高一数学人教B版(2019)必修一 不等式的解集 分层练习(有答案)

文档属性

名称 高一数学人教B版(2019)必修一 不等式的解集 分层练习(有答案)
格式 zip
文件大小 34.9KB
资源类型 教案
版本资源 人教B版(2019)
科目 数学
更新时间 2022-10-28 21:51:22

图片预览

文档简介

必修一 不等式的解集 分层练习
基础练
1.不等式组的解集是(  )
A.{x|x>1} B.{x|1C.{x|x<2} D.{x|x<1或x>2}
2.不等式2<|2x+3|≤4的解集为(  )
A.{x|-B.{x|-C.{x|-≤x<-或-D.{x|-≤x≤-或-3.平流层是指地球表面以上10 km到50 km的区域,下述不等式中,x能表示平流层高度的是(  )
A.|x+10|<50 B.|x-10|<50
C.|x+30|<20 D.|x-30|<20
4.数轴上点A(-2),B(4),C(x),则线段AB的中点D的坐标为________,若点D到C的距离大于2,则x的取值范围为________.
5.不等式≥1的实数解为____________.
6.求不等式|2x-1|+|2x+3|≤9的解集.
关键能力综合练
7.已知关于x的不等式组的解集是[1,3),则a=(  )
A.1 B.2
C.0 D.-1
8.若不等式无解,则实数m的取值范围是(  )
A.(-∞,2] B.[2,+∞)
C.(-∞,2) D.(2,+∞)
9.(多选)若不等式|x-a|<1成立的充分不必要条件是A.-  B. C.   D.0
10.对任意实数x,若不等式|x+1|-|x-2|>k恒成立,则k的取值范围为(  )
A.(-∞,3) B.(-∞,-3)
C.(1,3] D.(-∞,-3]
11.对于任意实数x,不等式|x+7|≥m+2恒成立,则实数m的取值范围是________.
12.已知关于x的不等式组
(1)当m=-11时,求不等式组的解集;
(2)当m取何值时,该不等式组的解集是 ?
核心素养升级练
13.我们把称作二阶行列式,规定它的运算法则为=ad-bc,例如=1×4-2×3=-2.如果>0,则其解集是(  )
A.{x|x>1} B.{x|x<-1}
C.{x|x>3} D.{x|x<-3}
14.设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R},若A B,则实数a,b应满足什么关系?
参考答案
基础练
1.解析:解①得x>1,解②得x<2,所以不等式组的解集是{x|1答案:B
2.解析:由2<|2x+3|≤4,可得2<2x+3≤4或-4≤2x+3<-2.解得-<x≤或-≤x<-.
答案:C
3.解析:由题意知10答案:D
4.解析:点D的坐标为=1,DC=|x-1|>2,所以x>3或x<-1.
答案:D(1) (-∞,-1)∪(3,+∞)
5.解析:≥1 |x+1|≥|x+2|,且x+2≠0,所以x≤-且x≠-2.
答案:{x|x≤-且x≠-2}
6.解析:原不等式等价于


解得所以不等式的解集为{x|-≤x≤}.
关键能力综合练
7.解析:由x-3(x-2)≤4解得x≥1,由>x-1解得x答案:C
8.解析:由①得,x2.又因为不等式组无解,所以m≤2.
答案:A
9.解析:由|x-a|<1可得a-1解得-≤a≤.
答案:BCD
10.解析:|x+1|,|x-2|的几何意义分别为数轴上的点X到表示-1和2的点的距离,|x+1|-|x-2|的几何意义为两距离之差,由图可得其最小值为-3,故选B.
答案:B
11.解析:令y=|x+7|,要使任意x∈R,|x+7|≥m+2恒成立,只需m+2≤ymin,因为ymin=0,所以m+2≤0,
所以m≤-2,所以m的取值范围是(-∞,-2].
答案:(-∞,-2]
12.解析:(1)当m=-11时,
解该不等式组的解集为(-4,-).
(2)解不等式m-2x.
因为不等式组的解集为 ,
所以≥-,所以m≥-.
核心素养升级练
13.解析:根据题意得2x-(3-x)>0,整理得3x>3,解得x>1.
答案:A
14.解析:由|x-a|<1,得a-1由|x-b|>2,得xb+2.
因为A B,所以a-1≥b+2或a+1≤b-2,
即a-b≥3或a-b≤-3,所以|a-b|≥3.