应在周期变换之前,否则得到的函数图像不是函数y =Asin(wx+)的图像由y = sinx图像的得到。
七、布置作业:《习案》作业十二
PAGE
1§1.4.2正弦函数余弦函数的性质
【教材分析】
《正弦函数和余弦函数的性质》是普通高中课程标准实验教材必修4中的内容,是正弦函数和余弦函数图像的继续,本课是根据正弦曲线余弦曲线这两种曲线的特点得出正弦函数和余弦函数的性质。
【教学目标】
1. 会根据图象观察得出正弦函数、余弦函数的性质;会求含有的三角式的性质;会应用正、余弦的值域来求函数和函数
的值域
  2. 在探究正切函数基本性质和图像的过程中,渗透数形结合的思想,形成发现问题、提出问题、解决问题的能力,养成良好的数学学习习惯.
  3. 在解决问题的过程中,体验克服困难取得成功的喜悦.
【教学重点难点】
教学重点:正弦函数和余弦函数的性质。
  教学难点:应用正、余弦的定义域、值域来求含有的函数的值域
【学情分析】
知识结构:在函数中我们学习了如何研究函数,对于正弦函数余弦函数图像的学习使学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。
心理特征:高一普通班学生已掌握三角函数的诱导公式,并了解了三角函数的周期性,但学生运用数学知识解决实际问题的能力还不强;能够通过讨论、合作交流、辩论得到正确的知识。但在处理问题时学生考虑问题不深入,往往会造成错误的结果。
【教学方法】
1.学案导学:见后面的学案。
2.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
【课前准备】
1.学生的学习准备:预习“正弦函数和余弦函数的性质”,初步把握性质的推导。
2.教师的教学准备:课前预习学案,课内探究学案,课后延伸拓展学案。
【课时安排】1课时
【教学过程】
一、预习检查、总结疑惑
检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
二、复 习导入、展示目标。
(一)问题情境
复习:如何作出正弦函数、余弦函数的图象?
生:描点法(几何法、五点法),图象变换法。并要求学生回忆哪五个关键点
引入:研究一个函数的性质从哪几个方面考虑?
生:定义域、值域、单调性、周期性、对称性等
提出本节课学习目标——定义域与值域
(二)探索研究
给出正弦、余弦函数的图象,让学生观察,并思考下列问题:
1.定义域
正弦函数、余弦函数的定义域都是实数集(或).
2.值域
(1)值域
因为正弦线、余弦线的长度不大于单位圆的半径的长度,
所以,

也就是说,正弦函数、余弦函数的值域都是.
(2)最值
正弦函数
①当且仅当时,取得最大值
②当且仅当时,取得最小值
余弦函数
①当且仅当时,取得最大值
②当且仅当时,取得最小值
3.周期性
由知:
正弦函数值、余弦函数值是按照一定规律不断重复地取得的.
定义:对于函数,如果存在一个非零常数,使得当取定义域内的每一个值时,
都有,那么函数就叫做周期函数,非零常数叫做这个函数的周期.
由此可知,都是这两个函数的周期.
对于一个周期函数,如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做的最小正周期.
根据上述定义,可知:正弦函数、余弦函数都是周期函数,都是它的周期,最小正周期是.
4.奇偶性

可知:()为奇函数,其图象关于原点对称
()为偶函数,其图象关于轴对称
5.对称性
正弦函数的对称中心是,
对称轴是直线;
余弦函数的对称中心是,
对称轴是直线
(正(余)弦型函数的对称轴为过最高点或最低点且垂直于轴的直线,对称中心为图象与轴(中轴线)的交点).
6.单调性
从的图象上可看出:
当时,曲线逐渐上升,的值由增大到
当时,曲线逐渐下降,的值由减小到
结合上述周期性可知:
正弦函数在每一个闭区间上都是增函数,其值从增大到;在每一个闭区间上都是减函数,其值从减小到.
余弦函数在每一个闭区间上都是增函数,其值从增加到;余弦函数在每一个闭区间上都是减函数,其值从减小到.
三、例题分析
例1、求函数y=sin(2x+)的单调增区间.
解析:求函数的单调增区间时,应把三角函数符号后面的角看成一个整体,采用换元的方法,化归到正、余弦函数的单调性.
解:令z=2x+,函数y=sinz的单调增区间为[,].
由 ≤2x+≤得 ≤x≤
故函数y=sinz的单调增区间为 [, ](k∈Z)
点评:“整体思想”解题
变式训练1. 求函数y=sin(-2x+)的单调增区间
解:令z=-2x+,函数y=sinz的单调减区间为[,]
故函数sin(-2x+)的单调增区间为[ , ](k∈Z).
例2:判断函数的奇偶性
解析:判断函数的奇偶性,首先要看定义域是否关于原点对称,然后再看与的关系,对(1)用诱导公式化简后,更便于判断.
解:∵=,

所以函数为偶函数.
点评:判断函数的奇偶性时, 判断“定义域是否关于原点对称”是必须的步骤.
变式训练2. )
解:函数的定义域为R,
=
===
所以函数)为奇函数.
例3. 比较sin2500、sin2600的大小
解析:通过诱导公式把角度化为同一单调区间,利用正弦函数单调性比较大小
解:∵y=sinx在[,](k∈Z),上是单调减函数,
又 2500<2600 ∴ sin2500>sin2600
点评:比较同名的三角函数值的大小,找到单 调区间,运用单调性即可,若比较复杂,
先化间;比较不同名的三角函数值的大小,应先化为同名的三角函数值,再进行比较.
变式训练3. cos
解:cos
由学生分析,得到结论,其他学生帮助补充、纠正完成。
五、反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
课堂小结:
1、数学知识:正、余弦函数的图象性质,并会运用性质解决有关问题
2、数学思想方法:数形结合、整体思想。
达标检测:
一、选择题
1.函数的奇偶数性为(   ).
A. 奇函数         B. 偶函数
C.既奇又偶函数        D. 非奇非偶函数
2.下列函数在上是增函数的是(   )
A. y=sinx B. y=cosx
C. y=sin2x D. y=cos2x
3.下列四个函数中,既是上的增函数,又是以为周期的偶函数的是(  ).
A. B.
C. D.
二、填空题
4.把下列各等式成立的序号写在后面的横线上。
①   ②  ③ ④
__________________________________________________________
5.不等式≥的解集是______________________.
三、解答题
6.求出数的单调递增区间.
参考答案:1、A 2、D 3、A 4、④
5、 6、
六、发导学案、布置预习。
如果函数y=sin2x+acos2x的图象关于直线对称,求a的值.
