4.2 正切 课件(共45张PPT)

文档属性

名称 4.2 正切 课件(共45张PPT)
格式 pptx
文件大小 11.3MB
资源类型 试卷
版本资源 湘教版
科目 数学
更新时间 2022-10-24 22:18:18

图片预览

文档简介

(共45张PPT)
第四章 锐角三角函数
4.2 正 切
1.理解锐角的三角函数中正切的概念及其与现实生活的联系;(重点)
2.能在直角三角形中求出某个锐角的正切值,并进行简单计算; (重点)
学习目标
智者乐水,仁者乐山
图片欣赏
思考:衡量山“险”与“不险”的标准是什么呢?

陡意味着倾斜程度大!
想一想:你能比较两个梯子哪个更陡吗?你有哪些办法?
铅直高度
水平宽度
梯子与地面的夹角∠ABC称为倾斜角
从梯子的顶端A到墙角C的距离,称为梯子的铅直高度
从梯子的底端B到墙角C的距离,称为梯子的水平宽度
A
C
B
正切的定义

相关概念
问题1:你能比较两个梯子哪个更陡吗?你有哪些办法?
合作探究1
A
B
C
D
E
F
倾斜角越大——梯子越陡
问题2:如图,梯子AB和EF哪个更陡?你是怎样判断的?
当铅直高度一样,水平宽度越小,梯子越陡
当水平宽度一样,铅直高度越大,梯子越陡


问题3:如图,梯子AB和EF哪个更陡?你是怎样判断的?
当铅直高度与水平宽度的比相等时,
梯子一样陡
3m
6m
D
E
F
C
2m
B
4m
A
问题4:如图,梯子AB和EF哪个更陡?你是怎样判断的?
当铅直高度与水平宽度的比越大,梯子越陡.
3m
2m
6m
5m
A
B
C
D
E
F
倾斜角越大,梯子越陡.
若小明因身高原因不能顺利测量梯子顶端到墙脚的距离B1 C1 ,进而无法刻画梯子的倾斜程度,他该怎么办?你有什么锦囊妙计?
A
C1
C2
B2
B1
合作探究2
两个直角三角形相似
(1)Rt△AB1C1和Rt△AB2C2有什么关系
(3)如果改变B2在梯子上的位置(如B3C3 )呢
思考:由此你得出什么结论
A
B1
C2
C1
B2
C3
B3
想一想
相等
相似三角形的对应边相等
在Rt△ABC中,如果锐角A确定,那么∠A的对边与邻边的比便随之确定,这个比叫做∠A的正切,记作tanA,即
A
B
C
∠A的对边
∠A的邻边

tanA=
归纳总结
结论:tanA的值越大,梯子越陡.
定义中的几点说明:
1.初中阶段,正切是在直角三角形中定义的, ∠A是一个锐角.
2.tanA是一个完整的符号,它表示∠A的正切.但∠BAC的正切表示为:tan∠BAC.∠1的正切表示为:tan∠1.
3.tanA﹥0 且没有单位,它表示一个比值,即直角三角形中锐角∠A的对边与邻边的比(注意顺序: ).
4.tanA不表示“tan”乘以“A ”.
5.tanA的大小只与∠A的大小有关,而与直角三角形的边长无关.
A
B
C

锐角A的正切值可以等于1吗?为什么?可以大于1吗?
对于锐角A的每一个确定的值,tanA都有唯一的确定的值与它对应.
解:可以等于1,此时为等腰直角三角形;也可以大于1,甚至可逼近于无穷大.
议一议
例1: 下图表示两个自动扶梯,哪一个自动扶梯比较陡
解:甲梯中,
β
6m


8m
α
5m


13m
乙梯中,
∵tanβ>tanα,∴乙梯更陡.
提示:在生活中,常用一个锐角的正切表示梯子的倾斜程度.
典例精析
例2: 计算:tan45°+tan230°+tan230°tan260°
原式=
1. 在Rt△ABC中,∠C=90°,AC=7,BC=5,则 tan A=______,tan B =______.
练一练
互余两锐角的正切值互为倒数.
2.下图中∠ACB=90°,CD⊥AB,垂足为D.指出∠A和∠B的对边、邻边.
A
B
C
D
(1) tanA =
=
AC
( )
CD
( )
(2) tanB=
=
BC
( )
CD
( )
BC
AD
BD
AC
4.如图,在Rt△ABC中,锐角A的对边和邻边同时扩大100倍,tanA的值( )
A.扩大100倍 B.缩小100倍
C.不变 D.不能确定
A
B
C

C
3.已知∠A,∠B为锐角,
(1)若∠A=∠B,则tanA tanB;
(2)若tanA=tanB,则∠A ∠B.
=
=
求 tan30°,tan60°的值.
从而 AC2=AB2-BC2=(2BC)2-BC2=3BC2.
解:
如图,构造一个Rt△ABC,使∠C=90°,∠A=30°,
于是 BC = AB , ∠B=60°.
由此得出 AC = BC.
因此  
因此
合作探究
说一说tan 45°的值
tan45°=1
30°、45°、60°角的正弦值、余弦值和正切值如下表:
锐角a 三角 函数 30° 45° 60°
sin a
cos a
tan a
归纳:
1
  对于一般锐角α(30°,45°,60°除外)的正切值,
我们也可用计算器来求.
用计算器求锐角的正切值或根据正切值求角

