人教版数学八上 13.1.1轴对称 (二) 教案

文档属性

名称 人教版数学八上 13.1.1轴对称 (二) 教案
格式 zip
文件大小 109.2KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2022-10-26 13:25:12

图片预览

文档简介

§13.1.1轴对称(二)
教学目标
〔知识与技能〕
1.了解两个图形成轴对称性的性质,了解轴对称图形的性质.
2.探究线段垂直平分线的性质.
〔过程与方法〕
1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力.
〔情感、态度与价值观〕
1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识.
教学重点:
轴对称的性质,线段垂直平分线的性质
教学难点 :
1.轴对称的性质. 2.线段垂直平分线的性质.3.体验轴对称的特征.
教具准备:圆规、三角尺、
教学过程
一.创设情境,引入新课
1.什么样的图形是轴对称图形呢?
2.轴对称图形有哪些性质,从图形中能得到结论?
二.导入新课
1.如下图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C对称点,线段AA′、BB′、CC′与直线MN有什么关系?为什么?(学生思考并做小范围讨论)
对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
2.画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系.
3.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.
归纳图形轴对称的性质:
如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.
下面我们来探究线段垂直平分线的性质.
[探究1]如下图.木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,…是L
上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?
证法一:利用判定两个三角形全等.
如下图,在△APC和△BPC中,
△APC≌△BPC PA=PB.
证法二:利用轴对称性质.
由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,因此它们也是相等的.
带着探究1的结论我们来看下面的问题.
[探究2]
如下图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?
探究结论:
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.
三.随堂练习 课本P34练习
1.如下图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB、AC、CE的长度有什么关系?AB+BD与DE有什么关系?
2.如下图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗? 四.课时小结:
这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.
五.课后作业课本习题13.1 p65 、3、4、9题.
六.教学反思:教学时首先为学生展示彩色图片,为学生创设优美的学习情境,紧接着展示学生从生活中搜集的轴对称图形,根据学生好动、好奇、好问的心理特征,设置悬念:它很漂亮、美观吗?你能设计制作出如此漂亮的亭子吗?激发学生的求知欲望,让每个学生都进行积极的思维参与.