(共29张PPT)
三、电流的磁场
第十四章 磁现象
带电体和磁体有一些相似的性质,这些相似是一种巧合呢?还是它们之间存在着某些联系呢?
同种电荷互相排斥,异种电荷互相吸引。
同名磁极相互排斥,异名磁极相互吸引。
电
磁
科学家们基于这种想法,一次又一次地寻找电与磁的联系。
1820年丹麦物理学家奥斯特终于用实验证实通电导体的周围存在着磁场。这一重大发现轰动了科学界,使电磁学进入一个新的发展时期。
奥斯特在演示电与磁的联系
奥斯特对电和磁的关系很感兴趣,在他之前,美国科学家富兰克林做过莱顿瓶放电实验,结果放电电流把焊条磁化了。这一实验使奥斯特认定电磁转化是很有可能的,所以他 一直想找到能证明这种转化的方法。1820年4月的一天,奥斯特在一次讲演快结速的时候,抱着试试看的心情又做了一次实验,他把 一条非常细 的铂导线放在一根用玻璃罩罩着的小磁针上方,接通 电源的瞬间,发现小磁针跳动了一下。
这一跳使有心 的奥斯特喜出望外,竟激动的在讲台上摔了一跤。以后的两个月里,奥斯特闭门不出,设计了几十个不同的实验,都证明了通电导线周围存在着磁场。同年7月他发表了论文《关于磁体周围电冲突的实验》,向学术界宣布了电流的磁效应。这一重大发现轰动了科学界,使电磁学的发展进入了新的时期。
一.电流的磁效应
演示:电流的磁效应(奥斯特实验)
1. 将导线放在小磁针的上方,让它和小磁针相平行。
2. 接通电源(短路),观察小磁针是否转动以及转动方向。
3. 改变电流方向重做以上实验,再观察小磁针的转动方向。当电流方向发生改变时,小磁针转动的方向一致吗
通电前
通电后
现象说明什么
通电导线的周围有磁场,磁场的方向跟电流的方向有关。这种现象叫做电流的磁效应。
甲 通电
乙 断电
丙 改变电流方向
触接
触接
探究
通电直导线周围的磁场是如何分布的?
在有机玻璃板上穿一个小孔,
一根直导线垂直穿过小孔,
在玻璃板上均匀地撒上一些
铁屑,给直导线通电后,轻
敲玻璃板,观察铁屑的分布
情况
以直导线上各点为圆心的同心圆
这些同心圆所在平面与直导线垂直
离直导线越近,磁场越强;
离直导线越远,磁场越弱
结论:越靠近直导线,磁性越强。磁感线是以导线上各点为圆心的同心圆,都在与导线垂直的平面上。
直导线周围的磁场有何特点?
既然电能生磁,为何手电筒在通电时连一根大头针都吸不上?
这是因为磁场太弱了。如果把导线绕在圆筒上,就做成了螺线管(线圈),各条导线产生的磁场叠加在一起,磁场就会强得多。
1.将导线绕在圆筒上,做成螺线管(也叫线圈)。通电后各圈导线磁场产生叠加,磁场增强。
螺线管
二.通电螺线管的磁场
2.将小磁针放在螺线管的不同位置(从两端开始)记下小磁针静止时北极的指向,也就是该点的磁场的方向。
3.改变电流的方向重做以上实验,看一下当电流方向改变时,通电螺线管中的磁场是否改变。
4.用铁粉演示通电螺线管的磁场。
(在玻璃板上撒铁粉时一定要均匀)
演示:把小磁针放到螺线管周围不同位置,在图上记录磁针N极的方向。
结合以上两个实验,对比右图可知:通电螺线管的外部磁场与条形磁体的磁场相似。
实验结论:
通电螺线管相当于一个条形磁体。
那么其极性和电流方向有什么关系呢?
猴子用右手把一个大
螺线管夹在腋下,说:
如果电流沿着我右臂
所指的方向流动,N
极就在我的前方。
蚂蚁沿着电流方向
绕螺线管爬行,说:
N 极就在我的左边。
N
S
N
S
N
S
N
S
通过实验,判断螺线管的N、S极,并标在图中。
实验结论:
通电螺线管外部的磁场和条形磁体的磁场一样。
通电螺线管两端的极性与其中的电流方向有关。
螺线管极性的判定:
右手握住螺线管,
四指随着电流转,
大拇指指向N极。
三.右手螺旋定则
决定通电螺线管极性的根本因素是线圈中电流的环绕方向。
通入电流
磁 场 的 方 向
磁 场 的 方 向
磁 场 的 方 向
磁 场 的 方 向
N
S
N
1.判断下面螺线管中的N极和S极:
2.判断螺线管中的电流方向:
N
S
S
N
N
S
练一练
( a )
( b )
( c )
( d )
3.在下图中标出通电螺线管的N极和S极。
N
N
N
S
N
S
S
S
相斥
C
4.下图中为两只轻小的通电螺线管,当它们互相靠近时,它们将 ( )
A.静止不动 B.互相吸引
C.互相排斥 D.一齐向左运动
N
N