七、板书设计
正弦函数和余弦函数的性质
一、正弦函数的性质 例1
二、余弦函数的性质 例2
定义域、值域、单调、奇偶、周期对称 例3
八、教学反思
(1)根据学生学习知识的发展过程,在推导性质的过程中让学生自己先独思考,然后小组交流,再来纠正学生错误结论,充分体现了学生的主体性,让学生活起来。
(2)关注学生的表达,表现,学生的情感需求,课堂明显就活跃,学生的积极性完全被调动起来,很多学生想表达自己的想法。这对这些学生的后续学习的积极性是非常有帮助的。
(3)判断题、例题的选择都是根据我们以往对学生的了解而设置的,帮助学生辨析,缩短认识这些知识的时间,减少再出现类似错误的人数,在学生学习困惑时给与帮助。
九、学案设计(见下页)
§1.4.2正弦函数余弦函数的性质
课前预习学案
一、预习目标
探究正弦函数、余弦函数的周期性,周期,最小正周期;会比较三角函数值的大小,会求三角函数的单调区间.
二、预习内容
1. _____________________________________________________________________叫做周期函数,___________________________________________叫这个函数的周期.
2. _____________________________________叫做函数的最小正周期.
3.正弦函数,余弦函数都是周期函数,周期是____________,最小正周期是________.
4.由诱导公式_________________________可知正弦函数是奇函数.由诱导公式_________________________可知,余弦函数是偶函数.
5.正弦函数图象关于____________________对称,正弦函数是_____________.余弦函数图象关于________________对称,余弦函数是_____________________.
6.正弦函数在每一个闭区间_________________上都是增函数,其值从-1增大到1;在每一个闭区间_________________上都是减函数,其值从1减少到-1.
7.余弦函数在每一个闭区间_________________上都是增函数,其值从-1增大到1;在每一个闭区间______________上都是减函数,其值从1减少到-1.
8.正弦函数当且仅当x=___________时,取得最大值1,当且仅当x=_________________时取得最小值-1.
9.余弦函数当且仅当x=______________时取得最大值1;当且仅当x=__________时取得最小值-1.
10.正弦函数的周期是___________________________.
11.余弦函数的周期是___________________________.
12.函数y=sinx+1的最大值是__________,最小值是_____________,y=-3cos2x的最大值是_____________,最小值是_________________.
13.y=-3cos2x取得最大值时的自变量x的集合是_________________.
14.把下列三角函数值从小到大排列起来为:_____________________________
      ,       ,      ,      
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标:会根据图象观察得出正弦函数、余弦函数的性质;会求含有的三角式的性质;会应用正、余弦的值域来求函数和函数的值域
学习重难点:正弦函数和余弦函数的性质及简单应用。
二、学习过程
例1、求函数y=sin(2x+)的单调增区间.
解:
变式训练1. 求函数y=sin(-2x+)的单调增区间
解:
例2:判断函数的奇偶性
解:
变式训练2. )
解:
例3. 比较sin2500、sin2600的大小
解:
变式训练3. cos
解:
三、反思总结
1、数学知识:
2、数学思想方法:
四、当堂检测
一、选择题
1.函数的奇偶数性为(   ).
A. 奇函数         B. 偶函数
C.既奇又偶函数        D. 非奇非偶函数
2.下列函数在上是增函数的是(   )
A. y=sinx B. y=cosx
C. y=sin2x D. y=cos2x
3.下列四个函数中,既是上的增函数,又是以为周期的偶函数的是(  ).
A. B.
C. D.
二、填空题
4.把下列各等式成立的序号写在后面的横线上。
①   ②  ③ ④
__________________________________________________________
5.不等式≥的解集是______________________.
三、解答题
6.求出数的单调递增区间.
课后练习与提高
一、选择题
1.y=sin(x-)的单调增区间是( )
A. [kπ-,kπ+] (k∈Z) B. [2kπ-,2kπ+ ](k∈Z)
C. [kπ-, kπ-] (k∈Z) D. [2kπ-,2kπ-] (k∈Z)
2.下列函数中是奇函数的是( )
A. y=-|sinx| B. y=sin(-|x|) C. y=sin|x| D. y=xsin|x|
3.在 (0,2π) 内,使 sinx>cosx 成立的x取值范围是( )
A .(,)∪( π, ) B. ( ,π)
C. ( ,) D.( ,π)∪( ,)
二、填空题
4.Cos1,cos2,cos3的大小关系是______________________.
5.y=sin(3x-)的周期是__________________.
三、解答题
6.求函数y=cos2x - 4cosx + 3的最值
PAGE
104-1.2.1任意角的三角函数(一)
教学目的:
知识目标:1.掌握任意角的三角函数的定义;
2.已知角α终边上一点,会求角α的各三角函数值;
3.记住三角函数的定义域、值域,诱导公式(一)。
能力目标:(1)理解并掌握任意角的三角函数的定义;
(2)树立映射观点,正确理解三角函数是以实数为自变量的函数;
(3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。
德育目标: (1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;
(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;
教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。公式一是本小节的另一个重点。
教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.
教学过程:
一、复习引入:初中锐角的三角函数是如何定义的?
在Rt△ABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦、余弦、正切依次为 .
角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
二、讲解新课:
1.三角函数定义
在直角坐标系中,设α是一个任意角,α终边上任意一点(除了原点)的坐标为,它与原点的距离为,那么
(1)比值叫做α的正弦,记作,即;
(2)比值叫做α的余弦,记作,即;
(3)比值叫做α的正切,记作,即;
(4)比值叫做α的余切,记作,即;
说明:①α的始边与轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;
②根据相似三角形的知识,对于确定的角α,四个比值不以点在α的终边上的位置的改变而改变大小;
③当时,α的终边在轴上,终边上任意一点的横坐标都等于,
所以无意义;同理当时,无意义;
④除以上两种情况外,对于确定的值α,比值、、、分别是一个确定的实数,
正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
函 数 定 义 域 值 域
2.三角函数的定义域、值域
注意:
(1)在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的非负半轴重合.?
(2) α是任意角,射线OP是角α的终边,α的各三角函数值(或是否有意义)与ox转了几圈,按什么方向旋转到OP的位置无关.
(3)sin是个整体符号,不能认为是“sin”与“α”的积.其余五个符号也是这样.
(4)任意角的三角函数的定义与锐角三角函数的定义的联系与区别:
锐角三角函数是任意角三角函数的一种特例,它们的基础共建立于相似(直角)三角形的性质,“r”同为正值. 所不同的是,锐角三角函数是以边的比来定义的,任意角的三角函数是以坐标与距离、坐标与坐标、距离与坐标的比来定义的,它也适合锐角三角函数的定义.实质上,由锐角三角函数的定义到任意角的三角函数的定义是由特殊到一般的认识和研究过程.
