中小学教育资源及组卷应用平台
第二十一章《一元二次方程》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一.选择题(共10小题,每题3分,共30分)
1.下列方程中,一元二次方程共有( )个.
①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.
A.1 B.2 C.3 D.4
2.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则( )
A.m=±2 B.m=2 C.m=﹣2 D.m≠±2
3.把一元二次方程2x(x﹣1)=(x﹣3)+4化成一般式之后,其二次项系数与一次项分别是( )
A.2,﹣3 B.﹣2,﹣3 C.2,﹣3x D.﹣2,﹣3x
4.若关于x的一元二次方程x2+5x+m2﹣1=0的常数项为0,则m等于( )
A.1 B.2 C.1或﹣1 D.0
5.若方程x2﹣5x﹣1=0的两根为x1、x2,则+的值为( )
A.5 B. C.﹣5 D.
6. 已知(m2+n2)(m2+n2+2)-8=0,则m2+n2的值为( )
A. -4或2 B .-2或4 C. 4 D. 2
7.已知三角形的两边长为4和5,第三边的长是方程x2﹣5x+6=0的一个根,则这个三角形的周长是( )
A.11 B.12 C.11或12 D.15
8.用配方法解下列方程时,配方有错误的是( )
A.化为 B.化为
C.化为 D.化为
9.关于x的一元二次方程的两个实数根分别为,且,,则m的取值范围是( )
A. B.且 C. D.且
10.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为,根据题意列方程为( ).
A. B.
C. D.
二、填空题(每题3分,共24分)
11.已知,是方程的两个实数根,则的值为__________.
12.若,是一元二次方程的两根,则__________.
13.已知m2-2m-1=0,n2-2n-1=0且mn,则的值为____.
14.已知三角形两边的长分别是2和3,第三边的长是方程x2-4x+3=0的一个根,则这个三角形的周长为____________.
15.已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根为x1,x2,使得x1x2﹣x12﹣x22=﹣16成立,则k的值 .
16.如果m、n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,那么代数式2n2﹣mn+2m+2021= .
17.若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,则符合条件的一个方程为 .
18.如图2,在一块长32米、宽20米的矩形地面上修建三条入口宽度相等的小路,每条小路的两边是互相平行的,且其中一条小路与矩形地面的一边平行.若使剩余部分的面积为570平方米,则小路的入口宽度为 _________.
图2
三.解答题(共46分,19题6分,20 ---24题8分)
19.解方程:
(1)x2+2x﹣3=0; (2)2(5x﹣1)2=5(5x﹣1);
(3)(x+3)2﹣(2x﹣3)2=0; (4)3x2﹣4x﹣1=0.
20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.
21.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.
22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.
23.如图3,某小区有一块长为22.5 m,宽为18 m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为270 m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?
图3
24.疫情期间,小颖在家制作一种工艺品,并通过网络进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该工艺品60件,且每件的售价每降低1元,就会多售出3件.若每件工艺品需要19元成本,设该工艺品的售价为x元/件(19≤x≤40).
(1)请用含x的代数式填空:
①销售每件工艺品的利润为________元;
②每天能售出该工艺品的件数为________.
(2)为了支持抗疫行动,小颖决定每销售一件该工艺品便通过网络平台自动向医疗基金会捐款1元,若每天销售该工艺品的纯利润为900元,求该工艺品的售价.
参考答案与试题解析
选择题(共10小题)
题号 1 2 3 4 5 6 7 8 9 10
答案 B B C C C B B C B C
二.填空题(共8小题)
11.5
解:∵,是方程的两个实数根,
∴,,
∴,
∴;故答案为:5.
12.
解:∵a,b为一元二次方程的两根,
∴,即,a+b=2020,
则原式=(a2-2020a)﹣(a+b)=2021﹣2020=1.
故答案为:1.
13.-6
解:根据题意得,是一元二次方程的两个不相等的实数根,
∴,
∴
故答案为:-6.
14.8
解:由题可知:
.
