课件10张PPT。 分式方程一 教学目标 1.使学生掌握可化为一元二次方程的分式方程的解法,能用去 分母的方法或换元的方法求此类方程的解,并会验根;
2.通过本节课的教学,向学生渗透“转化”的数学思想方法; 3.通过本节的教学,继续向学生渗透事物是相互联系及相互转化的辨证唯物主义观点.
二 重点、难点、疑点及解决办法 1.教学重点:可化为一元二次方程的分式方程的解法.
2.教学难点:解分式方程,学生不容易理解为什么必须进行检验.
3. 教学疑点:学生容易忽视对分式方程的解进行检验通过对分式方程的解的剖析,进一步使学生认识解分式方程必须进行检验的重要性.
4.解决办法:(l)分式方程的解法顺序是:先特殊、后一般,即能用换元法的方程应尽量用换元法解.(2)无论用去分母法解,还是换元法解分式方程,都必须进行验根,验根是解分式方程必不可少的一个重要步骤.(3)方程的增根具备两个特点,①它是由分式方程所转化成的整式方程的根②它能使原分式方程的公分母为0.
三、教学过程
1.复习提问 (1)什么叫做分式方程?解可化为一元一次方程的分式方程的方法与步骤是什么? (2)解可化为一元一次方程的分式方程为什么要检验?检验的方法是什么? 2.例题讲解
分析 对于此方程的解法,不是教师讲如何如何解,而是让学生 对已有知识的回忆,使用原来的方法,去通过试的手段来解决, 在学生叙述过程中,发现问题并及时纠正.
去括号,得整理,得解这个方程,得
检验:把 代入 ,所以 是原方程的根. ∴ 原方程的根是
把代入代入
整理后,得 解这个方程,得 检验: ,它不等于0,所以 是原方程的根,把 它等于0,所以
是增 根. 解:设 ,那么 ,于是原方程变形为:
两边都乘以y,得
解得
.
当时,,去分母,得 解得: 当时,,去分母整理,得
检验: 把分别代入原方程的分母, 各分母均不等于0.
∴ 原方程的根是
此题在解题过程中,经过两次“转化”,所以在检验中,把所得的未知数的值代入原方程中的分母进行检验.
巩固练习:教材P49中1、2引导学笔答.
四、总结、扩展 对于小结,教师应引导学生做出.
本节内容的小结应从所学习的知识内容、所学知识采用了什么数学思想及教学方法两方面进行.
本节我们通过类比的方法,在已有的解可化为一元一次方程的分式方程的基础上,学习了可化为一元二次方程的分式方程的解法,在具体方程的解法上,适用了“转化”与“换元”的基本数学思想与基本数学方法.
此小结的目的,使学生能利用“类比”的方法,使学过的知识系统化、网络化,形成认知结构,便于学生掌握.
五、布置作业