(5)为了便于记忆,我们可以利用两种三角函数定义的一致性,将直角三角形置于平面直角坐标系的第一象限,使一锐角顶点与原点重合,一直角边与x轴的非负半轴重合,利用我们熟悉的锐角三角函数类比记忆.?
3.例题分析
例1.求下列各角的四个三角函数值: (通过本例总结特殊角的三角函数值)
(1); (2); (3).
解:(1)因为当时,,,所以
, , , 不存在。
(2)因为当时,,,所以
, , , 不存在,
(3)因为当时,,,所以
, , 不存在, ,
例2.已知角α的终边经过点,求α的四个函数值。
解:因为,所以,于是
; ;
; .
例3.已知角α的终边过点,求α的四个三角函数值。
解:因为过点,所以,
当;;
当;
; .
4.三角函数的符号
由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:
①正弦值对于第一、二象限为正(),对于第三、四象限为负();
②余弦值对于第一、四象限为正(),对于第二、三象限为负();
③正切值对于第一、三象限为正(同号),对于第二、四象限为负(异号).
说明:若终边落在轴线上,则可用定义求出三角函数值。
练习: 确定下列三角函数值的符号:
(1); (2); (3); (4).
例4.求证:若且,则角是第三象限角,反之也成立。
5.诱导公式
由三角函数的定义,就可知道:终边相同的角三角函数值相同。即有:

,其中.

这组公式的作用是可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.
例5.求下列三角函数的值:(1), (2),
例6.求函数的值域
解: 定义域:cosx0 ∴x的终边不在x轴上 又∵tanx0 ∴x的终边不在y轴上
∴当x是第Ⅰ象限角时, cosx=|cosx| tanx=|tanx| ∴y=2
…………Ⅱ…………, |cosx|=cosx |tanx|=tanx ∴y=2
…………ⅢⅣ………, |cosx|=cosx |tanx|=tanx ∴y=0
四、小 结:本节课学习了以下内容:
1.任意角的三角函数的定义;2.三角函数的定义域、值域;3.三角函数的符号及诱导公式。
五、巩固与练习
1、教材P15面练习;
2、作业P20面习题1.2A组第1、2、3(1)(2)(3)题及P21面第9题的(1)、(3)题。
PAGE
13. 1 两角和与差的正弦、余弦和正切公式
3.1.1 两角差的余弦公式
三维目标
1.通过让学生探索、猜想、发现并推导“两角差的余弦公式”,了解单角与复角的三角函数之间的内在联系,并通过强化题目的训练,加深对两角差的余弦公式的理解,培养学生的运算能力及逻辑推理能力,提高学生的数学素质.
2.通过两角差的余弦公式的运用,会进行简单的求值、化简、证明,体会化归思想在数学当中的运用,使学生进一步掌握联系的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.
3.通过本节的学习,使学生体会探究的乐趣,认识到世间万物的联系与转化,养成用辩证与联系的观点看问题.创设问题情境,激发学生分析、探求的学习态度,强化学生的参与意识,从而培养学生分析问题、解决问题的能力和代换、演绎、数形结合等数学思想方法.
重点难点
教学重点:通过探究得到两角差的余弦公式.
教学难点:探索过程的组织和适当引导.
教学过程
1、提出问题
①请学生猜想cos(α-β)=
②利用向量的知识,如何推导发现cos(α-β)=
如图2,在平面直角坐标系xOy内作单位圆O,以Ox为始边作角α、β,它们的终边与单位圆O的交点分别为A、B,则= ,= ,∠AOB=.
由此可知,对于任意角α、β都有
cos(α-β)=cosαcosβ+sinαsinβ (C(α-β))
③细心观察C(α-β)公式的结构,它有哪些特征?其中α、β角的取值范围如何?
填空,cos(A-B)=__________,cos(θ-φ)=__________
④如何正用、逆用、灵活运用C(α-β)公式进行求值计算?
.如①cos75°cos45°+sin75°sin45°=?
②cosα =cos(α+β)cosβ+sin(α+β)sinβ.是否成立
2、应用示例
例1 利用差角余弦公式求cos15°的值.
变式训练
1. 利用差角余弦公式求sin75°,sin15°的值.
2. 利用差角余弦公式求:cos110°cos20°+sin110°sin20°.的值
例2 已知sinα=,α∈(,π),cosβ=,β是第三象限角,求cos(α-β)的值.
变式训练
已知sinα=,α∈(0,π),cosβ=,β是第三象限角,求cos(α-β)的值.
例3 已知cosα=,cos(α+β)=,且α、β∈(0, ),求cosβ的值.
变式训练
课本习题3.1 A组4、5.题
课堂练习
课后练习1、2、3、4、题
课堂小结
1、回顾公式的推导过程,观察公式的特征,特别要注意公式既可正用、逆用,还可变用及掌握变角和拆角的思想方法解决问题.
2.、本节课要理解并掌握两角差的余弦公式及其推导,要正确熟练地运用公式进行解题,在解题时要注意分析三角函数名称、角的关系,准确判断三角函数值的符号.多对题目进行一题多解,从中比较最佳解决问题的途径,以达到优化解题过程,规范解题步骤,领悟变换思路,强化数学思想方法之目的.
作业布置
课本习题3.1 A组2、3、4、5.题
PAGE
11. 1.2 弧度制
一、学习目标
1.理解弧度制的意义;
2.能正确的应用弧度与角度之间的换算;
3.记住公式(为以.作为圆心角时所对圆弧的长,为圆半径);
4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。
二、重点、难点
弧度与角度之间的换算;
弧长公式、扇形面积公式的应用。
三教学过程
复习:初中时所学的角度制,是怎么规定角的?角度制的单位有哪些,是多少进制的?
为了使用方便,我们经常会用到一种十进制的度量角的单位制——弧度制。
<我们规定> 叫做1弧度的角,用符号 表示,读作 。
练习:圆的半径为,圆弧长为、、的弧所对的圆心角分别为多少?
<思考>:圆心角的弧度数与半径的大小有关吗?
