中小学教育资源及组卷应用平台
第十一章《三角形》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一、选择题(每小题3分,共30分)
1.以下列各组线段为边,能组成三角形的是( )
A.1,2,3 B.2,3,4 C.1,3,5 D.2,6,10
2.下列选项中的图形,有稳定性的是( )
A.B.C.D.
3.如图,△ABC中,AC边上的高是( )
A.线段CD B.线段AF C.线段BE D.线段CE
4.下列多边形中,内角和是540°的是( )
A.B.C.D.
5.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为( )
A.7 cm B.3 cm C.9 cm D.5 cm
6.下列说法中正确的是 ( )
A.三角形的外角大于任何一个内角
B.三角形的内角和小于外角和
C.三角形的外角和小于四边形的外角和
D.三角形的一个外角等于两个两个内角的和.
7.如图,已知在△ABC中,∠A=90°,∠1+∠2的度数是( )
A.180° B.270° C.360° D.无法确定
8.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为( )
A.50° B.55° C.60° D.65°
9.如图,将透明直尺叠放在正五边形之上,若正五边形有两个顶点在直尺的边上,且有一边与直尺的边垂直.则∠α=( )
A.60° B.28° C.54° D.72°
10.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,∠CEG=2∠DCB,且∠DFB=∠CGE.下列结论:①EG∥BC,②CG⊥EG,③∠ADC=∠GCD,④CA平分∠BCG.其中正确的个数是( )
A.1 B.2 C.3 D.4
二、填空题(每题3分,共24分)
11.工人师傅做门时,常用木条固定长方形门框,使其不变形,这种做法的根据是 .
12.已知一个三角形三边长分别为3,x,5,且x为偶数,则这个三角形的周长为 .
13.如图,已知AD是△ABC的边BC上的中线,若AB=6,△ABD的周长比△ACD的周长多2,则AC= .
14.如图,小明从点A出发,前进5m后向右转20°,再前进5m后又向右转20°,这样一直走下去,直到他第一次回到出发点A为止,他所走的路径构成了一个多边形,则这个多边形的内角和是 度.
15.如图,在△ABC中,∠ACB=68°,∠1=∠2.若P为△ABC的角平分线BP、CP的交点,则∠BPC= °.
16.如图,BP是△ABC的内角∠ABC的角平分线,交外角∠ACD的角平分线CP于点P,已知∠A=70°,则∠P的度数为 .
17.如图,将△ABC沿着DE对折,点A落到A'处,若∠BDA′+∠CEA′=70°,则∠A= °.
18.如图,AB和CD相交于点O,∠C=∠COA,∠BDC=∠BOD,AP,DP分别平分∠CAO和∠BDC,若∠C+∠P+∠B=165°,则∠C的度数是 .
三.解答题(共46分,19题6分,20 ---24题8分)
19.在四边形ABCD中,∠D=60°,∠B=∠A+20°,∠C=2∠A,求∠B的度数.
20.如图,在四边形ABCD中,BE平分∠ABC,交AD于点G,交CD的延长线于点E,F为DC延长线上一点,∠ADE+∠BCF=180°,∠ADC=2∠E=50°.
(1)求证:AD∥BC;
(2)求∠A的度数.
21.如图,在△ABC中,BD是∠ABC的平分线,CE是AB边上的高,且∠ACB=60°,∠ADB=97°,求∠A和∠ACE的度数.
22.如图,在△ABC中,BD平分∠ABC,CE平分∠ACB,BD与CE相交于点O,∠BOC=119°.
(1)求∠OBC+∠OCB的度数;
(2)求∠A的度数.
23.“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.
(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;
(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;
(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)
24.阅读下面的材料,并解决问题.
(1)已知在△ABC中,∠A=60°,图1﹣3的△ABC的内角平分线或外角平分线交于点O,请直接求出下列角度的度数.
