【2014最新】新课标高一数学人教A版必修四全册教案:第一章《三角函数》(12份)

文档属性

名称 【2014最新】新课标高一数学人教A版必修四全册教案:第一章《三角函数》(12份)
格式 zip
文件大小 499.4KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2013-11-25 15:03:44

文档简介

1.1.2弧度制
教学目标
知识与技能目标
理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.
过程与能力目标
能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题
情感与态度目标
通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.
教学重点
弧度的概念.弧长公式及扇形的面积公式的推导与证明.
教学难点
“角度制”与“弧度制”的区别与联系.
教学过程
一、复习角度制:
初中所学的角度制是怎样规定角的度量的
规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.
二、新课:
1.引 入:
由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?
2.定 义
我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?
(2)引导学生完成P6的探究并归纳:
弧度制的性质:
①半圆所对的圆心角为 ②整圆所对的圆心角为
③正角的弧度数是一个正数. ④负角的弧度数是一个负数.
⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=
4.角度与弧度之间的转换:
①将角度化为弧度:
; ;;.
②将弧度化为角度:
;;;.
5.常规写法:
① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.
② 弧度与角度不能混用.
6.特殊角的弧度
角度 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°
弧度 0
7.弧长公式
弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.
例1.把67°30'化成弧度.
例2.把化成度.
例3.计算:
;.
例4.将下列各角化成0到2π的角加上2kπ(k∈Z)的形式:
;.
例5.将下列各角化成2kπ + α(k∈Z,0≤α<2π)的形式,并确定其所在的象限.
;.
解: (1)
而是第三象限的角,是第三象限角.
(2) 是第二象限角.
证法一:∵圆的面积为,∴圆心角为1rad的扇形面积为,又扇形弧长为l,半径为R,
∴扇形的圆心角大小为rad, ∴扇形面积.
证法二:设圆心角的度数为n,则在角度制下的扇形面积公式为,又此时弧长,∴.
可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.
7.课堂小结①什么叫1弧度角 ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.
8.课后作业:
①阅读教材P6 –P8;
②教材P9练习第1、2、3、6题;
③教材P10面7、8题及B2、3题.
PAGE1.1.1 任意角
教学目标
知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念.
过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.
情感与态度目标
提高学生的推理能力;  2.培养学生应用意识.
教学重点
任意角概念的理解;区间角的集合的书写.
教学难点
终边相同角的集合的表示;区间角的集合的书写.
教学过程
一、引入:
1.回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角.
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
二、新课:
1.角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
③角的分类:
④注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角.
⑤练习:请说出角α、β、γ各是多少度
2.象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
例1.如图⑴⑵中的角分别属于第几象限角?
例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.
⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分别为1、2、3、4、1、2象限角.
3.探究:教材P3面
终边相同的角的表示:
所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α + k·360 ° ,
k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.
注意:
⑴ k∈Z
⑵ α是任一角;
⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差
360°的整数倍;
⑷ 角α + k·720 °与角α终边相同,但不能表示与角α终边相同的所有角.
例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.
⑴-120°;⑵640 °;⑶-950°12'.
答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角;
例4.写出终边在y轴上的角的集合(用0°到360°的角表示) .
解:{α | α = 90°+ n·180°,n∈Z}.
例5.写出终边在上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.
4.课堂小结
①角的定义;
②角的分类:
③象限角;
④终边相同的角的表示法.
5.课后作业:
①阅读教材P2-P5;  ②教材P5练习第1-5题;  ③教材P.9习题1.1第1、2、3题
思考题:已知α角是第三象限角,则2α,各是第几象限角?
解:角属于第三象限,
k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)
即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或终边在y轴的非负半轴上的角.
又k·180°+90°<<k·180°+135°(k∈Z) .
当k为偶数时,令k=2n(n∈Z),则n·360°+90°<<n·360°+135°(n∈Z) ,
此时,属于第二象限角
当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<<n·360°+315°(n∈Z) ,
此时,属于第四象限角
因此属于第二或第四象限角.
始边
终边
顶点
A
O
B
负角:按顺时针方向旋转形成的角
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角

