3.1.1 两角差的余弦公式
一、教学目标
掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
二、教学重、难点
1. 教学重点:通过探索得到两角差的余弦公式;
2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.
三、教学设想:
(一)导入:问题1:
我们在初中时就知道 ,,由此我们能否得到大家可以猜想,是不是等于呢?
根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式
(二)探讨过程:
在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示。
思考1:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)
思考2:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?
(1)结合图形,明确应该选择哪几个向量,它们是怎样表示的?
(2)怎样利用向量的数量积的概念的计算公式得到探索结果?
两角差的余弦公式:
(三)例题讲解
例1、利用和、差角余弦公式求、的值.
解:分析:把、构造成两个特殊角的和、差.
点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.
例2、已知,是第三象限角,求的值.
解:因为,由此得
又因为是第三象限角,所以
所以
点评:注意角、的象限,也就是符号问题.
思考:本题中没有,呢?
(四)练习:1.不查表计算下列各式的值:
解:
2.教材P127面1、2、3、4题
(五)小结:两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.
(1)牢记公式
(2)在“给值求值”题型中,要能灵活处理已、未知关系.
(六)作业:《习案》作业二十九
3.1.2 两角和与差的正弦、余弦、正切公式(一)
一、教学目标
理解以两角差的余弦公式为基础,推导两角和、差正弦和正切公式的方法,体会三角恒等变换特点的过程,理解推导过程,掌握其应用.
二、教学重、难点
1. 教学重点:两角和、差正弦和正切公式的推导过程及运用;
2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.
三、教学设想:
(一)复习式导入:
(1)大家首先回顾一下两角差的余弦公式:.
(2)?
(二)新课讲授
问题:由两角差的余弦公式,怎样得到两角差的正弦公式呢?
探究1、让学生动手完成两角和与差正弦公式.
.
探究2、让学生观察认识两角和与差正弦公式的特征,并思考两角和与差正切公式.(学生动手)
.
探究3、我们能否推倒出两角差的正切公式呢?
探究4、通过什么途径可以把上面的式子化成只含有、的形式呢?
(分式分子、分母同时除以,得到.
注意:
5、将、、称为和角公式,、、称为差角公式。
(三)例题讲解
例1、已知是第四象限角,求的值.
解:因为是第四象限角,得,
,
于是有:
思考:在本题中,,那么对任意角,此等式成立吗?若成立你能否证明?
练习:教材P131面1、2、3、4题
例2、已知求的值.()
例3、利用和(差)角公式计算下列各式的值:
(1)、;(2)、;(3)、.
解:(1)、;
(2)、;
(3)、.
练习:教材P131面5题
(四)小结:本节我们学习了两角和与差正弦、余弦和正切公式,我们要熟记公式,学会灵活运用.
(五)作业:《习案》作业三十。
3.1.2 两角和与差的正弦、余弦、正切公式(二)
一、教学目标
1、理解两角和与差的余弦、正弦和正切公式,体会三角恒等变换特点的过程;
2、掌握两角和与差的余弦、正弦和正切公式的应用及类型的变换。
二、教学重、难点
1. 教学重点:两角和、差正弦和正切公式的运用;
2. 教学难点:两角和与差正弦、余弦和正切公式的灵活运用.
三、教学设想:
(一)复习式导入:(1)基本公式
(2)练习:教材P132面第6题。
思考:怎样求类型?
(二)新课讲授
例1、化简
解:此题与我们所学的两角和与差正弦、余弦和正切公式不相象,但我们能否发现规律呢?
思考:是怎么得到的?
,我们是构造一个叫使它的正、余弦分别等于和的.
归纳:
例2、已知:函数
求的最值。(2)求的周期、单调性。
例3.已知A、B、C为△ABC的三內角,向量,,且,
求角A。(2)若,求tanC的值。
练习:(1)教材P132面7题
(2)在△ABC中,,则△ABC为( )
A.直角三角形 B.钝角三角形 C.锐角三角形 D.等腰三角形
(2) ( )
A. 0 B.2 C. D.
思考:已知,,,求
三、小结:掌握两角和与差的余弦、正弦和正切公式的应用及类型的变换
四、作业:《习案》作业三十一的1、2、3题。
3.1.3 二倍角的正弦、余弦和正切公式
一、教学目标
以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用.
二、教学重、难点
教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式;
教学难点:二倍角的理解及其灵活运用.
三、教学设想:
(一)复习式导入:大家首先回顾一下两角和的正弦、余弦和正切公式,
练习:(1)在△ABC中,,则△ABC为( )
A.直角三角形 B.钝角三角形 C.锐角三角形 D.等腰三角形
(2) ( )
A. 0 B.2 C. D.
思考:已知,,,求
我们由此能否得到的公式呢?(学生自己动手,把上述公式中看成即可),
(二)公式推导:
;
;
思考:把上述关于的式子能否变成只含有或形式的式子呢?
;
.
.
注意:
(三)例题讲解
例1、已知求的值.
解:由得.
又因为.
于是;
;.
例2.在△ABC中,,
例3.已知求的值.
解:,由此得
解得或.
例4.已知
(四)练习:教材P135面1、2、3、4、5题
(五)小结:本节我们学习了二倍角的正弦、余弦和正切公式,我们要熟记公式,在解题过程中要善于发现规律,学会灵活运用.
(六)作业:《习案》作业三十二。
3.2简单的三角恒等变换(一)
一.教学目标
1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力。
2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用。
3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.
二、教学重点与难点
教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.
教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.
三、教学设想:
(一)复习:三角函数的和(差)公式,倍角公式
(二)新课讲授:
1、由二倍角公式引导学生思考:有什么样的关系?
学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.
例1、试以表示.
解:我们可以通过二倍角和来做此题.
因为,可以得到;
因为,可以得到.
