九年级 人教版 数学上册 25.1.1 随机事件 课时练习-2022-2023学年(含解析)

文档属性

名称 九年级 人教版 数学上册 25.1.1 随机事件 课时练习-2022-2023学年(含解析)
格式 docx
文件大小 173.7KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2022-10-15 07:10:31

图片预览

文档简介

25.1.1 随机事件(附解析)
一、单选题(共10个小题)
1.把10个相同的球放入编号为1,2,3的三个盒子中,使得每个盒子中的球数不小于它的编号,则不同的方法有(    )种.
A.10 B.15 C.20 D.25
2.下列随机试验中,结果具有“等可能性”的是( )
A.掷一枚质地均匀的骰子 B.篮球运动员定点投篮
C.掷一个矿泉水瓶盖 D.从装有若干小球的透明袋子摸球
3.下列关于概率的描述属于“等可能性事件”的是(   )
A.交通信号灯有“红、绿、黄”三种颜色,它们发生的概率
B.掷一枚图钉,落地后钉尖“朝上”或“朝下”的概率
C.小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率
D.小明用随机抽签的方式选择以上三种答案,则A、B、C被选中的概率
4.下列事件中,是随机事件的是( )
A.通常加热到时,水沸腾
B.随意翻到一本书的某页,这页的页码是偶数
C.任意画一个三角形,其内角和是
D.明天太阳从东方升起
5.盒子里有大小,材质完全相同的红球、黄球、绿球各5个,亮亮每次任意摸出一个球,然后放回再摸.下面是亮亮两次摸球的情况:
次数 第1次 第2次 第3次
摸出球的颜色 黄 黄 ?
当亮亮第三次摸球时,下列说法正确的是( )
A.一定摸到黄球 B.摸到黄球的可能性大
C.不可能摸到黄球 D.摸到红球,黄球,绿球的可能性一样大
6.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的概率较大,那么袋中白球的个数可能是( ).
A.2 B.3 C.4 D.5
7.事件①:任意画一个多边形,其外角和为360°;事件②:经过一个有交通信号灯的十字路口,遇到红灯;则下列说法正确的是(   )
A.事件①和②都是随机事件
B.事件①是随机事件,事件②是必然事件
C.事件①和②都是必然事件
D.事件①是必然事件,事件②是随机事件
8.某种型号的变速自行车的主动轴上有三个齿轮,齿数分别是,,;后轴上有四个齿轮,齿数分别是,,,,则这种变速车共有多少档不同的车速( )
A. B. C. D.
9.浙教版九年级上册课本第41页中的一道题如图所示,请你仔细阅读后认真解答.笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先经过第一道门(A,B,或C),再经过第二道门(D或E)才能出去,问松鼠走出笼子的路线(经过的两道门)有多少种不同的可能?你的答案是( )
A.12 B.6 C.5 D.2
10.某初中七(5)班学生军训排列成7 7=49 人的方阵,做了一个游戏,起初全体学生站立,教官每次任意点 4 个不同学号的学生,被点到的学生,站立的蹲下,蹲下的站立,且学生都正确完成指令,同一名学生可以多次被点,则 15 次点名后蹲下的学生人数可能是( )
A.3 B.27 C.49 D.以上都不可能
二、填空题(共10个小题)
11.一个不透明的袋里装有除颜色外其他完全相同的10个小球,其中有6个黄球,3个白球,1个黑球,将袋中的球摇匀,从中任意摸出一个球,摸出__________球的可能性最大.
12.(1)下列事件中,哪些是必然事件?哪些是不可能事件?哪些是不确定事件?(填入题后括号内)
①校运会上,我班一位女同学的100米跑成绩是12秒11.( 事件)
②人在地球上所受的重力比在月球上小.( 事件)
③一个四边形四个内角的和等于360°.( 事件)
(2)写出一个不确定事件.(只需写一个,填在下面的横线上)
13.一个口袋里装有只有颜色不同的红球和蓝球,已知红球30个,蓝球20个.闭上眼睛从口袋里拿出一个球是蓝球的可能性是________________.