不成立,
由三角形的三边关系可知它的第三边长为3,
三角形周长为2+3+3=8.
故答案为:8.
15.解:∵关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根,
∴△=(2k+1)2﹣4(k2+2k)≥0,
解得k≤,
由根与系数的关系得x1+x2=2k+1,x1x2=k2+2k,
∵x1x2﹣x12﹣x22=﹣16.
∴x1x2﹣[(x1+x2)2﹣2x1x2]=﹣16,
即﹣(x1+x2)2+3x1 x2=﹣16,
∴﹣(2k+1)2+3(k2+2k)=﹣16,
整理得k2﹣2k﹣15=0,
解得k1=5(舍去),k2=﹣3.
∴k=﹣3,
故答案为﹣3.
16.解:由题意可知:m,n是两个不相等的实数,且满足m2﹣m=3,n2﹣n=3,
所以m,n是x2﹣x﹣3=0的两个不相等的实数根,
则根据根与系数的关系可知:m+n=1,mn=﹣3,
又n2=n+3,
则2n2﹣mn+2m+2021
=2(n+3)﹣mn+2m+2021
=2n+6﹣mn+2m+2021
=2(m+n)﹣mn+2027
=2×1﹣(﹣3)+2027
=2+3+2027
=2032.
故答案为:2032.
17.解:∵若一元二次方程x2+bx+c=0(b,c为常数)的两根x1,x2满足﹣3<x1<﹣1,1<x2<3,
∴满足条件的方程可以为:x2﹣2=0(答案不唯一),
故答案为:x2﹣2=0(答案不唯一).
18.1米
三.解答题(共7小题)
19.解:(1)分解因式得:(x+3)(x﹣1)=0,
可得x+3=0或x﹣1=0,
解得:x1=﹣3,x2=1;
(2)方程整理得:2(5x﹣1)2﹣5(5x﹣1)=0,
分解因式得:(5x﹣1)[2(5x﹣1)﹣5]=0,
可得5x﹣1=0或10x﹣7=0,
解得:x1=0.2,x2=0.7;
(3)分解因式得:(x+3+2x﹣3)(x+3﹣2x+3)=0,
可得3x=0或﹣x+6=0,
解得:x1=0,x2=6;
(4)这里a=3,b=﹣4,c=﹣1,
∵△=16+12=28>0,
∴x==,
解得:x1=,x2=.
20.解:设方程另一个根为x1,
根据题意得2x1=﹣6,解得x1=﹣3,
即方程的另一个根是﹣3.
21.解:(1)∵方程有两个实数根x1,x2,
∴△=(2k﹣2)2﹣4k2≥0,
解得k≤;
(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,
∵k≤,
∴2k﹣2<0,
又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.
解得k=4(不合题意,舍去)或k=﹣6,
∴k=﹣6.
22.解:当a=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+b=12,
∴b=8,
而4+4≠0,不符合题意;
当b=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+a=12,
而4+4=8,不符合题意;
当a=b时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴12=a+b,解得a=b=6,
∴m+2=36,
∴m=34.
23.解:设人行通道的宽度为x m,则两块矩形绿地合在一起组成的矩形的相邻两边长分别为(22.5-3x)m,(18-2x)m.
依题意,得(22.5-3x)(18-2x)=270,
整理,得2x2-33x+45=0,
解得x1=1.5,x2=15.
当x=15时,22.5-3x=-22.5<0,不合题意,舍去.故x=1.5.
答:人行通道的宽度为1.5 m.
24.解:(1)①(x-19)
②∵当售价是40元/件时,每天可售出该工艺品60件,且每件的售价每降低1元,就会多售出3件,该工艺品的售价为x元/件,
∴每天能售出该工艺品60+3(40-x)=(180-3x)件.
故答案为180-3x.
(2)依题意,得(x-19-1)(180-3x)=900,
整理,得x2-80x+1500=0,
解得x1=30,x2=50.
又∵19≤x≤40,
∴x2=50不符合题意,舍去.
答:该工艺品的售价为30元/件.