B1
y

O
x
45°
B2
O
x
B3
y
30°
60o
负角:按顺时针方向旋转形成的角
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
PAGE4-1.2.1任意角的三角函数(一)
教学目的:
知识目标:1.掌握任意角的三角函数的定义;
2.已知角α终边上一点,会求角α的各三角函数值;
3.记住三角函数的定义域、值域,诱导公式(一)。
能力目标:(1)理解并掌握任意角的三角函数的定义;
(2)树立映射观点,正确理解三角函数是以实数为自变量的函数;
(3)通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。
德育目标: (1)使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;
(2)学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;
教学重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。公式一是本小节的另一个重点。
教学难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.
教学过程:
一、复习引入:初中锐角的三角函数是如何定义的?
在Rt△ABC中,设A对边为a,B对边为b,C对边为c,锐角A的正弦、余弦、正切依次为 .
角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
二、讲解新课:
1.三角函数定义
在直角坐标系中,设α是一个任意角,α终边上任意一点(除了原点)的坐标为,它与原点的距离为,那么
(1)比值叫做α的正弦,记作,即;
(2)比值叫做α的余弦,记作,即;
(3)比值叫做α的正切,记作,即;
(4)比值叫做α的余切,记作,即;
说明:①α的始边与轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;
②根据相似三角形的知识,对于确定的角α,四个比值不以点在α的终边上的位置的改变而改变大小;
③当时,α的终边在轴上,终边上任意一点的横坐标都等于,
所以无意义;同理当时,无意义;
④除以上两种情况外,对于确定的值α,比值、、、分别是一个确定的实数,
正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
函 数 定 义 域 值 域
2.三角函数的定义域、值域
注意:
(1)在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的非负半轴重合.?
(2) α是任意角,射线OP是角α的终边,α的各三角函数值(或是否有意义)与ox转了几圈,按什么方向旋转到OP的位置无关.
(3)sin是个整体符号,不能认为是“sin”与“α”的积.其余五个符号也是这样.
(4)任意角的三角函数的定义与锐角三角函数的定义的联系与区别:
锐角三角函数是任意角三角函数的一种特例,它们的基础共建立于相似(直角)三角形的性质,“r”同为正值. 所不同的是,锐角三角函数是以边的比来定义的,任意角的三角函数是以坐标与距离、坐标与坐标、距离与坐标的比来定义的,它也适合锐角三角函数的定义.实质上,由锐角三角函数的定义到任意角的三角函数的定义是由特殊到一般的认识和研究过程.
(5)为了便于记忆,我们可以利用两种三角函数定义的一致性,将直角三角形置于平面直角坐标系的第一象限,使一锐角顶点与原点重合,一直角边与x轴的非负半轴重合,利用我们熟悉的锐角三角函数类比记忆.?
3.例题分析
例1.求下列各角的四个三角函数值: (通过本例总结特殊角的三角函数值)
(1); (2); (3).
解:(1)因为当时,,,所以
, , , 不存在。
(2)因为当时,,,所以
, , , 不存在,
(3)因为当时,,,所以
, , 不存在, ,
例2.已知角α的终边经过点,求α的四个函数值。
解:因为,所以,于是
; ;
; .
例3.已知角α的终边过点,求α的四个三角函数值。
解:因为过点,所以,
当;;
当;
; .
4.三角函数的符号
由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:
①正弦值对于第一、二象限为正(),对于第三、四象限为负();
②余弦值对于第一、四象限为正(),对于第二、三象限为负();
③正切值对于第一、三象限为正(同号),对于第二、四象限为负(异号).
说明:若终边落在轴线上,则可用定义求出三角函数值。
练习: 确定下列三角函数值的符号:
(1); (2); (3); (4).
例4.求证:若且,则角是第三象限角,反之也成立。
5.诱导公式
由三角函数的定义,就可知道:终边相同的角三角函数值相同。即有:

,其中.