由上可知:如果半径为r的园的圆心角所对的弧长为,那么,角的弧度数的绝对值是:
,的正负由 决定。
正角的弧度数是一个 ,负角的弧度数是一个 ,零角的弧度数是 。
<说明>:我们用弧度制表示角的时候,“弧度”或经常省略,即只写一实数表示角的度量。
例如:当弧长且所对的圆心角表示负角时,这个圆心角的弧度数是

角度与弧度的换算
rad 1=
例1、把下列各角从度化为弧度:
(1) (2)
变式练习 把下列各角从度化为弧度:
(1)22 30′ (2)—210 (3)1200 (4) (5)
例2、把下列各角从弧度化为度:
(1) (2) 3.5
变式练习 、把下列各角从弧度化为度:
(1) (2)— (3) (4) (5) 2
归纳:把角从弧度化为度的方法是:
把角从度化为弧度的方法是:
<试一试>:一些特殊角的度数与弧度数的互相转化,请补充完整
30° 90° 120° 150° 270°
0
在弧度制下分别表示轴线角、象限角的集合
(1)终边落在轴的非负半轴的角的集合为 ;
轴的非正半轴的角的集合为 ;
终边落在轴的非负半轴的角的集合为 ;
轴的非正半轴的角的集合为 ;
所以,终边落在轴上的角的集合为 ;
落在轴上的角的集合为 。
(2)第一象限角的集合为 ;
第二象限角的集合为 ;
第三象限角的集合为 ;
第四象限角的集合为 .
弧度是一个量,弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.
弧度制下的弧长公式和扇形面积公式
弧长公式:
因为(其中表示所对的弧长),所以,弧长公式为.
扇形面积公式:.
说明:以上公式中的必须为弧度单位.
例3、知扇形的周长为8,圆心角为2rad,,求该扇形的面积。
变式练习 若2弧度的圆心角所对的弧长是,则这个圆心角所在的扇形面积是      .
课堂小结:
弧度制的定义;
弧度制与角度制的转换与区别;
牢记弧度制下的弧长公式和扇形面积公式,并灵活运用;
作业布置 习题1.1A组第7,8,9题。
课外探究题
已知扇形的周长为8,求半径为多大时,该扇形的面积最大,并求圆心角的弧度数.
(十)课后检测
1、半径为120mm的圆上,有一条弧的长是144mm,求该弧所对的圆心角的弧度数。
2、半径变为原来的,而弧长不变,则该弧所对的圆心角是原来的    倍。
3、在中,若,求A,B,C弧度数。
4、以原点为圆心,半径为1的圆中,一条弦的长度为,所对的圆心角
的弧度数为    .
5、直径为20cm的滑轮,每秒钟旋转,则滑轮上一点经过5秒钟转过的弧长是多少?
6、选做题
如图,扇形的面积是,它的周长是,求扇形的中心角及弦的长。
正角
零角
负角
正实数

负实数
PAGE
11. 4.2 正弦函数、余弦函数的性质<第一课时>
班级 姓名
【教学目标】1、通过创设情境,如单摆运动、四季变化等,让学生感知周期现象;
2、理解周期函数的概念;
3、能熟练地求出简单三角函数的周期。
4、能根据周期函数的定义进行简单的拓展运用.
【教学重点】正弦、余弦函数的主要性质(包括周期性、定义域和值域);
【教学难点】正弦函数和余弦函数图象间的关系、图象变换,以及周期函数概念的理解,最小正周期的意义及简单的应用.
【教学过程】
复习巩固
1、画出正弦函数和余弦函数图象。
2、观察正弦函数和余弦函数图象,填写下表:
定义域 值域
y=sinx
y=cosx
3、下列各等式是否成立?为什么?
(1)2 cosx=3, (2)sinx=0.5
4、 求下列函数的定义域:(1)y=; (2)y=.
二、预习提案(阅读教材第34—35页内容,完成以下问题:)
1、什么是周期函数?什么是函数周期?
注意:①定义域内的每一个x都有 (x+T)= (x)。
②定义中的T为非零常数,即周期不能为0。
<小试身手>等式sin(30 +120 )=sin30 是否成立?如果这个等式成立,能否说120 是正弦函数y=sinx,x∈R.的一个周期?为什么?
2、什么是最小正周期?
3、正弦函数和余弦函数的周期和最小正周期:
周期 最小正周期
y=sinx
y=cosx
<注>在我们学习的三角函数中,如果不加特别说明,教科书提到的周期,一般都是指最小正周期.
三、探究新课
例1 求下列函数的周期:
(1)y=3cosx,x∈R;(2)y=sin2x,x∈R;(3)y=2sin(-),x∈R.
练习:求下列函数的周期:
(1),x∈R (2),x∈R
(3),x∈R (4),x∈R
四、规律总结
一般地,函数y=Asin(ωx+φ)及函数y=Acos(ωx+φ), (其中A、ω、φ为常数,A≠0,ω≠0,x∈R)的周期为T=.可以按照如下的方法求它的周期:
y=Asin(ωx+φ+2π)=Asin[ω(x+)+φ]=Asin(ωx+φ).
于是有f(x+)=f(x),所以其周期为.
五、感悟思考
六、作业布置 习题1.4A组 第3题
1.4.2 正弦函数、余弦函数的性质<第二课时>
班级 姓名
【教学目标】1、会利用正、余弦函数的单调区间求与弦函数有关的单调区间及函数值域。
2、能根据正弦函数和余弦函数图象确定相应的对称轴、对称中心。
3、通过图象直观理解奇偶性、单调性,并能正确确定弦函数的单调区间。
【教学重点】正弦、余弦函数的主要性质(包括单调性、值域、奇偶性、对称性)。
【教学难点】利用正、余弦函数的单调区间求与弦函数有关的单调区间及函数值域。
【教学过程】
复习相关知识
1、填写下表
奇函数 定义
图象
偶函数 定义
图象
2、填写下表中的概念
增函数
减函数
单调增区间
单调减区间
最大值及其在图象中的体现
最小值及其在图象中的体现
3、什么是中心对称、轴对称图形?什么是对称中心、对称轴
二、预习提案(阅读教材第37—38页内容,完成以下问题:)
1、观察正余弦曲线:
知:正弦函数是 函数,余弦函数是 函数。并用奇偶函数的定义加以证明。
2、判断下列函数的奇偶性:①=, ②=, ③,
④。
3、观察函数y=sinx,x∈[-,]的图象,填写下表:
x - … 0 … … π …
sinx
小结:正弦函数在每一个闭区间 (k∈Z)上都是增函数,其值从-1增大到1;在每一个闭区间 (k∈Z)上都是减函数,其值从1减小到-1.
4、观察函数y=cosx,x∈[-π,π] 的图象,填写下表:
x -π … - … 0 … … π
cosx
小结:余弦函数在每一个闭区间 (k∈Z)上都是增函数,其值从-1增大到1;在每一个闭区间 (k∈Z)上都是减函数,其值从1减小到-1.
5、由上可知:正弦函数、余弦函数的值域都是[-1,1].最值情况如下:
Ⅰ、对于正弦函数y=sinx(x∈R),
(1)当且仅当x= ,k∈Z时,取得最大值1.
(2)当且仅当x= ,k∈Z时,取得最小值-1.