14.排队时,3个人站成一横排,其中小亮“站在中间”的可能性_________小亮“站在两边”的可能性(填“大于”、“小于”或“等于”).
15.一只不透明的袋子中装有2个白球和3个红球,现在向袋中再放入n个白球,袋中的这些球除颜色外都相同,搅匀后从中任意摸出1个球,若要使摸到白球比摸到红球的可能性大,则n的最小值等于__________.
16.将一副去掉大小王的扑克牌平均分发给甲、乙、丙、丁四人,已知甲有5张红桃牌,乙有4张红桃牌,那么丁的红桃牌有__________种不同的情况.
17.某一公园有4个入口和3个出口,小明从进入公园到走出公园,一共有_______种不同出入路线的可能.
18.容器中有A,B,C,3种粒子,若相同种类的两颗粒子发生碰撞,则变成一颗B粒子;不同种类的两颗粒子发生碰撞,会变成另外一种粒子.例如,一颗A粒子和一颗B粒子发生碰撞则变成一颗C粒子.现有A粒子10颗,B粒子8颗,C粒子9颗,如果经过各种两两碰撞后,只剩1颗粒子.给出下列结论:
①最后一颗粒子可能是A粒子;
②最后一颗粒子一定是C粒子
③最后一颗粒子一定不是B粒子;
④以上都不正确
其中正确结论的序号是_____________.(写出所有正确结论的序号)
19.某公交车站共有1路、3路、16路三路车停靠,已知1路车8分钟一辆;3路车5分钟一辆、16路车10分钟一辆,则在某一时刻,小明去公交车站最先等到__________路车的可能性最大.
20.若事件“对于二次函数y=x2﹣2mx+1,当x≤1时,y随着x的增大而减小.”是必然事件,则实数m的取值范围是____________.
三、解答题(共6个小题)
21.掷两枚普通的正方体骰子,把两个骰子的点数相加,请问下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是可能发生的?并说明原因.
(1)和为1;(2)和为4;(3)差为6;(4)和小于14
22.指出下列事件中,哪些是不可能事件?哪些是必然事件?哪些是不确定事件? 
①若 a、b、c都是实数,则a(bc)=(ab)c; 
②没有空气,动物也能生存下去; 
③在标准大气压下,水在 90℃时沸腾; 
④直线 y=k(x+1)过定点(-1,0);  
⑤某一天内电话收到的呼叫次数为 0; 
⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球.
23.A、B两人去茅山风景区游玩,已知每天某一时段开往风景区有三辆舒适程度不同的车,开过来的顺序也不确定.两人采取了不同的乘车方案:
A无论如何总是上开来的第一辆车;B先观察后上车,当第一辆车开来时他不上车,而是仔细观察车的舒适度,如果第二辆车的状况比第一辆车好,他就上第二辆车;如果第二辆车不比第一辆好,他就上第三辆车.
如果把这三辆车的舒适程度分为上、中、下三等,请解决下列问题:
(1)三辆车按出现的先后顺序共有哪几种不同的可能?
(2)你认为A、B两人采用的方案,哪种方案使自己乘上等车的可能性大?为什么?
24.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1个球.
(1)这个球是白球还是黑球?
(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?
为了验证你的想法,动手摸一下吧!每名同学随机从袋子中摸出1个球,记下球的颜色,然后把球重新放回袋子并摇匀.汇总全班同学摸球的结果并把结果填在下表中.
球的颜色 黑球 白球
摸取次数
比较表中记录的数字的大小,结果与你事先的判断一致吗?
在上面的摸球活动中,“摸出黑球”和“摸出白球”是两个随机事件.一次摸球可能发生“摸出黑球”,也可能发生“摸出白球”,事先不能确定哪个事件发生.由于两种球的数量不等,所以“摸出黑球”与“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性.你们的试验结果也是这样吗?
