4.2.1对的运算性质
新课导入
10000=104 ? ????????104=4
1000=103 ? lg103=3
10000×1000=107 ? ????????107=7
?
104×103=107?lg107=7=4+3=????????104+????????103
?
观察下面的运算,能发现什么规律?
新知探究
104×103=107?lg107=7=4+3=????????104+????????103
?
能否从指数运算????????·????????得到相应的对数运算?
?
新知探究
设M=???????? ; N=???????? 则 m=????????????????????; ????=????????????????????
又????????·????????=????????+???? =????????? 所以 m+n=????????????????(????????)
即????????????????(????????)=m+n=????????????????????+????????????????????
?
新知探究
思考:类似地能否从指数运算????????÷????????得到相应的对数运算?
?
新知探究
思考:类似地能否从指数运算????????÷????????得到相应的对数运算?
?
????????????????????????=?????????????????????????????????????????.
?
新知探究
再思考:由(????????)????=????????????能得到相应的对数运算吗?
?
新知探究
再思考:由(????????)????=????????????能得到相应的对数运算吗?
?
????????????????????????=????????????????????????
?
对数的运算性质
设????>????,且????≠????,????>????,????>????,则
?
?????????????????????????=????????????????????+????????????????????
????????????????????????=?????????????????????????????????????????
????????????????????????=????????????????????????
?
学以致用
例1 计算:
(1)log264×512; (2)lg0.0001; (3)log3581.
?
学以致用
例1 计算:
(1)log264×512; (2)lg0.0001; (3)log3581.
?
解:(1)?log264×512=log264+log2512=6+9=15;
(2)?lg0.0001=lg10?4=?4lg10=?4;
(3)?log3581=log3345=45log33=45.
?
针对练习
练习1:计算
(1)log264×16; (2)log39×27; (3)log1215122; (4)log336?log312; (5)log759+log7935; (6)lg20+lg5.
?
针对练习
练习1:计算
(1)log264×16; (2)log39×27; (3)log1215122; (4)log336?log312; (5)log759+log7935; (6)lg20+lg5.
?
解:(1)log264×16=log264+log216=log226+log224
=6log22+4log22=6+4=10;
(2)log3(9×27)=log39+log327=log332+log333
=2log33+3log33=2+3=5;
(3)log12(1512)2=log12(129)2=log12(12)18=18log1212=18;
?
针对练习
练习1:计算
(1)log264×16; (2)log39×27; (3)log1215122; (4)log336?log312; (5)log759+log7935; (6)lg20+lg5.
?
解:(4)log336?log312=log34×9?log33×4
=log34+log39?log33+log34=log332?log33=1;
(5)log759+log7935=(log75?log79)+(log79?log735)
=log75?log79+log79?log77?log75
=?log77=?1;
(6)lg20+lg5=lg(20×5)=lg102=2.
?
15
方法小结
16
学以致用
17
18
19
20
21
学以致用
例3 已知log23=????,log25=????,用????,????表示下列各数的值:
(1)log230;(2)log259;(3)log231520.
?
学以致用
例3 已知log23=????,log25=????,用????,????表示下列各数的值:
(1)log230;(2)log259;(3)log231520.
?
解:(1)log230=log22×3×5=log22+log23+log25=1+????+????;
(2)log259=log25?log29=log25?log232
=log25?2log23=?????2????;
(3)log231520=log21513?log22012=13log215?12log220
=13log23+log25?12log24+log25=????3?????6?1.
?
针对练习
练习3:用lg ????,lg ????,lg ????表示下列各式:
(1)lg????????????; (2)lg????2????????3; (3)lg????2????????3; (4)lg?????12????????23.
?
针对练习
练习3:用lg ????,lg ????,lg ????表示下列各式:
(1)lg????????????; (2)lg????2????????3; (3)lg????2????????3; (4)lg?????12????????23.
?
解:(1)lg????????????=lg ????+lg ????+lg ????;
(2)lg????2????????3=lg ????2+lg ????+lg ????3=2lg ????+lg ????+3lg ????;
(3)lg????2????????3=lg ????2+lg ?????lg ????3=2lg ????+lg ?????3lg ????;
(4)lg?????12????????23=lg ?????12+lg ????+lg ????23=?12lg ????+lg ????+23lg ????.
?
课堂小结
一 对数的运算性质
log?????????????=log????????+log????????;
log????????????=log?????????log????????;
log????????????=nlog????????;
二 对数综合运算的化简思路
?
1.计算下列各式:
(1)lg 14?2lg 73+lg 7?lg 18; (2)lg27+lg8?3lg10lg1.2;
(3)lg52+23lg8+lg5·lg20+(lg2)2.
?
课后作业
1.计算下列各式:
(1)lg 14?2lg 73+lg 7?lg 18; (2)lg27+lg8?3lg10lg1.2;
(3)lg52+23lg8+lg5·lg20+(lg2)2.
?
1.计算下列各式:
(1)lg 14?2lg 73+lg 7?lg 18; (2)lg27+lg8?3lg10lg1.2;
(3)lg52+23lg8+lg5·lg20+(lg2)2.
?
解:(2)lg27+lg8?3lg10lg1.2=lg332+lg23?3lg1012lg12?lg10
=32lg3+3lg2?32lg3+lg4?1
=32lg3+2lg2?1lg3+2lg2?1
=32;
?
1.计算下列各式:
(1)lg 14?2lg 73+lg 7?lg 18; (2)lg27+lg8?3lg10lg1.2;
(3)lg52+23lg8+lg5·lg20+(lg2)2.