人教版九年级数学上册 25.2用列举法求概率 第2课时 教学课件(共19张PPT)

文档属性

名称 人教版九年级数学上册 25.2用列举法求概率 第2课时 教学课件(共19张PPT)
格式 pptx
文件大小 1023.2KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2022-10-18 15:29:39

图片预览

文档简介

(共19张PPT)
25.2 用列举法求概率
第2课时
学习目标
1.掌握用画树状图法计算概率,并通过比较概率大小做出合理的决策.
2.能够根据问题,判断何时选用列表法和画树状图法求概率更方便.
3.经历试验、列表、统计、运算、设计等活动,学生在具体情境中分析事件,计算其发生的概率,渗透数形结合,分类讨论,由特殊到一般的思想,提高分析问题和解决问题的能力.
4.通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯.
用列举法求概率
重点
难点
应用新知
创设情境
巩固新知
课堂小结
布置作业
探究新知
复习回顾
(1)抛掷一枚硬币,硬币正面朝上的概率是多少?
(2)抛掷两枚硬币,一枚正面朝上、一枚反面朝上的概率是多少?
(3)抛掷三枚硬币,两枚正面朝上、一枚反面朝上的概率是多少?
正面朝上的概率是 .
正 反
正 (正,正) (正,反)
反 (反,正) (反,反)
第一枚
第二枚
当一次试验涉及 3 个因素或更多的因素时,列表法就不方便了,为不重不漏地列出所有可能的结果,通常采用画树状图法.
可以用列表法解决这个问题吗?
一枚正面朝上、一枚反面朝上的概率是 .
创设情境
应用新知
巩固新知
课堂小结
布置作业
探究新知
合作探究
抛掷三枚硬币,两枚正面朝上、一枚反面朝上的概率是多少?


解:
STEP1 第①枚




STEP 2 第②枚








STEP 3 第③枚
画树状图如下:



反正正

反正

反反
反反正
反正反



反反反
由树状图可以看出,所有可能出现的结果共有 8 种.
且这些结果出现的可能性相等.
可能出现的结果共有多少种?
创设情境
应用新知
巩固新知
课堂小结
布置作业
探究新知
合作探究
抛掷三枚硬币,两枚正面朝上、一枚反面朝上的概率是多少?
解:
画树状图如下:
两枚正面朝上、一枚反面朝上的结果有 3 种,所以
P(两枚硬币正面朝上而一枚硬币反面朝上)= .