如图1,∠O= ;如图2,∠O= ;如图3,∠O= ;
如图4,∠ABC,∠ACB的三等分线交于点O1,O2,连接O1O2,则∠BO2O1= .
(2)如图5,点O是△ABC两条内角平分线的交点,求证:∠O=90°+∠A.
(3)如图6,△ABC中,∠ABC的三等分线分别与∠ACB的平分线交于点O1,O2,若∠1=115°,∠2=135°,求∠A的度数.
答案
一、选择题
题号 1 2 3 4 5 6 7 8 9 10
答案 B C C C B B B C C C
二、填空题
11.解:加上木条后,原不稳定的四边形中具有了稳定的三角形,故这种做法根据的是三角形的稳定性.
故答案为:三角形的稳定性.
12.解:设第三边长为x,则5﹣3<x<5+3,
∴2<x<8,
又∵x为偶数,
∴x=4或6,
∴三角形的周长为12或14,
故答案为:12或14.
13.解:∵AD是△ABC中BC边上的中线,
∴BD=DC,
∴△ABD和△ADC的周长的差=(AB+BD+AD)﹣(AC+DC+AD)=AB﹣AC=2,
∵AB=6,
∴AC=4.
故答案为:4.
14.解:由题意知,该多边形为正多边形,
∵多边形的外角和恒为360°,
360÷20=18,
∴该正多边形为正18边形.
这个多边形的内角和为:(18﹣2)×180°=2880°,
故答案为:2880.
15.解:∵∠ACB=68°,
∴∠1+∠PCB=68°,
∵∠1=∠2,
∴∠2+∠PCB=68°,
∴∠BPC=180°﹣(∠2+∠PCB)=112°.
故答案为:112.
16.解:∵BP平分∠ABC,
∴∠CBP=∠ABC,
∵CP平分△ABC的外角,
∴∠PCD=∠ACE=(∠A+∠ABC)=∠A+∠ABC,
在△BCP中,由三角形的外角性质,∠PCE=∠CBP+∠P=∠ABC+∠P,
∴∠A+∠ABC=∠ABC+∠P,
∴∠P=∠BAC=×70°=35°.
故答案为:35°.
17.解:∵将△ABC沿着DE对折,点A落到A'处,
∴∠EDA′=∠EDA,∠DEA′=∠DEA,
∵∠BDA′+2∠EDA=180°,∠CEA′+2∠DEA=180°,
∴∠BDA′+2∠EDA+∠CEA′+2∠DEA=360°,
∵∠BDA′+∠CEA′=70°,
∴∠EDA+∠DEA=145°,
∴∠A=35°,
故答案为:35.
18.解:∵∠C=∠COA,∠BDC=∠BOD,∠AOC=∠BOD,
∴∠C=∠AOC=∠BOD=∠BDO,设∠C=∠AOC=∠BOD=∠BDO=x,
∴∠B=∠CAO,设∠CAP=∠PAB=y,∠P=z,则∠B=2y,
则有,
解得,
∴∠C=70°,
故答案为70°.
三、解答题
19.解:四边形内角和定理得:∠A+∠B+∠C+∠D=360°,
∵∠D=60°,∠B=∠A+20°,∠C=2∠A,
∴∠A+(∠A+20°)+2∠A+60°=360°,
∴∠A=70°,
∴∠B=∠A+20°=90°,
答:∠B的度数是90°.
20.(1)证明:∵∠ADE+∠BCF=180°,∠BCE+∠BCF=180°,
∴∠ADE=∠BCE,
∴AD∥BC;
(2)解:∵∠ADC=∠E+∠DGE,∠ADC=2∠E=50°,
∴∠DGE=∠E=25°,
由(1)得,AD∥BC,
∴∠EBC=∠GDE=25°,
∵BE平分∠ABC,
∴∠ABE=∠EBC=25°,
∵∠AGB=∠DGE=25°,∠A+∠ABE+∠AGB=180°,
∴∠A=180°﹣25°﹣25°=130°.