这组公式的作用是可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.
例5.求下列三角函数的值:(1), (2),
例6.求函数的值域
解: 定义域:cosx0 ∴x的终边不在x轴上 又∵tanx0 ∴x的终边不在y轴上
∴当x是第Ⅰ象限角时, cosx=|cosx| tanx=|tanx| ∴y=2
…………Ⅱ…………, |cosx|=cosx |tanx|=tanx ∴y=2
…………ⅢⅣ………, |cosx|=cosx |tanx|=tanx ∴y=0
四、小 结:本节课学习了以下内容:
1.任意角的三角函数的定义;2.三角函数的定义域、值域;3.三角函数的符号及诱导公式。
五、巩固与练习
1、教材P15面练习;
2、作业P20面习题1.2A组第1、2、3(1)(2)(3)题及P21面第9题的(1)、(3)题。
PAGE1.3诱导公式(一)
教学目标
(一)知识与技能目标
⑴理解正弦、余弦的诱导公式.
⑵培养学生化归、转化的能力.
(二)过程与能力目标
(1)能运用公式一、二、三的推导公式四、五.
(2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.
(三)情感与态度目标
通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质.
教学重点
掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式.
教学难点
运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.
教学过程
一、复习:
诱导公式(一)
诱导公式(二)
诱导公式(三)
诱导公式(四)
对于五组诱导公式的理解 :

②这四组诱导公式可以概括为:
总结为一句话:函数名不变,符号看象限
练习1:P27面作业1、2、3、4。
2:P25面的例2:化简
二、新课讲授:
1、诱导公式(五)
2、诱导公式(六)
总结为一句话:函数正变余,符号看象限
例1.将下列三角函数转化为锐角三角函数:
练习3:求下列函数值:
例2.证明:(1)
(2)
例3.化简:
解:
小结:
①三角函数的简化过程图:
②三角函数的简化过程口诀:
负化正,正化小,化到锐角就行了.
练习4:教材P28页7.
三.课堂小结
①熟记诱导公式五、六;
②公式一至四记忆口诀:函数名不变,正负看象限;
③运用诱导公式可以将任意角三角函数转化为锐角三角函数.
四.课后作业:
①阅读教材;
②《习案》作业七.
公式一或二或四
任意负角的
三角函数
任意正角的
三角函数
00~3600间角
的三角函数
00~900间角
的三角函数
查表
求值
公式一或三
PAGE1.3诱导公式(二)
教学目标
(一)知识与技能目标
⑴理解正弦、余弦的诱导公式.
⑵培养学生化归、转化的能力.
(二)过程与能力目标
(1)能运用公式一、二、三的推导公式四、五.
(2)掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明.
(三)情感与态度目标
通过公式四、五的探究,培养学生思维的严密性与科学性等思维品质以及孜孜以求的探索精神等良好的个性品质.
教学重点
掌握诱导公式四、五的推导,能观察分析公式的特点,明确公式用途,熟练驾驭公式.
教学难点
运用诱导公式对三角函数式的求值、化简以及简单三角恒等式的证明.
教学过程
一、复习:
诱导公式(一)
诱导公式(二)
诱导公式(三)
诱导公式(四)
sin(-)=sin cos( -)=-cos tan (-)=-tan
诱导公式(五)
诱导公式(六)
二、新课讲授:
练习1.将下列三角函数转化为锐角三角函数:
练习2:求下列函数值:
例1.证明:(1)
(2)
例2.化简:
解:
例4.
小结:
①三角函数的简化过程图:
②三角函数的简化过程口诀:
负化正,正化小,化到锐角就行了.
练习3:教材P28页7.
化简:
例5.
三.课堂小结
①熟记诱导公式五、六;
②公式一至四记忆口诀:函数名不变,正负看象限;
③运用诱导公式可以将任意角三角函数转化为锐角三角函数.
四.课后作业:
①阅读教材;
②《学案》P.16-P.17的双基训练.
公式一或二或四
任意负角的
三角函数
任意正角的
三角函数
00~3600间角
的三角函数
00~900间角
的三角函数
查表
求值
公式一或三
PAGE4-1.2.2同角三角函数的基本关系
教学目的:
知识目标:1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系;
2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
能力目标: 牢固掌握同角三角函数的两个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力;
教学重点:同角三角函数的基本关系式
教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用
教学过程:
一、复习引入:
1.任意角的三角函数定义:
设角是一个任意角,终边上任意一点,它与原点的距离为
,那么:,,,
2.当角α分别在不同的象限时,sinα、cosα、tgα的符号分别是怎样的?
3.背景:如果,A为第一象限的角,如何求角A的其它三角函数值;
4.问题:由于α的三角函数都是由x、y、r 表示的,则角α的三个三角函数之间有什么关系?
二、讲解新课:
(一)同角三角函数的基本关系式:
(板书课题:同角的三角函数的基本关系)
由三角函数的定义,我们可以得到以下关系:
(1)商数关系: (2)平方关系:
说明:
①注意“同角”,至于角的形式无关重要,如等;
②注意这些关系式都是对于使它们有意义的角而言的,如;
③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:
, , 等。
2.例题分析:
一、求值问题
例1.(1)已知,并且是第二象限角,求.
(2)已知,求.
解:(1)∵, ∴
又∵是第二象限角, ∴,即有,从而

