八年级数学勾股定理试题[下学期]

文档属性

名称 八年级数学勾股定理试题[下学期]
格式 rar
文件大小 105.3KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2006-04-15 08:30:00

图片预览

文档简介

第十九章 勾股定理单元测试
仔细读题,一定要选择最佳答案哟!
1. 下列说法正确的是(  )
A.若 a、b、c是△ABC的三边,则a2+b2=c2
B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2
C.若 a、b、c是Rt△ABC的三边,,则a2+b2=c2
D.若 a、b、c是Rt△ABC的三边,,则a2+b2=c2
2. △ABC的三条边长分别是、、,则下列各式成立的是(  )
A.  B.   C.   D.
3.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )
A.斜边长为25 B.三角形周长为25
C.斜边长为5 D.三角形面积为20
4.已知直角三角形中30°角所对的直角边长是cm,则另一条直角边的长是( )
A. 4cm B. cm C. 6cm D. cm
5.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为(   )
A.42 B.32 C.42 或 32 D.37 或 33
6.一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动(  )
  A. 9分米    B. 15分米    C. 5分米     D. 8分米
7. 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )
A. 0 B. 1 C. 2 D. 3
8. 如图所示,在△ABC中,三边a,b,c的大小关系是( )
A.a<b<c B. c<a<b C. c<b<a D. b<a<c
9. 分别以下列四组数为一个三角形的边长:(1)3,4,5;(2)5,12,13;(3)8,15,17;(4)4,5,6.其中能构成直角三角形的有( )
A.4组 B.3组 C.2组 D.1组
10. 三角形的三边长分别为 a2+b2、2ab、a2-b2(a、b都是正整数),则这个三角形是()
A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定
11.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )
A.1倍 B. 2倍 C. 3倍 D. 4倍
12. 下列各命题的逆命题不成立的是( )
A.两直线平行,同旁内角互补 B.若两个数的绝对值相等,则这两个数也相等
C.对顶角相等 D.如果a=b,那么a2=b2
13.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
A B C D
14. 如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )
A.7,24,25 B.3,4,5 C.3,4,5 D.4,7,8
15.在下列说法中是错误的( )
A.在△ABC中,∠C=∠A一∠B,则△ABC为直角三角形.
B.在△ABC中,若∠A:∠B:∠C=5:2:3,则△ABC为直角三角形.
C.在△ABC中,若a=c,b=c,则△ABC为直角三角形.
D.在△ABC中,若a:b:c=2:2:4,则△ABC为直角三角形.
16. 有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )
A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,12
二.认真填空
17.在中, ,
(1)如果a=3,b=4,则c=    ;
(2)如果a=6,b=8,则c=    ;
(3)如果a=5,b=12,则c=    ;
(4) 如果a=15,b=20,则c=    .
18.如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________.
19.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数 , , .
20.若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为 .
21.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为 .
综合运用
认真解答,一定要细心哟!
22. 如图所示的一块地,已知AD=4m,CD=3m, AD⊥DC,AB=13m,BC=12m,求这块地的面积.
23. 一个零件的形状如左图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?
24. 如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=BC,F为CD的中点,连接AF、AE,问△AEF是什么三角形?请说明理由.
25.如图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请在图中画出这样的线段,并选择其中的一个说明这样画的道理.
26.有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.
27.已知长方体的长为2cm、宽为1cm、高为4cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少

拓广创新
试一试,你一定能成功哟!
28. 勾股数又称商高数,它有无数组,是有一定规律的.比如有一组求勾股数的式子:a=m2-n2,b=2mn,c=m2+n2(其中m,n为正整数,且m>n).你能验证它吗?利用这组式子,完成下表,通过表格,你会发现勾股数有哪些规律?请查阅有关资料,相信你将有更多收获.
1 2 3 4 5 6 …
2
3
4
5
6
… … … … … … … …
29.如图,在△ABC中,∠ACB=90 ,AC=BC,P是△ABC内的一点,且PB=1,PC=2,PA=3,求∠BPC的度数.
答案:
1.D 2.B 3.C 4.C 5.C 6.D 7.C 8.B 9.B 10.A 11.B 12.C 13.C 14.B 15.D 16.C 17.5; 10; 13; 25 18.169 19.5,12,13; 8,15,17; 11,60,61(此题答案不唯一)
20.3或 21.120cm2 22.24m2 23.符合 24.由勾股定理得AE2=25,EF2=5,AF2=20,∵AE2= EF2 +AF2,∴△AEF是直角三角形 .25.略 26.7.5尺 27.分三种情况讨论,最短距离是5cm
28.略 29.如图,将△APC绕点C旋转,使CA与CB重合,即△APC≌△BEC,∴△PCE为等腰Rt△,∴∠CPE=45°,PE2=PC2+CE2=8. 又∵PB2=1,BE2=9,∴PE2+ PB2= BE2,则∠BPE=90°,∴∠BPC=135°.
S3
S2
S1
第18题图
第29题图
E
B
P
C
A
第8题图
第 7题图
A
D
C
B
F
E
A
C
B
D



n
m
A

A
B
C
D



C
P
B