又因为.
思考:代数式变换与三角变换有什么不同?
代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.
例2.已知,且在第三象限,求的值。
例3、求证:
(1)、;
(2)、.
证明:(1)因为和是我们所学习过的知识,因此我们从等式右边着手.
;.
两式相加得;
即;
(2)由(1)得①;设,
那么.
把的值代入①式中得.
思考:在例3证明中用到哪些数学思想?
例3证明中用到换元思想,(1)式是积化和差的形式,
(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.
三.练习:P142面1、2、3题。
四.小结:要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.
五.作业:《习案》三十三。
3.2简单的三角恒等变换(二)
一、教学目标
1、通过三角恒等变形,形如的函数转化为的函数;
2、灵活利用公式,通过三角恒等变形,解决函数的最值、周期、单调性等问题。
二、教学重点与难点
重点:三角恒等变形的应用。
难点:三角恒等变形。
三、教学过程
(一)复习:二倍角公式。
(二)典型例题分析
例1: ;.
解:(1)由得
(2)
例2.
解:
.
例3.已知函数
求的最小正周期,(2)当时,求的最小值及取得最小值时的集合.
点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数
的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.
例4.若函数上的最大值为6,求常数m的值及此函数当时的最小值及取得最小值时的集合。
(三)练习:教材P142面第4题。
(四)小结:(1) 二倍角公式:
(2)二倍角变式:
(3)三角变形技巧和代数变形技巧
常见的三角变形技巧有
①切割化弦;
②“1”的变用;
③统一角度,统一函数,统一形式等等.
(五)作业:《习案》作业三十四
3.2简单的三角恒等变换(三)
教学目标
知识与技能目标
熟练掌握三角公式及其变形公式.
过程与能力目标
抓住角、函数式得特点,灵活运用三角公式解决一些实际问题.
情感与态度目标
培养学生观察、分析、解决问题的能力.
教学重点
和、差、倍角公式的灵活应用.
教学难点
如何灵活应用和、差、倍角公式的进行三角式化简、求值、证明.
教学过程
例1:教材P141面例4
例1. 如图,已知OPQ是半径为1,圆心角为的扇形,C是扇形弧上的动点,ABCD是扇形的内接矩形.记∠COP=,求当角取何值时,矩形ABCD的面积最大?并求出这个最大面积.
例2:把一段半径为R的圆木锯成横截面为矩形的木料,怎样锯法能使横截面的面积最大?(分别设边与角为自变量)
解:(1)如图,设矩形长为l,则面积,
所以当且仅当
即时,取得最大值,此时S取得最大值,矩形的宽为
即长、宽相等,矩形为圆内接正方形.
(2)设角为自变量,设对角线与一条边的夹角为,矩形长与宽分别为
、,所以面积.
而,所以,当且仅当时,S取最大值,所以当且仅当即时, S取最大值,此时矩形为内接正方形.
变式:已知半径为1的半圆,PQRS是半圆的内接矩形如图,问P点在什么位置时,矩形的面积最大,并求最大面积时的值.
解:设则
故S四边形PQRS
故为时,
课堂小结
建立函数模型利用三角恒等变换解决实际问题.
课后作业
1. 阅读教材P.139到P.142; 2. 《习案》作业三十五.
第三章 三角恒等变换复习(一)
教学目标:
1. 通过对本章的知识的复习、总结,使学生对本章形成一个知识框架网络.
2. 能灵活运用公式进行求值、证明恒等式.
教学重点:运用公式求值、证明恒等式.
教学难点:证明恒等式
教学过程
一、基础知识复习(略)
二、作业讲评
《习案》作业三十五中的第5、6题.
三、已知三角函数值求三角函数值
四、证明恒等式
五、课堂小结
给值求角时,先要求所求角的某一三角函数值,需结合角的范围确定角的符号;
2. 证明三角恒等式时,要灵活地运用公式.
六、课后作业
教材P.146第8题第(3)、(4)问; P.146第1、2、3题; P.146第4题第(1)、(2)、(3)问; P.147第3题;
第三章 三角恒等变换复习(二)
教学目标:
1. 综合运用知识解决相关问题.
2. 培养学生分析问题,运用知识解决问题的能力.
教学重点:运用知识解决实际问题
教学难点:建立函数关系解决实际问题.
教学过程
一、作业讲评
《习案》作业P.196的第5、6题.
二、例题分析
4. 已知直线l1∥l2,A是l1,l2之间的一定点,并且A点到l1,l2的距离分别为h1,h2 . B是直线l2上一动点,作AC⊥AB,且使AC与直线l1交于点C,求△ABC面积的最小值.
5. 如图,正方形ABCD的边长为1,P,Q分别为边AB,DA上的点.当△ABC的周长为2时,
求∠PCQ的大小.
三、课堂小结
本节主要讲运用公式解决有关问题:最值问题、存在性问题.
四、课后作业
《习案》作业三十六.
第三章 三角恒等变换复习(三)
教学目标:
1. 综合运用知识解决相关问题.
2. 培养学生分析问题,运用知识解决问题的能力.
教学重点:运用知识解决实际问题
教学难点:建立函数关系解决实际问题.
教学过程
一、作业讲评
《习案》P.192的第3题
《习案》P.194的第6题
《习案》P.196的第5题
二、例题分析
1. 已知直线l1∥l2,A是l1,l2之间的一定点,并且A点到l1,l2的距离分别为h1,h2 . B是直线l2上一动点,作AC⊥AB,且使AC与直线l1交于点C,求△ABC面积的最小值.
2. 如图,正方形ABCD的边长为1,P,Q分别为边AB,DA上的点.当△ABC的周长为2时,求∠PCQ的大小.
三、课后作业
《学案》第三章单元检测卷.
θ
P
Q
R
S
O