(2)∵, ∴,
又∵, ∴在第二或三象限角。
当在第二象限时,即有,从而,;
当在第四象限时,即有,从而,.
总结:
已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。
解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方关系开平方时,漏掉了负的平方根。
例2.已知为非零实数,用表示.
解:∵,,
∴,即有,
又∵为非零实数,∴为象限角。
当在第一、四象限时,即有,从而,

当在第二、三象限时,即有,从而,

例3、已知,求
解:
强调(指出)技巧:1 分子、分母是正余弦的一次(或二次)齐次式
注意所求值式的分子、分母均为一次齐次式,把分子、分母同除以,将分子、分母转化为的代数式;
2 “化1法”
可利用平方关系,将分子、分母都变为二次齐次式,再利用商数关系化归为的分式求值;
小结:化简三角函数式,化简的一般要求是:
(1)尽量使函数种类最少,项数最少,次数最低;
(2)尽量使分母不含三角函数式;
(3)根式内的三角函数式尽量开出来;
(4)能求得数值的应计算出来,其次要注意在三角函数式变形时,常将式子中的“1”作巧妙的变形,
二、化简
练习1.化简.
解:原式.
练习2.
三、证明恒等式
例4.求证:.
证法一:由题义知,所以.
∴左边=右边.
∴原式成立.
证法二:由题义知,所以.
又∵,
∴.
证法三:由题义知,所以.

∴.
总结:证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边;
(2)证明左右两边同等于同一个式子;
(3)证明与原式等价的另一个式子成立,从而推出原式成立。
四、小 结:本节课学习了以下内容:
1.同角三角函数基本关系式及成立的条件;
2.根据一个角的某一个三角函数值求其它三角函数值;
五、课后作业:《习案》作业第 五 课时
参考资料
化简.
解:原式