Ⅱ、对于余弦函数y=cosx(x∈R),
(1)当且仅当x= ,k∈Z时,取得最大值1.
(2)当且仅当x= ,k∈Z时,取得最小值-1.
6、观察正余弦曲线,解读正、余弦函数的对称性:
正、余弦函数既是轴对称图形又是中心对称图形。
函数 对称中心 对称轴
正弦函数y=sinx(x∈R)
余弦函数y=cosx(x∈R)
三、探究新课
例1 下列函数有最大值、最小值吗 如果有,请写出取最大值、最小值时的自变量x的集合,并说出最大值、最小值分别是什么.
(1)y=cosx+1,x∈R; (2)y=-3sin2x,x∈R.
练习1、请写出下列函数取最大值、最小值时的自变量x的集合,并说出最大值、最小值分别是什么.(1)y=2cos+1, x∈R; (2)y=2sinx, x∈R.
例2 函数的单调性,比较下列各组数的大小:
(1)sin(-)与sin(-); (2)cos()与cos().
练习2、教材第41页第5题
例3 函数y=sin(x+),x∈[-2π,2π]的单调递增区间.
练习3、教材第40-41页第4、6题
四、课堂小结
1.由学生回顾归纳并说出本节学习了哪些数学知识,学习了哪些数学思想方法.这节课我们研究了正弦函数、余弦函数的性质.重点是掌握正弦函数的性质,通过对两个函数从定义域、值域、最值、奇偶性、周期性、增减性、对称性等几方面的研究,更加深了我们对这两个函数的理解.同时也巩固了上节课所学的正弦函数,余弦函数的图象的画法.
2.进一步熟悉了数形结合的思想方法,转化与化归的思想方法,类比思想的方法及观察、归纳、特殊到一般的辩证统一的观点.
五、作业布置 习题1.4 A组2。(2) (4);4。(2) (4);5。(2)
PAGE
11.2.1 任意角的三角函数< 第二课时>
班级 姓名
学习目标
1.通过对任意角的三角函数定义的理解,掌握终边相同角的同一三角函数值相等.
2.正确利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值表示出来,即用正弦线、余弦线、正切线表示出来.
重点难点
教学重点 终边相同的角的同一三角函数值相等
教学难点 利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值用几何形式表示.
教学过程
复习提问
三角函数(正弦,余弦,正切函数)的概念。(两个定义)
三角函数(正弦,余弦,正切函数)的定义域。
三角函数(正弦,余弦,正切函数)值在各象限的符号。
4、<小结>常见常用角的三角函数值
角 30 45 60° 120° 135° 150°
角的弧度数
sin
cos
tan
角α 0° 90° 180° 270° 360°
角α的弧度数
sinα
cosα
tanα
(二)新知探究
1、问题 :如果两个角的终边相同,那么这两个角的同一三角函数值有何关系?
2、求下列三角函数值 (1)sin420°; (2) sin60°
3、结论 由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等.由此得到一组公式(公式一):
sin(α+k·2π)=sinα,cos(α+k·2π)=cosα,tan(α+k·2π)=tanα,其中k∈Z.
(作用)利用公式一,可以把求任意角的三角函数值,转化为求0到2π(或0°到360°)角的三角函数值.这个公式称为三角函数的“诱导公式一”.
4.例题讲解
例1、确定下列三角函数值的符号:(1)sin(-392°) (2)tan(-)
练习(1)、确定下列三角函数值的符号: (1)tan(-672°) (2)sin1480°10 (3)cos
例2、求下列三角函数值 (1)sin390°; (2)cos; (3)tan(-690°).
练习(2)、求下列三角函数值 (1)sin420°; (2)cos; (3)tan(-330°).
5、由三角函数的定义我们知道,对于角α的各种三角函数我们都是用比值来表示的,或者说是用数来表示的,今天我们再来学习正弦、余弦、正切函数的另一种表示方法——几何表示法.
三角函数线(定义):
(1) (2) (3) (4)
设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交点。过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延长线交与点.
由四个图看出:
当角的终边不在坐标轴上时,有向线段,于是有
, ,

我们就分别称有向线段为正弦线、余弦线、正切线。
说明:
①三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦线在轴上;正切线在过单位圆与轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。
②三条有向线段的方向:正弦线由垂足指向的终边与单位圆的交点;余弦线由原点指向
垂足;正切线由切点指向与的终边的交点。
③三条有向线段的正负:三条有向线段凡与轴或轴同向的为正值,与轴或轴反向
的为负值。
④三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。
6、典型例题
例1.作出下列各角的正弦线、余弦线、正切线。(1); (2);
练习1作出下列各角的正弦线、余弦线、正切线(1); (2).
7、课下探究 (1) 利用三角函数线比较下列各组数的大小:
1 与 2 tan与tan
(2)利用单位圆寻找适合下列条件的0到360的角
1 sin≥ 2 tan
(三)课堂小结、
本节课你学了哪些知识?有哪些收获?你已经正确理解、掌握它们了吗?
(四)课后作业
习题1.2A组第3,4题
x
y
o
T
A
210
30
x
y
o
P1
P2
PAGE
12. 4.2平面向量数量积的坐标表示、模、夹角
教学目的:
1.掌握平面向量数量积运算规律;
2.能利用数量积的5个重要性质及数量积运算规律解决有关问题;
3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.
教学重点:平面向量数量积及运算规律.
教学难点:平面向量数量积的应用
教学过程:
一、复习引入:
1.平面向量数量积(内积)的定义:
2.两个向量的数量积的性质:
3.练习:
(1)已知||=1,||=,且(-)与垂直,则与的夹角是( )
A.60° B.30° C.135° D.45°
(2)已知||=2,||=1,与之间的夹角为,那么向量=-4的模为( )
A.2 B.2 C.6 D.12
二、讲解新课:
探究:已知两个非零向量,,怎样用和的坐标表示?.
1、平面两向量数量积的坐标表示
两个向量的数量积等于它们对应坐标的乘积的和.即
2. 平面内两点间的距离公式
(1)设,则或.
(2)如果表示向量的有向线段的起点和终点的坐标分别为、,
那么(平面内两点间的距离公式)
向量垂直的判定
设,,则⊥
两向量夹角的余弦
已知两个非零向量,,与之间的夹角为θ()
cos =
二、讲解范例:
例1 已知A(1, 2),B(2, 3),C(2, 5),试判断△ABC的形状,并给出证明.