21.解:∵∠ADB=∠DBC+∠ACB,
∴∠DBC=∠ADB-∠ACB=97°-60°=37°.
∵BD是∠ABC的平分线,
∴∠ABC=74°,
∴∠A=180°-∠ABC-∠ACB=46°.
∵CE是AB边上的高,
∴∠AEC=90°,
∴∠ACE=90°-∠A=44°.
22.解:(1)∵∠BOC=119°
∴△BCO中,∠OBC+∠OCB=180°﹣∠BOC=61°;
(2)∵BD平分∠ABC,CE平分∠ACB,
∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=122°,
∴△ABC中,∠A=180°﹣122°=58°.
23.解:(1)∵∠1=∠2+∠D=∠B+∠E+∠D,∠1+∠A+∠C=180°,
∴∠A+∠B+∠C+∠D+∠E=180°;
(2)∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°;
(3)根据图中可得出规律∠A+∠B+∠C+∠D+∠E=180°,每截去一个角则会增加180度,
所以当截去5个角时增加了180×5度,
则∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N=180°×5+180°=1080°.
24.解;(1)如图1,
∵BO平分∠ABC,CO平分∠ACB
∴∠OBC=∠ABC,∠OCB=∠ACB
∴∠OBC+∠OCB
=(∠ABC+∠ACB)
=(180°﹣∠BAC)
=(180°﹣60°)
=60°
∴∠O=180°﹣(∠OBC+∠OCB)=120°;
如图2,
∵BO平分∠ABC,CO平分∠ACD
∴∠OBC=∠ABC,∠OCD=∠ACD
∵∠ACD=∠ABC+∠A
∴∠OCD=(∠ABC+∠A)
∵∠OCD=∠OBC+∠O
∴∠O=∠OCD﹣∠OBC
=∠ABC+∠A﹣∠ABC
=∠A
=30°
如图3,
∵BO平分∠EBC,CO平分∠BCD
∴∠OBC=∠EBC,∠OCB=∠BCD
∴∠OBC+∠OCB
=(∠EBC+∠BCD)
=(∠A+∠ACB+∠BCD)
=(∠A+180°)
=(60°+180°)
=120°
∴∠O=180°﹣(∠OBC+∠OCB)=60°
如图4,
∵∠ABC,∠ACB的三等分线交于点O1,O2
∴∠O2BC=∠ABC,∠O2CB=∠ACB,O1B平分∠O2BC,O1C平分∠O2CB,O2O1平分BO2C
∴∠O2BC+∠O2CB
=(∠ABC+∠ACB)
=(180°﹣∠BAC)
=(180°﹣60°)
=80°
∴∠BO2C=180°﹣(∠O2BC+∠O2CB)=100°
∴∠BO2O1=∠BO2C=50°
故答案为:120°,30°,60°,50°;
(2)证明:∵OB平分∠ABC,OC平分∠ACB,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∠O=180°﹣(∠OBC+∠OCB)
=180°﹣(∠ABC+∠ACB)
=180°﹣(180°﹣∠A)
=90°+∠A.
(3)∵∠O2BO1=∠2﹣∠1=20°
∴∠ABC=3∠O2BO1=60°,∠O1BC=∠O2BO1=20°
∴∠BCO2=180°﹣20°﹣135°=25°
∴∠ACB=2∠BCO2=50°
∴∠A=180°﹣∠ABC﹣∠ACB=70°
或由题意,设∠ABO2=∠O2BO1=∠O1BC=α,∠ACO2=∠BCO2=β,
∴2α+β=180°﹣115°=65°,α+β=180°﹣135°=45°
∴α=20°,β=25°
∴∠ABC+∠ACB=3α+2β=60°+50°=110°,
∴∠A=70°.
www.21cnjy.com 精品试卷·第 2 页 (共 2 页)