思考1.已知,求
解:1 由
由 联立:
2
2、已知 求
解:∵sin2 + cos2 = 1 ∴
化简,整理得:
当m = 0时,
当m = 8时,
PAGE4-1.2.1任意角的三角函数(二)
教学目的:
知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式;
2.利用三角函数线表示正弦、余弦、正切的三角函数值;
3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
能力目标:掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。
德育目标:学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;
教学重点:正弦、余弦、正切线的概念。
教学难点:正弦、余弦、正切线的利用。
教学过程:
一、复习引入:
1. 三角函数的定义
2. 诱导公式
练习1. D
练习2. B
练习3. C
二、讲解新课:
当角的终边上一点的坐标满足时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
1.有向线段:
坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
规定:与坐标轴方向一致时为正,与坐标方向相反时为负。
有向线段:带有方向的线段。
2.三角函数线的定义:
设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点,
过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延
长线交与点.
由四个图看出:
当角的终边不在坐标轴上时,有向线段,于是有
, ,
我们就分别称有向线段为正弦线、余弦线、正切线。
说明:
(1)三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦线在轴上;正切线在过单位圆与轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。
(2)三条有向线段的方向:正弦线由垂足指向的终边与单位圆的交点;余弦线由原点指向垂
足;正切线由切点指向与的终边的交点。
(3)三条有向线段的正负:三条有向线段凡与轴或轴同向的为正值,与轴或轴反向的
为负值。
(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。
4.例题分析:
例1.作出下列各角的正弦线、余弦线、正切线。
(1); (2); (3); (4).
解:图略。
例2.
例5. 利用单位圆写出符合下列条件的角x的范围.
答案:(1);(2);
三、巩固与练习:P17面练习
四、小 结:本节课学习了以下内容:
1.三角函数线的定义;
2.会画任意角的三角函数线;
3.利用单位圆比较三角函数值的大小,求角的范围。
五、课后作业: 作业4
参考资料
例1.利用三角函数线比较下列各组数的大小:
1 与 2 与
解: 如图可知:
tan tan
例2.利用单位圆寻找适合下列条件的0到360的角
1 sin≥ 2 tan
解: 1 2
30≤≤150
3090或210270
补充:1.利用余弦线比较的大小;
2.若,则比较、、的大小;
3.分别根据下列条件,写出角的取值范围:
(1) ; (2) ; (3).
(Ⅰ)
(Ⅱ)
(Ⅳ)
(Ⅲ)
x
y
o
T
A
210
30
x
y
o
P1
P2
PAGE1.6三角函数模型的简单应用
教学目的
【知识与技能】
1.掌握三角函数模型应用基本步骤:(1)根据图象建立解析式; (2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型.
2.利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
【过程与方法】
练习讲解:《习案》作业十三的第3、4题
3、一根为Lcm的线,一端固定,另一端悬挂一个小球,组成一个单摆,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是,(1)求小球摆动的周期和频率;(2)已知g=980cm/s2,要使小球摆动的周期恰好是1秒,线的长度l应当是多少?