25.某商场进行有奖促销活动,转盘分为5个扇形区域,分别是特等奖、一等奖、二等奖、三等奖及不获奖,制作转盘时,将获奖扇形区域圆心角分配如下表:
奖次 特等奖 一等奖 二等奖 三等奖
圆心角
如果不用转盘,请设计一种等效实验方案(要求写清楚替代工具和实验规则).
26.盒中装有红球、黄球共10个,每个球除颜色外其余都相同,每次从盒中摸到一个球,摸三次,不放回,请你按要求设计出摸球方案:
(1)“摸到三个球都是红球”是不可能事件;
(2)“摸到红球”是必然事件;
(3)“摸到两个黄球”是随机事件;
(4)“摸到两个黄球”是确定事件.
参考答案:
1.B
【详解】解:先放1,2,3的话,那么还剩下4个球,4个球放到3个不同的盒子里,情况有:
0,0,4,分别在1,2,3号盒子中的任意一个中放4个,共3种情况;
0,1,3,分别在1,2,3号盒子中的任意两个中放3个和1个,共6种情况;
0,2,2,分别在1,2,3号盒子中的任意两个中放2个,共3种情况;
1,1,2分别在1,2,3号盒子中的任意两个中放2个和1个,共3种情况;
∴3+6+3+3=15种.
故选:B.
2.A
【详解】解:A,掷一枚质地均匀的骰子,任一点数的概率都是六分之一,故该选项正确;
B,篮球运动员定点投篮,投中与否的概率并不相等,故该选项错误;
C,掷一个矿泉水瓶盖,因瓶盖质地不均匀,正反面出现的概率并不相等,故该选项错误;
D,从装有若干小球的透明袋子摸球,摸到某一颜色小球的概率不一定相等,故该选项错误;
故选A.
3.D
【详解】∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,
∴它们发生的概率不相同,
∴它不属于“等可能性事件”,
∴选项A不正确;
∵图钉上下不一样,
∴钉尖朝上的概率和钉尖着地的概率不相同,
∴它不属于“等可能性事件”,
∴选项B不正确;
∵“直角三角形”三边的长度不相同,
∴小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率不相同,
∴它不属于“等可能性事件”,
∴选项C不正确;
∵小明用随机抽签的方式选择以上三种答案,A、B、C被选中的相同,
∴它属于“等可能性事件”,
∴选项D正确.
故选D.
4.B
【详解】A. 通常加热到时,水沸腾,是必然事件,故该选项不符合题意;
B. 随意翻到一本书的某页,这页的页码是偶数,是随机事件,故该选项符合题意;
C. 任意画一个三角形,其内角和是,是不可能事件,故该选项不符合题意;
D. 明天太阳从东方升起,是必然事件,故该选项不符合题意;
故选B
5.D
【详解】解:当亮亮第三次摸球时,摸到红球,黄球,绿球的可能性一样大;
故选:D.
6.D
【详解】解:若要使取到白球的概率较大,则白球的个数>红球的个数
由各选项可知,只有D选项符合
故选D.
7.D
【详解】解:事件①:任意画一个多边形,其外角和为360°,这是必然事件;
事件②:经过一个有交通信号灯的十字路口,遇到红灯,这是随机事件;
故选:D.
8.B
【详解】解:∵主动轴上有三个齿轮,齿数分别是48,36,24;
∴主动轴上可以有3个变速,
∵后轴上有四个齿轮,齿数分别是36,24,16,12,
∴后轴上可以有4个变速,
∵变速比为2,1.5,1,3的有两组,
又∵前后齿轮数之比如果一致,则速度会相等,
∴共有3×4-4=8种变速,
故选:B.
9.B
【详解】解:∵第一道门有A、B、C三个出口,
∴出第一道门有三种选择,
又∵第二道门有两个出口,
故出第二道门有D、E两种选择,
∴小松鼠走出笼子的路线有6种选择,
分别为AD、AE、BD、BE、CD、CE,
故选B.