  例如求25°角的正切值,可以在计算器上依次按键      ,显示结果为0.4663…  
  如果已知正切值,我们也可以利用计算
器求出它的对应锐角.
  例如,已知tanα=0.8391,依次按键
,显示结果为
40.000…,表示角α约等于40°.
总结归纳
从正弦、余弦、正切的定义看到,任意给定一个锐角α,都有唯一确定的比值sinα(或cosα,tanα)与它对应,并且我们还知道,当锐角α变化时,它的比值sinα (或cosα,tanα)也随之变化. 因此我们把锐角α的正弦、余弦和正切统称为角α的锐角三角函数.
定义中应该注意的几个问题:
1.sinA,cosA,tanA是在直角三角形中定义的,∠A是锐角(注意数形结合,构造直角三角形).
2.sinA,cosA,tanA是一个完整的符号,分别表示∠A的正弦,余弦,正切 (习惯省去“∠”号).
3.sinA,cosA,tanA 是一个比值.注意比的顺序.且sinA,cosA,tanA均﹥0,无单位.
4.sinA,cosA,tanA的大小只与∠A的大小有关,而与直角三角形的边长无关.
5.角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等.
例2 求下列各式的值:
提示:cos260°表示(cos60°)2,即
(cos60°)×(cos60°).
解:cos260°+sin260°
典例精析
(1) cos260°+sin260°;
(2)
解:
练一练
计算:
(1) sin30°+ cos45°;
解:原式 =
(2) sin230°+ cos230°-tan45°.
解:原式 =
例3 已知 △ABC 中的 ∠A 与 ∠B 满足 (1-tanA)2 +|sinB- |=0,试判断 △ABC 的形状.
解:∵ (1-tanA)2 + | sinB- |=0,
∴ tanA=1,sinB=
∴ ∠A=45°,∠B=60°,
∠C=180°-45°-60°=75°,
∴ △ABC 是锐角三角形.
练一练
1. 已知:| tanB- | + (2 sinA- )2 =0,求∠A,∠B的度数.
解:∵ | tanB- | + (2 sinA- )2 =0,
∴ tanB= ,sinA=
∴ ∠B=60°,∠A=60°.
2. 已知 α 为锐角,且 tanα 是方程 x2 + 2x -3 = 0 的一
个根,求 2 sin2α + cos2α - tan (α+15°)的值.
解:解方程 x2 + 2x - 3 = 0,得 x1 = 1,x2 = -3.
∵ tanα >0,∴ tanα =1,∴ α = 45°.
∴ 2 sin2α + cos2α - tan (α+15°)
= 2 sin245°+cos245°- tan60°
B
C
A
(1)在Rt△ABC中∠C=90°,BC=5,
AC=12,tanA=( ).
(2)在Rt△ABC中∠C=90°,BC=5,
AB=13,tanA=( ),tanB=( ).
(3)在Rt△ABC中∠C=90°,BC=5,tanA= ,
AC=( ).
1.完成下列填空:
2.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA= ( )
A. B.
C. D.
D
这个图呢?
C
A
B
C
A
B
3.如图,P是 的边 OA 上一点,点 P的坐标为
,则 =__________.
M
记得构造直角三角形哦!
O
P(12,5)
A
x
y
5.在等腰△ABC中, AB=AC=13, BC=10,求tanB.
提示:过点A作AD垂直于BC于点D.
求锐角三角函数时,勾股定理的运用是很重要的.
A
C
B

D
解:如图,过点A作AD⊥BC于点D,
∴在Rt△ABD中,
易知BD=5,AD=12.
6.在Rt△ABC中,∠C=90°, AB=15,tanA= ,求AC和BC.
4k

A
C
B
15
3k
7. 如图,在Rt△ABC中,∠C=90°,AB =10,BC=6,求sinA、cosA、tanA的值.
解:∵
又∵
A
B
C
6
10
变式1:如图,在Rt△ABC中,∠C=90°,
cosA= ,求sinA、tanA的值.
解:∵
A
B
C
设AC=15k,则AB=17k
所以

变式2:如图,在Rt△ABC中,∠C=90°,AC=8,tanA= ,求sinA、cosB的值.
A
B
C
8
解:∵
如图,在平面直角坐标系中,P(x,y)是第一象限内直线y=-x+6上的点, 点A(5,0),O是坐标原点,△PAO 的面积为S.
(1)求S与x的函数关系式;
(2)当S=10时,求tan∠PAO 的值.
M
能力提升
解:(1)过点P作PM⊥OA于点M,
(2)当S=10时,求tan∠PAO 的值.
M
解:
又∵点P在直线y=-x+6上,
∴x=2.
∴AM=OA-OM=5-2=3.
正切
正切的概念:在直角三角形中,锐角α的对边与邻边的比叫做角α的正切
正弦的性质:α确定的情况下,tanα为定值,与三角形的大小无关
用计算器解决正切问题
正切
定义
∠A越大,tanA越大,
梯子越陡
与梯子倾斜程度的关系
谢谢观看