登录二一教育在线组卷平台 助您教考全无忧
人教版八上数学第十四章14.1.1同底数幂的乘法 课时易错题三刷(第二刷)
一、单选题
1.(2019八上·周口月考) 可以表示为( )
A. B. C. D.
【答案】B
【知识点】同底数幂的乘法
【解析】【解答】解:(x﹣y)4 (y﹣x)3=﹣(x﹣y)4 (x﹣y)3=﹣(x﹣y)7.
故答案为:B.
【分析】根据同底数幂的乘法法则及互为相反数的两个数的奇数次幂的关系即可算出答案.
2.(2020八上·兴县期末)若 ,则m+n的值为( )
A.6 B.5 C.4 D.3
【答案】B
【知识点】同底数幂的乘法
【解析】【解答】解:∵ , ,且
∴
故答案为:B.
【分析】利用同底数幂的乘法计算即可。
3.(2019八上·松山期中)若 , 其中 为整数,则 与 的数量关系为( )
A. B. C. D.
【答案】B
【知识点】同底数幂的乘法
【解析】【解答】解:因为 ,
所以 .
故答案为:B.
【分析】将化简成利用,再将整体代入即可。
4.(2019八上·安居期中)计算 的结果有:① ;② ;③﹣ ;④﹣ ,其中正确的是( )
A.①③ B.①④ C.②③ D.②④
【答案】A
【知识点】同底数幂的乘法
【解析】【解答】 =(a-b)3[-(a-b)]4=(a-b)3(a-b)4=(a-b)7,故①符合题意,④不符合题意,
=[-(b-a)]3(b-a)4=-(b-a)3(b-a)4=-(b-a)7,故③符合题意,②不符合题意,
∴正确的结果有①③
故答案为:A.
【分析】先转化为同底数的幂,再运用同底数幂相乘的法则进行计算即可得答案.
5.(2019八上·合肥月考)已知x3ym﹣1 xm+ny2n+2=x9y9,则4m﹣3n等于( )
A.8 B.9 C.10 D.11
【答案】C
【知识点】同底数幂的乘法
【解析】【解答】解:x3ym-1 xm+ny2n+2=xm+n+3ym+2n+1=x9y9,
∴ ,
解得 ,
∴4m-3n=4×4-3×2=10.
故答案为:C.
【分析】先根据同底数幂乘法对等式左边进行计算,再根据相同字母的指数相等列出方程组,解出m、n的值,代入4m-3n求解即可.
二、填空题
6.(2020八上·恩施月考)若 ,则 .
【答案】4
【知识点】同底数幂的乘法
【解析】【解答】解:∵ ,
∴ ,解得 ,
故答案为:4.
【分析】由同底数幂的乘法法则“同底数幂相乘底数不变指数相加”可将已知的等式变形得:yx+6=y10,于是可得关于x的方程,解方程即可求解.
7.(2021八上·九台期中)若 , ,则 .
【答案】
【知识点】同底数幂的乘法
【解析】【解答】解: .
故答案为: .
【分析】利用同底数幂的乘方的逆运算求解即可。
8.(2021八上·路北期中)计算: .
【答案】
【知识点】同底数幂的乘法
【解析】【解答】解: ,
故答案是: .
【分析】利用同底数幂的乘法公式求解即可。
9.(2021八上·陇县期末)若2n+2n+2n+2n=28,则n= .
【答案】6
【知识点】同底数幂的乘法
【解析】【解答】解:∵2n+2n+2n+2n=4×2n=22×2n=28,
∴2+n=8,
解得n=6.
故答案为:6.
【分析】根据同底数幂的乘法法则计算即可,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.am an=am+n(m,n是正整数).
10.(2020八上·北京期中)若 ,则x= .
【答案】6
【知识点】同底数幂的乘法
【解析】【解答】解:∵ ,
则 ,
即 ,
∴ ,
解得 .
故答案为:6.
【分析】把等式左边各因数写成与右边相同的底数幂的形式,根据同底数幂乘法的运算法则可得指数的方程,解方程即可.
11.(2019八上·天津月考)计算 = .
【答案】
【知识点】有理数的乘法运算律;同底数幂的乘法;科学记数法—表示绝对值较大的数
【解析】【解答】解:
故答案为: .