10.D
【详解】假设点的4个同学全部为站立的学生,则蹲下人数+4;
假设点的4个同学中只有1个为已蹲下的学生,则蹲下人数-1+3=+2;
假设点的4个同学中有2个为已蹲下的学生,则蹲下人数-2+2=0;
假设点的4个同学中有3个为已蹲下的学生,则蹲下人数-3+1=-2;
假设点的4个同学全部为已蹲下的学生,则蹲下人数-4;
第一次点完之后,蹲下人数为4,为偶数,之后每次蹲下的人数一定符合上述五种情况之一,所以增加或减少的人数仍为偶数,故蹲下的人数只可能为偶数.
故选D.
11.黄
【详解】解:因为袋子中有6个黄球,3个白球,1个黑球,从中任意摸出一个球,
①为黑球的概率是;
②为黄球的概率是 ;
③为白球的概率是 .
可见摸出黄球的可能性大.
故答案为:黄.
12.(1)①不确定;②不可能;③必然;(2)明天会下雨(答案不唯一)
【详解】解:(1)①校运会上,我班一位女同学的100米跑成绩是12秒11.(不确定事件)
②人在地球上所受的重力比在月球上小.(不可能事件)
③一个四边形四个内角的和等于360°.(必然事件)
(2)写出一个不确定事件.(只需写一个,填在下面的横线上) 明天会下雨(答案不唯一).
故答案为:(1)不确定,不可能,必然;(2)明天会下雨(答案不唯一).
13.
【详解】解:闭上眼睛从口袋里拿出一个球是蓝球的可能性==,
故答案为.
14.小于
【详解】解:3个人站成一排,小亮站在那个位置都有可能,“小亮站在正中间”的可能性为,
“小亮站在两端”的可能性有,
故小亮“站在中间”的可能性<小亮“站在两边”的可能,
故答案为:小于.
15.2
【详解】解:∵要使摸到白球比摸到红球的可能性大,
∴n的最小值等于3+1-2=2.
故答案为:2.
16.5
【详解】解:一副牌去掉大小王后剩下张牌,
则红桃牌的总张数为(张),
甲有5张红桃牌,乙有4张红桃牌,
剩下的红桃牌的张数为(张),
所以丁的红桃牌的张数的所有可能情况为:0张、1张、2张、3张、4张,共有5种不同的情况,
故答案为:5.
17.12
【详解】解:用A、B、C、D表示入口,A1、B1、C1表示出口,如图所示:
小明从进入公园到走出公园,一共有3×4=12种不同出入路线的可能.
故答案为:12.
18.①③
【详解】解:(1)最后剩下的可能是A粒子.
10颗A粒子两两碰撞,形成5颗B粒子;
9颗C粒子中的8个两两碰撞,形成4颗B粒子;
所有的17颗B粒子两两碰撞,剩下一颗B粒子;
这个B粒子与剩下的一颗C粒子碰撞形成A粒子.
(2)最后剩下的可能是C粒子.
10颗A粒子中的9颗与9颗C粒子两两碰撞,形成9颗B粒子;
所有的17颗B粒子两两碰撞,最后剩一颗B粒子;
这个B粒子与剩下的一颗A粒子碰撞形成C粒子.
(3)最后剩下的不可能是B粒子.
A、B、C三种粒子每一次碰撞有以下6种可能的情况:
A与A碰撞,会产生一颗B粒子,减少两颗A粒子:(B多1个,A、C共减少两个);
B与B碰撞,会产生一颗B粒子,减少两颗B粒子:(B少1个,A、C总数不变);
C与C碰撞,会产生一颗B粒子,减少两颗C粒子:(B多1个,A、C共减少两个);
A与B碰撞,会产生一颗C粒子,减少A、B各一颗粒子:(B少1个,A、C总数不变);
A与C碰撞,会产生一颗B粒子,减少A、C各一颗粒子:(B多1个,A、C共减少两个);
B与C碰撞,会产生一颗A粒子,减少B、C各一颗粒子:(B少1个,A、C总数不变),
可以发现如下规律:
①从B粒子的角度看:每碰撞一次,B粒子的数量增多一个或减少一个.题目中共有27颗粒子,经过26次碰撞剩一颗粒子,整个过程变化了偶数次,
由于开始B粒子共有8颗,
所以26次碰撞之后,剩余的B粒子个数必为偶数,不可能是1个,
所以,最后剩下的不可能是B粒子.
