高中数学必修第一册人教A版(2019)《等式性质与不等式性质》教材分析

文档属性

名称 高中数学必修第一册人教A版(2019)《等式性质与不等式性质》教材分析
格式 docx
文件大小 105.6KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-10-28 21:09:10

图片预览

文档简介

2.1等式性质与不等式性质
一、本节知识结构框图
二、重点、难点
重点:不等式的基本性质,等式与不等式的共性与差异.
难点:类比等式的基本性质及其蕴含的思想方法,研究不等式的基本性质;等式与不等式的共性与差异.
三、教科书编写意图及教学建议
在初中,学生学习了用含有未知数的等式(方程)表示问题中的相等关系,为了解方程研究了等式的一些基本性质,本节在初中等式学习的基础上,类比等式的学习内容和方法,展开不等式的研究,首先类比用等式表示相等关系,用不等式表示问题中的不等关系;然后在对等式的基本性质进行梳理,归纳其中蕴含的数学思想方法的基础上,研究不等式的性质,并用不等式的性质证明简单命题,通过本节的学习,掌握不等式的性质,提高对等式和不等式的共性与差异的理解,加深对“代数性质”的认识,提高提出问题和解决问题的能力.
1.相等关系与不等关系
教科书从现实世界和日常生活中存在的相等关系、不等关系讲起,类比用等式表示相等关系,用问题1的4个例题说明了如何用不等式或不等式组表示实际问题或数学问题中蕴含的不等关系.与用等式表示相等关系类似,用不等式表示不等关系的关键也是确定问题中涉及的量及其满足的不等关系,然后用未知数表示量,把不等关系“翻译”成不等式.与用等式表示相等关系不同的是,有时用自然语言表达的不等关系不够明确,例如“不少于”“不低于”“至多”“至少”等,需要先把它们翻译成大于或小于的关系,再用不等式表示.
关于问题2,要解决这个问题,需要用不等式表示其中的不等关系,还需要求不等式的解集.而如何解这个不等式呢,教科书提出“与解方程要用等式的性质一样,解不等式要用不等式的性质”,这就引出了对不等式性质的研究.接下来,教科书没有立即开始研究不等式的性质,而是先讨论了确定两个实数大小关系的方法.在初中,学生学过了实数的大小关系是由这两个实数在数轴上的点的位置关系规定的,这可以看成确定实数之间大小关系的几何规则.这个规则尽管直观,但在比较两个实数的大小关系时并不实用,因此这里介绍了一种代数方法——两个实数大小关系的基本事实.这个基本事实把两个实数的大小关系转化为它们的差与0的大小关系,实际上就是两个实数差的符号,从而使实数的运算能够参与到实数的大小比较中,为不等式的论证提供了运算工具,也为研究不等式的性质奠定了基础.
在本部分内容的最后,作为对相等关系和不等关系的总结,也为了引出基本不等式,教科书设计了一个探究栏目,让学生在第24届国际数学家大会的会标中发现相等关系和不等关系.这个会标实际上就是“赵爽弦图”——由4个全等的直角三角形围成一个大正方形,中空的部分是一个小正方形,由于大正方形的面积大于4个直角三角形的面积和,即(设直角三角形的两条直角边的长为,()),而当直角三角形变为等腰直角三角形,即时,中空部分缩为一个点,这时有相等关系.这样,就引出了基本不等式的一种变形形式.在上述过程中,学生的困难在于想不到从面积的角度发现不等关系,教学中应加强引导.接下来,教科书利用完全平方公式和两个实数大小关系的基本事实证明了上述不等式,这既体现了数学知识之间的联系,又再一次说明了两个实数大小关系的基本事实在解决不等式问题中的应用价值.
2,等式性质与不等式性质
教科书类比等式的基本性质,研究了不等式的基本性质及其证明和应用.为了帮助学生从等式的性质及其研究方法中获得启发,去研究不等式的性质,教科书设计了两个问题(教科书第40页的思考栏目和探究栏目).通过这两个问题,让学生在梳理并观察等式的基本性质的基础上认识到,这些性质包括在数学推理和运算中经常用到的“对称性”和“传递性”,还包括解方程所需要的等式对四则运算的不变性,而这两个方面反映了“式的大小关系”的本质属性,这些基本属性为探究不等式的基本性质指明了方向.
学生在猜想不等式的基本性质的过程中会发现,不等式的基本性质与等式的基本性质存在差异:就不等式自身的特性而言,不等式不具有“对称性”,而是具有“相反性”,即,;就不等式与四则运算的关系而言,当乘一个负数时,不等号要调换方向,即,.
不等式的这种特殊性是由实数的基本性质决定的,在对不等式进行论证时,除了要用到实数大小关系的基本事实,还需要用到关于实数的其他一些基本事实,例如:
(1)正数大于0,也大于一切负数;负数小于0,也小于一切正数.
(2)正数的相反数是负数,负数的相反数是正数.
(3)两个正数的和仍是正数,两个负数的和仍是负数.
(4)同号两数相乘,其积为正数;异号两数相乘,其积为负数.
利用这些基本事实,可以对猜想出的不等式的基本性质进行证明.
在表述不等式的基本性质时,教科书也做了一些改变.不等式的性质3是类比等式的性质3得到的,性质4是类比等式的性质4,5得到的,在表述它们时,教科书把加法和减法合并为“加法”,把乘法和除法合并为“乘法”,这也表明高中数学对运算的认识更趋于一般性.此外,考虑到对于同一个数学对象的多元联系表示,有利于加深学生对它的理解,教科书从不同角度表述了不等式的性质,例如对于性质3和性质4使用了自然语言叙述,对于性质3还用数轴上的实数点展现了不等式包含的动态过程及结果.教学中可以让学生用自然语言或图形语言表述其他不等式的性质.
在得到并证明了不等式的基本性质之后,教科书用这些基本性质,推导出了其他一些常用的不等式的性质(性质5~7),这些性质可以作为结论在今后的推理中使用.另外,证明这些性质的过程可以看作不等式的性质在代数证明中的初步应用.证明的关键是利用不等式的基本性质,对给定的不等式进行结构上的变形,例如“不等式两边同加一个数”“不等式两边同乘一个数”等,逐步把给定的不等式变形为要证明的不等式.正确地运用不等式的性质对不等式进行变形对学生来说有一定的难度,教学中可以通过让学生多练习、纠正其典型错误等方式逐步帮助学生掌握正确的方法.
在本部分内容的最后,教科书安排了一道例题(例2),向学生示范了应用不等式的性质证明命题的一般思路,这个命题的证明比不等式的性质5~7的证明要复杂一些,因为已知条件与结论之间的联系不够明显,证明中需要对已知不等式做什么变形不太明确,对于这样的问题,教科书在“分析”中给出了证明的一般思路:从结论出发,结合已知条件,寻求使当前命题成立的充分条件,而这个充分条件是容易由已知条件证明的,这实际上是综合运用“综合法”和“分析法”证明命题的思路,但因为教科书没有专门介绍证明方法,所以本例的证明过程采用了学生更熟悉的“综合法”的格式,教师在教学中可以补充一些典型题目,引导学生领会这种“发展条件、转化结论、寻求联系”的证明较复杂命题的一般思路.