【分析】根据乘法交换律、结合律和同底数幂的乘法计算并用科学记数法表示即可.
12.(2019八上·渭源月考)计算:
【答案】
【知识点】同底数幂的乘法
【解析】【解答】
故答案为:
【分析】运用同底数幂相乘,底数不变,指数相加的规律先把 进行计算,然后跟 相乘即可.
13.(2019八上·潮安期末)计算:-y2 (-y)3 (-y)4= .
【答案】y9
【知识点】同底数幂的乘法
【解析】【解答】解:原式=-y2 (-y)3+4=-y2 (-y7)=y9,
故答案为:y9.
【分析】根据同底数幂的乘法,底数不变,指数相加进行计算即可,利用单项式乘以单项式得出结果。
14.(2018八上·长春月考)已知2a=5,2b=10,2c=100,那么a、b、c之间满足的等量关系是 .
【答案】c=1+a+b
【知识点】同底数幂的乘法
【解析】【解答】解:∵100=2×5×10,
∴2c=2×2a×2b=21+a+b,
则c=1+a+b,
故答案为:c=1+a+b.
【分析】欲找 a、b、c之间满足的等量关系 ,可先找等式右边的三个数5、10、100之间满足的等量关系:100=2×5×10,然后再把三个等式代入即可.
三、计算题
15.计算:
(1)(m﹣2n)2(2n﹣m)3;
(2)a a4﹣(﹣a)2 (﹣a3).
【答案】(1)解:原式=(2n﹣m)2 (2n﹣m)3
=(2n﹣m)5
(2)解:原式=a1+4+a2+3
=a5+a5
=2a5
【知识点】同底数幂的乘法;合并同类项法则及应用
【解析】【分析】(1)将(m-2n)看作一个整体,根据同底数幂相乘,底数不变,指数相加即可求解;
(2)根据混合运算法则先乘除,后加减的顺序计算,并运用同底数幂相乘,底数不变,指数相加,再合并同类项即可求解。
二一教育在线组卷平台(zujuan.21cnjy.com)自动生成 1 / 1登录二一教育在线组卷平台 助您教考全无忧
人教版八上数学第十四章14.1.1同底数幂的乘法 课时易错题三刷(第二刷)
一、单选题
1.(2019八上·周口月考) 可以表示为( )
A. B. C. D.
2.(2020八上·兴县期末)若 ,则m+n的值为( )
A.6 B.5 C.4 D.3
3.(2019八上·松山期中)若 , 其中 为整数,则 与 的数量关系为( )
A. B. C. D.
4.(2019八上·安居期中)计算 的结果有:① ;② ;③﹣ ;④﹣ ,其中正确的是( )
A.①③ B.①④ C.②③ D.②④
5.(2019八上·合肥月考)已知x3ym﹣1 xm+ny2n+2=x9y9,则4m﹣3n等于( )
A.8 B.9 C.10 D.11
二、填空题
6.(2020八上·恩施月考)若 ,则 .
7.(2021八上·九台期中)若 , ,则 .
8.(2021八上·路北期中)计算: .
9.(2021八上·陇县期末)若2n+2n+2n+2n=28,则n= .
10.(2020八上·北京期中)若 ,则x= .
11.(2019八上·天津月考)计算 = .
12.(2019八上·渭源月考)计算:
13.(2019八上·潮安期末)计算:-y2 (-y)3 (-y)4= .
14.(2018八上·长春月考)已知2a=5,2b=10,2c=100,那么a、b、c之间满足的等量关系是 .
三、计算题
15.计算:
(1)(m﹣2n)2(2n﹣m)3;
(2)a a4﹣(﹣a)2 (﹣a3).
答案解析部分
1.【答案】B
【知识点】同底数幂的乘法
【解析】【解答】解:(x﹣y)4 (y﹣x)3=﹣(x﹣y)4 (x﹣y)3=﹣(x﹣y)7.
故答案为:B.
【分析】根据同底数幂的乘法法则及互为相反数的两个数的奇数次幂的关系即可算出答案.
2.【答案】B
【知识点】同底数幂的乘法
【解析】【解答】解:∵ , ,且
∴
故答案为:B.