解:(1);(2).
4、略(学生看书)
二、应用举例:
例1如图,某地一天从6~14时的温度变化曲线近似满足函数y=Asin(x+)+b
(1) 求这一天6~14时的最大温差;
(2) 写出这段曲线的函数解析式.
本题是研究温度随时间呈周期性变化的问题.问题给出了某个时间段的温度变化曲线,要求这一天的最大温差,并写出曲线的函数解析式.也就是利用函数模型来解决问题.要特别注意自变量的变化范围.
例2 画出函数y=|sinx|的图象并观察其周期.
本题利用函数图象的直观性,通过观察图象而获得对函数性质的认识,这是研究数学问题的常用方法.显然,函数与正弦函数有紧密的联系.
练习:教材P65面1题
例3 如图,设地球表面某地正午太阳高度角为,为此时太阳直射纬度,为该地的纬度值,那
么这三个量之间的关系是 =90 -| - |.当地夏半年取正值,冬半年取负值.
如果在北京地区(纬度数约为北纬40 )的一幢高为h0的楼房北面盖一新楼,要使新楼一层正午
的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少?
本题是研究楼高与楼在地面的投影长的关系问题,是将实际问题直接抽象为与三角函数有关的简单函数模型,然后根据所得的模型解决问题。应当注意在复杂的背景中抽取基本的数学关系,还要调动相关学科知识来帮助理解问题。
例4海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通
常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节
每天的时间与水深的关系表:
时刻 水深/米 时刻 水深/米 时刻 水深/米
0:00 5.0 9:00 2.5 18:00 5.0
3:00 7.5 12:00 5.0 21:00 2.5
6:00 5.0 15:00 7.5 24:00 5.0
选用一个函数来近似描述这个港口的水深与时间的函数关系,并给出整点时的水深的近似数值
(精确到0.001).
一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有1.5米的安全间隙(船
底与洋底的距离) ,该船何时能进入港口?在港口能呆多久?
若某船的吃水深度为4米,安全间隙为1.5米,该船在2:00开始卸货,吃水深度以每小时0.3
米的速度减少,那么该船在什么时间必须停止卸货,将船驶向较深的水域?
本题的解答中,给出货船的进、出港时间,一方面要注意利用周期性以及问题的条件,另一方面还要注意考虑实际意义。关于课本第64页的 “思考”问题,实际上,在货船的安全水深正好与港口水深相等时停止卸货将船驶向较深的水域是不行的,因为这样不能保证船有足够的时间发动螺旋桨。
练习:教材P65面3题
三、小结:1、三角函数模型应用基本步骤:
(1)根据图象建立解析式;
(2)根据解析式作出图象;
(3)将实际问题抽象为与三角函数有关的简单函数模型.
2、利用收集到的数据作出散点图,并根据散点图进行函数拟合,从而得到函数模型.
四、作业《习案》作业十四及十五。
补充例题:
一半径为3m的水轮如右图所示,水轮圆心O距离水面2m,已知水轮每分钟转动4圈,如果当水轮上P点从水中浮现时(图中P0)点开始计算时间.
求P点相对于水面的高度h(m)与时间t(s)之间的函数关系式;
P点第一次达到最高点约要多长时间
PAGE1.5函数y=Asin(ωx+φ)的图象(二)
教学目标
知识与技能目标
(1)了解三种变换的有关概念;
(2)能进行三种变换综合应用;
(3)掌握y=Asin(ωx+φ)+h的图像信息.
过程与能力目标
能运用多种变换综合应用时的图象信息解题.
情感与态度目标
 渗透函数应抓住事物的本质的哲学观点.
教学重点
处理三种变换的综合应用时的图象信息.
教学难点
处理三种变换的综合应用时的图象信息.
教学过程
一、复习
1. 如何由y=sinx的图象得到函数
函数表示一个振动量时:
A:这个量振动时离开平衡位置的最大距离,称为“振幅”.
T:
f :
称为“相位” .
x=0时的相位,称为“初相”.
三、应用
例1、教材P54面的例2。
解析:由图象可知A=2,
解:由函数图象可知
解1:以点N为第一个零点,则
解2:以点为第一个零点,则
解析式为将点M的坐标代入得
解由已知解得