STEP 2 第②枚








STEP 3 第③枚



反正正

反正

反反
反反正
反正反



反反反
STEP1 第①枚
(2)什么时候使用“列表法”方便 什么时候使用“树状图法”方便
(1)列表法和树状图法的优点是什么
创设情境
应用新知
巩固新知
课堂小结
布置作业
探究新知
思考
利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果,从而较方便地求出某些事件发生的概率.
当试验包含两步时,列表法比较方便(此时也可以用树状图法);
当试验在三步或三步以上时,用树状图法更方便.
注意:用列表法或树状图法求概率的前提.
1. 可能出现的结果只有有限个;
2. 各种结果出现的可能性大小相等.
探究新知
巩固新知
课堂小结
布置作业
应用新知
创设情境
典型例题
例 甲口袋中装有 2 个相同的小球,它们分别写有字母 A 和 B;
乙口袋中装有 3 个相同的小球,它们分别写有字母 C,D 和 E;
丙口袋中装有 2 个相同的小球,它们分别写有字母 H 和 I.
从三个口袋中各随机取出 1 个小球.
(1)取出的 3 个小球上恰好有 1 个、2 个和 3 个元音字母的概率分别是多少?
(2)取出的 3 个小球上全是辅音字母的概率是多少?
探究新知
巩固新知
课堂小结
布置作业
应用新知
创设情境
典型例题
例 甲口袋中装有 2 个相同的小球,它们分别写有字母 A 和 B;
乙口袋中装有 3 个相同的小球,它们分别写有字母 C,D 和 E;
丙口袋中装有 2 个相同的小球,它们分别写有字母 H 和 I.
从三个口袋中各随机取出 1 个小球.
解:根据题意,可以画出如下树状图:
  STEP1 甲     A         B
  STEP2 乙 C    D    E   C    D   E
   STEP3 丙
H I
H I
H I
H I
H I
H I
A
C
H
A
C
I
A
D
H
A
D
I
A
E
H
A
E
I
B
C
H
B
C
I
B
D
H
B
D
I
B
E
H
B
E
I
探究新知
巩固新知
课堂小结
布置作业
应用新知
创设情境
典型例题
由树状图可以看出,可能出现的结果共有 12 种,
且这些结果出现的可能性相等.
A
C
H
A
C
I
A
D
H
A
D
I
A
E
H
A
E
I
B
C
H
B
C
I
B
D
H
B
D
I
B
E
H
B
E
I
(1)取出的 3 个小球上恰好有 1 个、2 个和 3 个元音字母的概率分别是多少?
元音字母:A、E、I、O、U.
探究新知
巩固新知
课堂小结
布置作业
应用新知
创设情境
典型例题
由树状图可以看出,可能出现的结果共有 12 种,
且这些结果出现的可能性相等.
A
C
H
A
C
I
A
D
H
A
D
I
A
E
H
A
E
I
B
C
H
B
C
I
B
D
H
B
D
I
B
E
H
B
E
I
(1)取出的 3 个小球上恰好有 1 个、2 个和 3 个元音字母的概率分别是多少?
元音字母:A、E、I、O、U.
解:
只有 1 个元音字母的结果有 5 种,即ACH、ADH、BCI、BDI、BEH,所以
有 2 个元音字母的结果有 4 种,即ACI、ADI、AEH、BEI,所以
全部为元音字母的结果有 1 种,即AEI,所以
   P(3 个元音)=   .
   P(1 个元音)=   .
   P(2 个元音)=  =  .
解:
探究新知
巩固新知
课堂小结
布置作业
应用新知
创设情境
典型例题
由树状图可以看出,可能出现的结果共有 12 种,
且这些结果出现的可能性相等.
(2)取出的 3 个小球上全是辅音字母的概率是多少?
全是辅音字母的结果有 2 种,即BCH、BDH ,所以
   P(3 个辅音)=  =  .
A
C
H
A
C
I
A
D
H
A
D
I
A
E
H
A
E
I
B
C
H
B
C
I
B
D
H
B
D
I
B
E
H
B
E
I
探究新知
应用新知
课堂小结
布置作业
巩固新知
创设情境
随堂练习
1.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为( ).
C
A.   B. C. D.
探究新知
应用新知
课堂小结
布置作业
巩固新知
创设情境
随堂练习
2.小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.
(1)用列表法或画树状图法,求小丽参赛的概率;
(2)你认为这个游戏公平吗?请说明理由.
探究新知
应用新知
课堂小结
布置作业
巩固新知
创设情境
随堂练习
解:(1)法一:根据题意列表,得
由表可知所有可能结果共有 12 种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字和为偶数的结果有 4 种,分别是:
(2,4)、(3,5)、(4,2)、(5,3)
所以小丽参赛的概率为 .
2 3 4 5
2 -- (3,2) (4,2) (5,2)
3 (2,3) -- (4,3) (5,3)
4 (2,4) (3,4) -- (5,4)
5 (2,5) (3,5) (4,5) --
第一个
第二个
探究新知
应用新知
课堂小结
布置作业
巩固新知
创设情境
随堂练习
解:(1)法二:根据题意画树状图如下:
由树状图可知所有可能结果共有 12 种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字和为偶数的结果有 4 种,分别是:
(2,4)、(3,5)、(4,2)、(5,3)
所以小丽参赛的概率为 .
第一个
第二个
探究新知
应用新知
课堂小结
布置作业
巩固新知
创设情境
随堂练习
解:(2)游戏不公平,理由为:
∵小丽参赛的概率为 ,
∴小华参赛的概率为 .
∵ ,
∴这个游戏不公平.
(2)你认为这个游戏公平吗?请说明理由.
探究新知
应用新知
布置作业
巩固新知
课堂小结
创设情境
列表法求概率:
当一次试验涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.
用列举法求概率
树状图法求概率:
当事件要经过多个步骤(三步或三步以上)完成时,用画树状图法求事件的概率很有效.
布置作业
教科书第140页习题25.2
第4,5,6题
探究新知
应用新知
课堂小结
巩固新知
创设情境
再见