练习1、习题2.4 A组第5题
设 = (5, 7), = (6, 4),求,、间的夹角θ的余弦及│-4│。
练习 2、课后练习1、2、3、题
三、课堂小结: 1、
2、平面内两点间的距离公式
3、向量垂直的判定:
设,,则⊥
四、作业布置 习题2.4 A组9、10、11 、题
PAGE
13. 1.2 两角和与差的正弦、余弦、正切公式
三维目标
1.在学习两角差的余弦公式的基础上,通过让学生探索、发现并推导两角和与差的正弦、余弦、正切公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,培养学生的运算能力及逻辑推理能力,从而提高解决问题的能力.
2.通过两角和与差的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明,使学生深刻体会联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题解决问题的能力.
3.通过本节学习,使学生掌握寻找数学规律的方法,提高学生的观察分析能力,培养学生的应用意识,提高学生的数学素质.
重点难点
教学重点:两角和与差的正弦、余弦、正切公式及其推导.
教学难点:灵活运用所学公式进行求值、化简、证明.
教学过程
1、提出问题
①还记得两角差的余弦公式吗?请写出。
②在公式C(α-β)中,角β是任意角,请思考角α-β中β换成角-β是否可以?此时观察角α+β与α-(-β)之间的联系,如何利用公式C(α-β)来推导cos(α+β)=
结论1、
cos(α+β)=cosαcosβ-sinαsinβ
我们称以上等式为两角和的余弦公式,记作C(α+β).
③分析观察C(α+β)的结构有何特征?
④在公式C(α-β)、C(α+β)的基础上能否推导sin(α+β)= sin(α-β)=
结论2、
因此我们得到两角和与差的正弦公式,分别简记为S(α+β)、S(α-β).
sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ.
⑤公式S(α-β)、S(α+β)的结构特征如何?
⑥对比分析公式C(α-β)、C(α+β)、S(α-β)、S(α+β),能否推导出tan(α-β)=
tan(α+β)=?
结论3、
由此推得两角和、差的正切公式,简记为T(α-β)、T(α+β).
tan(α+β)=tan(α-β)=
⑦分析观察公式T(α-β)、T(α+β)的结构特征如何?
我们把前面六个公式分类比较可得C(α+β)、S(α+β)、T(α+β)叫和角公式;S(α-β)、C(α-β)、T(α-β)叫差角公式.
归纳总结以上六个公式的推导过程,得出以下逻辑联系图.
通过逻辑联系图,深刻理解它们之间的内在联系,借以理解并灵活运用这些公式.同时应注意:不仅要掌握这些公式的正用,还要注意它们的逆用及变形用.如两角和与差的正切公式的变形式
2、应用示例
例1 已知sinα=,α是第四象限角,求sin(-α),cos(+α),tan(-α)的值.
练习:课本课后练习1、2、3、4、题
例2 利用和差角公式计算下列各式的值.
(1)sin72°cos42°-cos72°sin42°;
(2)cos20°cos70°-sin20°sin70°;
(3)
练习:课本课后练习5、6、7、题
例3 求证:cosα+sinα=2sin(+α).(两种方法)
练习:化简下列各式:
(1)sinx+cosx;
(2)cosx-sinx.
3、课堂小结
通过本节课的学习,要熟练掌握运用两角和与差的正弦、余弦、正切公式解决三角函数式的化简、求值、恒等证明等问题,灵活进行角的变换和公式的正用、逆用、变形用等.
推导并理解公式asinx+bcosx=sin(x+φ),运用它来解决三角函数求值域、最值、周期、单调区间等问题.
4、作业布置
习题3.1 A组7、13(1) (3) (5) (7) (9)
PAGE
12.1.1 向量的物理背景与概念及向量的几何表示
教学目标:
了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量.
通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.
教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.
教学难点:平行向量、相等向量和共线向量的区别和联系.
学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.
教学思路: (一)
一、情景设置:
如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了.
分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上
都是有方向、有长短的量.
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?
二、新课学习:
(一)向量的概念:我们把既有大小又有方向的量叫向量。
(二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)
1、数量与向量有何区别?(数量没有方向而向量有方向)
2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么?
4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?
5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?
6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?
这时各向量的终点之间有什么关系?
(三)探究学习
1、数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小;
向量有方向,大小,双重性,不能比较大小.
2.向量的表示方法:
①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示;
③用有向线段的起点与终点字母:;④向量的大小―长度称为向量的模,记作||.
3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.
向量与有向线段的区别:
(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,这两个向量就是相同的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.
4、零向量、单位向量概念:
①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.
②长度为1个单位长度的向量,叫单位向量.
说明:零向量、单位向量的定义都只是限制了大小.
5、平行向量定义:
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.
(四)理解和巩固:
例1 书本75页例1.
例2判断:
(1)平行向量是否一定方向相同?(不一定)
(2)与任意向量都平行的向量是什么向量?(零向量)
(3)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)
课堂练习:
书本77页练习1、2、3题
三、小结 :
描述向量的两个指标:模和方向.
2、平面向量的概念和向量的几何表示;
3、向量的模、零向量、单位向量、平行向量等概念。
四、课后作业:
《学案》P49面的学法引导,及P44面的单元检测卷。
A
B
C
D
A(起点)
B
(终点)
a
PAGE
21. 1.2 弧度制
【教学目标】
① 了解弧度制,能进行弧度与角度的换算.
② 认识弧长公式,能进行简单应用. 对弧长公式只要求了解,会进行简单应用,不必在应用方面加深.
③了解角的集合与实数集建立了一一对应关系,培养学生学会用函数的观点分析、解决问题.
【教学重难点】
重点:了解弧度制,并能进行弧度与角度的换算.
难点:弧度的概念及其与角度的关系.
【教学过程】
(一)复习引入.
复习初中学习过的知识:角的度量、圆心角的度数与弧的度数及弧长的关系
提出问题:
①初中的角是如何度量的?度量单位是什么?
② 1°的角是如何定义的?弧长公式是什么?
③ 角的范围是什么?如何分类的?
(二)概念形成
初中学习中我们知道角的度量单位是度、分、秒,它们是60进制,角是否可以用其它单位度量,是否可以采用10进制?
1.自学课本第7、8页.通过自学回答以下问题:
(1)角的弧度制是如何引入的?
(2)为什么要引入弧度制?好处是什么?
(3)弧度是如何定义的?
(4)角度制与弧度制的区别与联系
2.学生动手画图来探究:
(1)平角、周角的弧度数
(2)角的弧度制与角的大小有关,与角所在圆的半径的大小是否有关?
(3)角的弧度与角所在圆的半径、角所对的弧长有何关系?