②从A、C粒子的角度看:每次碰撞之后,A、C粒子总数或者不变、或者减少两个.题目中A、C粒子之和为19个,无论碰撞多少次,A、C粒子都没了是不可能的.
所以,剩下的最后一颗粒子一定是A或C.
故答案为:①③.
19.3
【详解】解:∵1路车8分钟一辆,3路车5分钟一辆,16路车10分钟一辆,
∴3路车间隔时间最短,16路车间隔时间最长,
∴小明去公交车站最先等到3路车的可能性最大.
故填3.
20.m≥1
【详解】对于二次函数y=x2﹣2mx+1,对称轴为x=m.
∵当x≤1时,y随x的增大而减小,
∴m≥1,
∴实数m的取值范围是m≥1.
故答案为:m≥1.
21.见解析
【详解】解:(1)最小的和为2,故和为1属于不可能事件,
(2)和可能为2和12之间的任意一个数,故和为4属于可能事件,
(3)差最大为5,故差为6属于不可能事件,
(4)和最大为12,故和小于12属于必然事件;
22.①④是必然事件;②③是不可能事件;⑤⑥是不确定事件
【详解】①若 a、b、c都是实数,则a(bc)=(ab)c,一定发生,是必然事件;
②没有空气,动物也能生存下去,这是不可能的,是不可能事件;
③在标准大气压下,水在 90℃时沸腾,应该是100℃时沸腾,所以这是不可能的,是不可能事件;
④直线 y=k(x+1)过定点(-1,0),将x=-1代入得y=0,所以直线 y=k(x+1)过定点(-1,0)所以这是必然事件;
⑤某一天内电话收到的呼叫次数为 0,这个是不确定的,是不确定事件;
⑥一个袋内装有形状大小完全相同的一个白球和一个黑球,从中任意摸出 1个球则为白球,这个是不确定的,是不确定事件.
23.(1)6种;(2)B人采用的方案使自己乘上等车的可能性大,理由见解析
【详解】(1)解:(1)列表:
三辆车按出现的先后顺序共有6种不同的可能;
(2)解:A采用的方案使自己乘上等车的结果有2种;B采用的方案使自己乘上等车的结果有3种,
则B人采用的方案使自己乘上等车的可能性大.
24.(1)都有可能;(2)不一样大,黑球的可能性大;验证:30,15(答案不唯一);结果和事先判断一致,试验结果一致
【详解】(1)都有可能;
(2)不一样大,黑球的可能性大.
验证:答案不唯一,假设全班学生共45人,
汇总全班同学摸球的结果并把结果填在下表中.
球的颜色 黑球 白球
摸取次数 30 15
根据等可能性的概率,试验结果和事先判断一致;试验结果一致.
故答案为:30,15(答案不唯一).
25.见解析
【详解】解:由题意可得出:
可采取“抓阄”或“抽签”等方法替代,
例如在一个不透明的箱子里放进36个除标号不同外,其他均一样的乒乓球,
其中1个标“特”,2个标“一”,3个标“二”,9个标“三”,其余不标数字,
摸出标有哪个奖次的乒乓球,则获相应的等级的奖品.
26.(1)盒中装有红球2个、黄球8个(答案不唯一);
(2)盒中装有红球8个、黄球2个(答案不唯一);
(3)盒中装有红球8个、黄球2个(答案不唯一);
(4)盒中装有红球9个、黄球1个(答案不唯一).
【详解】(1)解:盒中装有红球2个、黄球8个,则“摸到三个球都是红球”是不可能事件;
(2)解:盒中装有红球8个、黄球2个,则“摸到红球”是必然事件;
(3)解:盒中装有红球8个、黄球2个,则“摸到两个黄球”是随机事件;
(4)解:盒中装有红球9个、黄球1个,则“摸到两个黄球”是不可能事件,属于确定事件.