【分析】利用同底数幂的乘法计算即可。
3.【答案】B
【知识点】同底数幂的乘法
【解析】【解答】解:因为 ,
所以 .
故答案为:B.
【分析】将化简成利用,再将整体代入即可。
4.【答案】A
【知识点】同底数幂的乘法
【解析】【解答】 =(a-b)3[-(a-b)]4=(a-b)3(a-b)4=(a-b)7,故①符合题意,④不符合题意,
=[-(b-a)]3(b-a)4=-(b-a)3(b-a)4=-(b-a)7,故③符合题意,②不符合题意,
∴正确的结果有①③
故答案为:A.
【分析】先转化为同底数的幂,再运用同底数幂相乘的法则进行计算即可得答案.
5.【答案】C
【知识点】同底数幂的乘法
【解析】【解答】解:x3ym-1 xm+ny2n+2=xm+n+3ym+2n+1=x9y9,
∴ ,
解得 ,
∴4m-3n=4×4-3×2=10.
故答案为:C.
【分析】先根据同底数幂乘法对等式左边进行计算,再根据相同字母的指数相等列出方程组,解出m、n的值,代入4m-3n求解即可.
6.【答案】4
【知识点】同底数幂的乘法
【解析】【解答】解:∵ ,
∴ ,解得 ,
故答案为:4.
【分析】由同底数幂的乘法法则“同底数幂相乘底数不变指数相加”可将已知的等式变形得:yx+6=y10,于是可得关于x的方程,解方程即可求解.
7.【答案】
【知识点】同底数幂的乘法
【解析】【解答】解: .
故答案为: .
【分析】利用同底数幂的乘方的逆运算求解即可。
8.【答案】
【知识点】同底数幂的乘法
【解析】【解答】解: ,
故答案是: .
【分析】利用同底数幂的乘法公式求解即可。
9.【答案】6
【知识点】同底数幂的乘法
【解析】【解答】解:∵2n+2n+2n+2n=4×2n=22×2n=28,
∴2+n=8,
解得n=6.
故答案为:6.
【分析】根据同底数幂的乘法法则计算即可,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.am an=am+n(m,n是正整数).
10.【答案】6
【知识点】同底数幂的乘法
【解析】【解答】解:∵ ,
则 ,
即 ,
∴ ,
解得 .
故答案为:6.
【分析】把等式左边各因数写成与右边相同的底数幂的形式,根据同底数幂乘法的运算法则可得指数的方程,解方程即可.
11.【答案】
【知识点】有理数的乘法运算律;同底数幂的乘法;科学记数法—表示绝对值较大的数
【解析】【解答】解:
故答案为: .
【分析】根据乘法交换律、结合律和同底数幂的乘法计算并用科学记数法表示即可.
12.【答案】
【知识点】同底数幂的乘法
【解析】【解答】
故答案为:
【分析】运用同底数幂相乘,底数不变,指数相加的规律先把 进行计算,然后跟 相乘即可.
13.【答案】y9
【知识点】同底数幂的乘法
【解析】【解答】解:原式=-y2 (-y)3+4=-y2 (-y7)=y9,
故答案为:y9.
【分析】根据同底数幂的乘法,底数不变,指数相加进行计算即可,利用单项式乘以单项式得出结果。
14.【答案】c=1+a+b
【知识点】同底数幂的乘法
【解析】【解答】解:∵100=2×5×10,
∴2c=2×2a×2b=21+a+b,
则c=1+a+b,
故答案为:c=1+a+b.
【分析】欲找 a、b、c之间满足的等量关系 ,可先找等式右边的三个数5、10、100之间满足的等量关系:100=2×5×10,然后再把三个等式代入即可.
15.【答案】(1)解:原式=(2n﹣m)2 (2n﹣m)3
=(2n﹣m)5
(2)解:原式=a1+4+a2+3
=a5+a5
=2a5
【知识点】同底数幂的乘法;合并同类项法则及应用
【解析】【分析】(1)将(m-2n)看作一个整体,根据同底数幂相乘,底数不变,指数相加即可求解;
(2)根据混合运算法则先乘除,后加减的顺序计算,并运用同底数幂相乘,底数不变,指数相加,再合并同类项即可求解。
二一教育在线组卷平台(zujuan.21cnjy.com)自动生成 1 / 1