3.角度制与弧度制如何换算?
rad 1=
归纳:把角从弧度化为度的方法是:
把角从度化为弧度的方法是:
一些特殊角的度数与弧度数的互相转化,请补充完整
30° 90° 120° 150° 270°
0
例1、把下列各角从度化为弧度:
(1) (2) (3) (4)
解:(1) (2) (3) (4)
变式练习:把下列各角从度化为弧度:
(1)22 30′ (2)—210 (3)1200
解:(1) (2) (3)
例2、把下列各角从弧度化为度:
(1) (2) 3.5 (3) 2 (4)
解:(1)108 (2)200.5 (3)114.6 (4)45
变式练习:把下列各角从弧度化为度:
(1) (2)— (3)
解:(1)15 (2)-240 (3)54
弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.
弧度下的弧长公式和扇形面积公式
弧长公式:
因为(其中表示所对的弧长),所以,弧长公式为.
扇形面积公式:.
说明:以上公式中的必须为弧度单位.
例3、知扇形的周长为8,圆心角为2rad,,求该扇形的面积。
解:因为2R+2R=8,所以R=2,S=4
变式练习:
1、半径为120mm的圆上,有一条弧的长是144mm,求该弧所对的圆心角的弧度数。
答案:
2、半径变为原来的,而弧长不变,则该弧所对的圆心角是原来的  2  倍。
3、若2弧度的圆心角所对的弧长是,则这个圆心角所在的扇形面积是 4cm2  .
4、以原点为圆心,半径为1的圆中,一条弦的长度为,所对的圆心角
的弧度数为    .
课堂小结:
1、弧度制的定义;
2、弧度制与角度制的转换与区别;
3、牢记弧度制下的弧长公式和扇形面积公式,并灵活运用;
(四)作业布置 习题1.1A组第7,8,9题。
(五)课后检测
1.在中,若,求A,B,C弧度数。
答案:A= B= C=
2.直径为20cm的滑轮,每秒钟旋转,则滑轮上一点经过5秒钟转过的弧长是多少?
答案:
3.选做题
如图,扇形的面积是,它的周长是,求扇形的中心角及弦的长。
答案:
〖板书设计〗
1.1.2 弧度制(一)复习引入概念形成 例1 例2(三)弧度下的弧长公式和扇形面积公式例3 小结:
1.1.2 弧度制
课前预习学案
一、预习目标:
1.了解弧度制的表示方法;
2.知道弧长公式和扇形面积公式.
二、预习内容
初中学习中我们知道角的度量单位是度、分、秒,它们是60进制,角是否可以用其它单位度量,是否可以采用10进制?
自学课本第7、8页.通过自学回答以下问题:
角的弧度制是如何引入的?
为什么要引入弧度制?好处是什么?
弧度是如何定义的?
角度制与弧度制的区别与联系
三、提出疑惑
1、平角、周角的弧度数?
2、角的弧度制与角的大小有关,与角所在圆的半径的大小是否有关?
3、角的弧度与角所在圆的半径、角所对的弧长有何关系?
课内探究学案
一、学习目标
1.理解弧度制的意义;
2.能正确的应用弧度与角度之间的换算;
3.记住公式(为以.作为圆心角时所对圆弧的长,为圆半径);
4.熟练掌握弧度制下的弧长公式、扇形面积公式及其应用。
二、重点、难点
弧度与角度之间的换算;
弧长公式、扇形面积公式的应用。
三、学习过程
(一)复习:初中时所学的角度制,是怎么规定角的?角度制的单位有哪些,是多少进制的?
(二)为了使用方便,我们经常会用到一种十进制的度量角的单位制——弧度制。
<我们规定> 叫做1弧度的角,用符号 表示,读作 。
练习:圆的半径为,圆弧长为、、的弧所对的圆心角分别为多少?
<思考>:圆心角的弧度数与半径的大小有关吗?
由上可知:如果半径为r的园的圆心角所对的弧长为,那么,角的弧度数的绝对值是:
,的正负由 决定。
正角的弧度数是一个 ,负角的弧度数是一个 ,零角的弧度数是 。
<说明>:我们用弧度制表示角的时候,“弧度”或经常省略,即只写一实数表示角的度量。
例如:当弧长且所对的圆心角表示负角时,这个圆心角的弧度数是

(三)角度与弧度的换算
rad 1=
归纳:把角从弧度化为度的方法是:
把角从度化为弧度的方法是:
<试一试>:一些特殊角的度数与弧度数的互相转化,请补充完整
30° 90° 120° 150° 270°
0
例1、把下列各角从度化为弧度:
(1) (2) (3) (4)
变式练习:把下列各角从度化为弧度:
(1)22 30′ (2)—210 (3)1200
例2、把下列各角从弧度化为度:
(1) (2) 3.5 (3) 2 (4)
变式练习:把下列各角从弧度化为度:
(1) (2)— (3)
(四)弧度数表示弧长与半径的比,是一个实数,这样在角集合与实数集之间就建立了一个一一对应关系.
弧度下的弧长公式和扇形面积公式
弧长公式:
因为(其中表示所对的弧长),所以,弧长公式为.
扇形面积公式:.
说明:以上公式中的必须为弧度单位.
例3、知扇形的周长为8,圆心角为2rad,,求该扇形的面积。
变式练习 1、半径为120mm的圆上,有一条弧的长是144mm,求该弧所对的圆心角的弧度数。
2、半径变为原来的,而弧长不变,则该弧所对的圆心角是原来的    倍。
3、若2弧度的圆心角所对的弧长是,则这个圆心角所在的扇形面积是      .
4、以原点为圆心,半径为1的圆中,一条弦的长度为,所对的圆心角
的弧度数为    .
课堂小结:
1、弧度制的定义;
2、弧度制与角度制的转换与区别;
3、牢记弧度制下的弧长公式和扇形面积公式,并灵活运用;
(七)作业布置 习题1.1A组第7,8,9题。
课后练习与提高
1.在中,若,求A,B,C弧度数。
2.直径为20cm的滑轮,每秒钟旋转,则滑轮上一点经过5秒钟转过的弧长是多少?
3.选做题
如图,扇形的面积是,它的周长是,求扇形的中心角及弦的长。
正角
零角
负角
正实数

负实数
PAGE
62.5.1平面几何中的向量方法
教学目的:
1.通过平行四边形这个几何模型,归纳总结出用向量方法解决平面几何的问题的”三步曲”;
2.明确平面几何图形中的有关性质,如平移、全等、相似、长度、夹角等可以由向量的线性运算及数量积表示.;
3.让学生深刻理解向量在处理平面几何问题中的优越性.
教学重点:用向量方法解决实际问题的基本方法:向量法解决几何问题的“三步曲”.
教学难点:如何将几何等实际问题化归为向量问题.
教学过程:
一、复习引入:
1. 两个向量的数量积:
2. 平面两向量数量积的坐标表示:
3. 向量平行与垂直的判定:
4. 平面内两点间的距离公式:
5. 求模:
练习
教材P.106练习第1、2、3题.;教材P.107练习第1、2题.