又为“五点法”作图得第二个点,则有
所求函数的解析式为
四、课堂小结:
五、课后作业
1.阅读教材第53~55页;
2.教材第56页第3、4题.
作业:《习案》作业十三。
PAGE1.4.3正切函数的性质与图象
教学目的:
知识目标:1.用单位圆中的正切线作正切函数的图象;2.用正切函数图象解决函数有关的性质;
能力目标:1.理解并掌握作正切函数图象的方法;2.理解用函数图象解决有关性质问题的方法;
教学重点:用单位圆中的正切线作正切函数图象;
教学难点:正切函数的性质。
教学过程:
一、复习引入:
问题:1、正弦曲线是怎样画的? 2、练习:画出下列各角的正切线:

下面我们来作正切函数的图象.
二、讲解新课:
1.正切函数的定义域是什么?
2.正切函数是不是周期函数?

∴是的一个周期。
是不是正切函数的最小正周期?下面作出正切函数图象来判断。
3.作,的图象
说明:(1)正切函数的最小正周期不能比小,正切函数的最小正周期是;
(2)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数
,且的图象,称“正切曲线”。
(3)正切曲线是由被相互平行的直线所隔开的无穷多支曲线组成的。
4.正切函数的性质 引导学生观察,共同获得:
(1)定义域:;
(2)值域:R 观察:当从小于,时,
当从大于,时,。
(3)周期性:;
(4)奇偶性:由知,正切函数是奇函数;
(5)单调性:在开区间内,函数单调递增。
5.讲解范例:
例1比较与的大小
解:,,内单调递增,
例2:求下列函数的周期:
(1) 答:。 (2) 答:。
说明:函数的周期.
例3:求函数的定义域、值域,指出它的周期性、奇偶性、单调性,
解:1、由得,所求定义域为
2、值域为R,周期,
3、在区间上是增函数。
思考1:你能判断它的奇偶性吗? (是非奇非偶函数),
练习1:求函数的定义域、周期性、奇偶性、单调性。
略解:定义域:
值域:R 奇偶性:非奇非偶函数
单调性:在上是增函数
练习2:教材P45面2、3、4、5、6题
解:画出y=tanx在(-,)上的图象,在此区间上满足tanx>0的x的范围为:0<x<
结合周期性,可知在x∈ R,且x≠kπ+上满足的x的取值范围为(kπ,kπ+)(k∈Z)
思考2:你能用图象求函数的定义域吗?
解:由 得 ,利用图象知,所求定义域为,
亦可利用单位圆求解。
四、小结:本节课学习了以下内容:
1.因为正切函数的定义域是,所以它的图象被等相互平行的直线所隔开,而在相邻平行线间的图象是连续的。
2.作出正切函数的图象,也是先作出长度为一个周期(-π/2,π/2)的区间内的函数的图象,然后再将它沿x轴向左或向右移动,每次移动的距离是π个单位,就可以得到整个正切函数的图象。
五、作业《习案》作业十一。
y
0
x
0
0
T
A
PAGE1.4.2(2)正弦、余弦函数的性质(二)
教学目的:
知识目标:要求学生能理解三角函数的奇、偶性和单调性;
能力目标:掌握正、余弦函数的奇、偶性的判断,并能求出正、余弦函数的单调区间。
德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神。
教学重点:正、余弦函数的奇、偶性和单调性;
教学难点:正、余弦函数奇、偶性和单调性的理解与应用
教学过程:
复习引入:偶函数、奇函数的定义,反映在图象上,说明函数的图象有怎样的对称性呢?
二、讲解新课:
奇偶性
请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么?
(1)余弦函数的图形
当自变量取一对相反数时,函数y取同一值。
例如:f(-)=,f()= ,即f(-)=f();…… 由于cos(-x)=cosx ∴f(-x)= f(x).
以上情况反映在图象上就是:如果点(x,y)是函数y=cosx的图象上的任一点,那么,与它关于y轴的对称点(-x,y)也在函数y=cosx的图象上,这时,我们说函数y=cosx是偶函数。
(2)正弦函数的图形
观察函数y=sinx的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?
这个事实反映在图象上,说明函数的图象有怎样的对称性呢?函数的图象关于原点对称。
也就是说,如果点(x,y)是函数y=sinx的图象上任一点,那么与它关于原点对称的点(-x,-y)也在函数y=sinx的图象上,这时,我们说函数y=sinx是奇函数。
2.单调性
从y=sinx,x∈[-]的图象上可看出:
当x∈[-,]时,曲线逐渐上升,sinx的值由-1增大到1.
当x∈[,]时,曲线逐渐下降,sinx的值由1减小到-1.
结合上述周期性可知:
正弦函数在每一个闭区间[-+2kπ,+2kπ](k∈Z)上都是增函数,其值从-1增大到1;在每一个闭区间[+2kπ,+2kπ](k∈Z)上都是减函数,其值从1减小到-1.
余弦函数在每一个闭区间[(2k-1)π,2kπ](k∈Z)上都是增函数,其值从-1增加到1;
在每一个闭区间[2kπ,(2k+1)π](k∈Z)上都是减函数,其值从1减小到-1.
3.有关对称轴
观察正、余弦函数的图形,可知
y=sinx的对称轴为x= k∈Z y=cosx的对称轴为x= k∈Z
练习1。(1)写出函数的对称轴;
(2)的一条对称轴是( C )
(A) x轴, (B) y轴, (C) 直线, (D) 直线
思考:P46面11题。
4.例题讲解
例1 判断下列函数的奇偶性
(1) (2)
例2 函数f(x)=sinx图象的对称轴是 ;对称中心是 .
例3.P38面例3
例4 不通过求值,指出下列各式大于0还是小于0;
① ②
例5 求函数 的单调递增区间;
思考:你能求的单调递增区间吗?
练习2:P40面的练习
三、小 结:本节课学习了以下内容:正弦、余弦函数的性质
1. 单调性
2. 奇偶性
3. 周期性
五、课后作业:《习案》作业十。
PAGE