二、讲解新课:
例1. 已知AC为⊙O的一条直径,∠ABC为圆周角.求证:∠ABC=90o.
证明:设
例2. 如图,AD,BE,CF是△ABC的三条高.求证: AD,BE,CF相交于一点.
例3. 平行四边形是表示向量加法与减法的几何模型.如图,
你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?
思考1:
如果不用向量方法,你能证明上述结论吗?
思考2:
运用向量方法解决平面几何问题可以分哪几个步骤?
运用向量方法解决平面几何问题可以分哪几个步骤?
“三步曲”:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
例4.如图,□ ABCD中,点E、F分别是AD、DC边的中点,BE、 BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?
课堂小结
用向量方法解决平面几何的“三步曲”:
(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;
(2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题;
(3)把运算结果“翻译”成几何关系.
课后作业
阅读教材P.109到P.111; 2. 《习案》作业二十五.
PAGE
13.1.2 两角和与差的正弦、余弦、正切公式(二)
一、教学目标
1、理解两角和与差的余弦、正弦和正切公式,体会三角恒等变换特点的过程;
2、掌握两角和与差的余弦、正弦和正切公式的应用及类型的变换。
二、教学重、难点
1. 教学重点:两角和、差正弦和正切公式的运用;
2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.
三、教学设想:
(一)复习式导入:(1)基本公式
(2)练习:教材P132面第6题。
思考:怎样求类型?
(二)新课讲授
例1、化简
解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?
思考:是怎么得到的?
,我们是构造一个叫使它的正、余弦分别等于和的.
归纳:
例2、已知:函数
求的最值。(2)求的周期、单调性。
例3.已知A、B、C为△ABC的三內角,向量,,且,
求角A。(2)若,求tanC的值。
练习:(1)教材P132面7题
(2)在△ABC中,,则△ABC为( )
A.直角三角形 B.钝角三角形 C.锐角三角形 D.等腰三角形
(2) ( )
A. 0 B.2 C. D.
思考:已知,,,求
三、小结:掌握两角和与差的余弦、正弦和正切公式的应用及类型的变换
四、作业:《习案》作业三十一的1、2、3题。
PAGE
13. 1.2两角和与差的正弦、余弦、正切公式
一、教材分析
本节的主要内容是两角和与差的正弦、余弦和正切公式,为了引起学生学习本章的兴趣,理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用从而激发学生对本章内容的学习兴趣和求知欲。
二、教学目标
⒈掌握两角和与差公式的推导过程;
⒉培养学生利用公式求值、化简的分析、转化、推理能力;
⒊发展学生的正、逆向思维能力,构建良好的思维品质。
三、教学重点难点
重点:两角和与差公式的应用和旋转变换公式;
难点:两角和与差公式变aSina+bCosa为一个角的三角函数的形式。
四、学情分析
五、教学方法
1.温故、推新,循序渐进,以学生为主体逐步掌握本节知识要点
2.学案导学:见后面的学案。
3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习
六、课前准备
多媒体课件
七、课时安排:1课时
八、教学过程
(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:
;.
这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢?
提示:在第一章我们用诱导公式五(或六)可以实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗?
让学生动手完成两角和与差正弦和正切公式.

让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)

通过什么途径可以把上面的式子化成只含有、的形式呢?(分式分子、分母同时除以,得到.
注意:
以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?
注意:.
(二)例题讲解
例1、已知是第四象限角,求的值.
解:因为是第四象限角,得,

于是有
两结果一样,我们能否用第一章知识证明?
例2、利用和(差)角公式计算下列各式的值:
(1)、;(2)、;(3)、.
解:分析:解此类题首先要学会观察,看题目当中所给的式子与我们所学的两角和与差正弦、余弦和正切公式中哪个相象.
(1)、;
(2)、;
(3)、.
例3、化简
解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?
思考:是怎么得到的?,我们是构造一个叫使它的正、余弦分别等于和的.
(三)反思总结,当堂检测。
本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反馈纠正。(课堂实录)
(四)发导学案、布置预习。
设计意图:布置下节课的预习作业,并对本节课巩固提高。教师课后及时批阅本节的延伸拓展训练。
九、板书设计
十、教学反思
⑴注重教学过程,注重探索,应贯穿于每一节课的始终。
⑵充分挖掘知识之间、例题之间、例题与练习之间的内在联系,创设问题情景,激发学生的学习兴趣。
⑶通过不断地提出问题、解决问题,逐步培养学生的分析问题解决问题的能力。
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!
十一、学案设计(见下页)
3.1.2 两角和与差的正弦、余弦、正切公式
课前预习学案
一、预习目标
1.理解并掌握两角和与差的正弦、余弦、正切公式,初步运用公式求一些角的三角函数值;
2.经历两角和与差的三角公式的探究过程,提高发现问题、分析问题、解决问题的能力;
二、预习内容
1、在一般情况下sin(α+β)≠sinα+sinβ,cos(α+β)≠cosα+cosβ.
2、
已知,那么( )
A、- B、 C、 D、
3.在运用公式解题时,既要注意公式的正用,也要注意公式的反用和变式运用.如公式tan(α±β)= 可变形为:tanα±tanβ=tan(α±β)(1tanαtanβ);
±tanαtanβ=1-,
4、又如:asinα+bcosα= (sinαcosφ+cosαsinφ)= sin(α+φ),其中tanφ=等,有时能收到事半功倍之效.
=_____________.
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中
疑惑点 疑惑内容
课内探究学案
一、学习目标
1. 能从两角差的余弦公式导出两角和的余弦公式,以及两角和与差的正弦、正切公式,了解公式间的内在联系。
2.能应用公式解决比较简单的有关应用的问题。
学习重难点:
1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;
2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.
二、学习过程
(一)复习式导入:大家首先回顾一下两角和与差的余弦公式:
动手完成两角和与差正弦和正切公式.
观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.
通过什么途径可以把上面的式子化成只含有、的形式呢?(分式分子、分母同时除以,得到.
注意:
以上我们得到两角和的正切公式,我们能否推倒出两角差的正切公式呢?
注意:.
(二)例题讲解
例1、已知是第四象限角,求的值.
例2、利用和(差)角公式计算下列各式的值:
(1)、;(2)、;(3)、.
例3、化简
(三)反思总结
(四)当堂检测
(A) (B)
(C) (D)
(A) (B)
(D)
(A) (B)
(C) (D)
参考答案
1、 2、C 3、A 4、 5、1 6、
课后练习与提高
1. 已知求的值.( )
2. 若
3、函数的最小正周期是___________________.
4、为第二象限角,
PAGE
8