张家口市下万全区2022-2023学年八年级(上)数学期末模拟测试
一、选择题(本题共16个小题,共 42分。1~10小题各3分,11~16小题各2分。在每小题给出的四个选项中,只有一项是符合题目要求的。)
1. 冬季奥林匹克运动会是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在北京和张家口举办.下列四个图分别是四届冬奥会图标中的一部分,其中是轴对称图形的为( )
A. B. C. D.
2. 下列图形具有稳定性的是( )
A. B. C. D.
3. 最近科学家发现了一种病毒的长度约为0.00000456毫米,则数据0.00000456用科学记数法表示为( )
A. B. C. D.
4. 如果在△ABC中,∠A=70°-∠B,则∠C等于( )
A. 35° B. 70° C. 110° D. 140°
5. 等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为( )
A. 7cm B. 3cm C. 9cm D. 5cm
6. 如与的乘积中不含的一次项,则的值为( )
A. B. 3 C. 0 D. 1
7. 一个正多边形,它的一个内角恰好是一个外角的5倍,则这个正多边形的边数是( )
A. 十二 B. 十一 C. 十 D. 九
8. 如图,在ΔABC中,DE是AC的垂直平分线,AE=3cm,ΔABD的周长为13cm,则ΔABC的周长是( )
A. 13cm B. 16cm C. 19cm D. 22cm
9. 如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为( )
A. 84° B. 60° C. 48° D. 43°
10. △ABC中,∠C=90°,∠A的平分线交BC于点D,如果AB=8,CD=3,则△ABD的面积为( )
A. 24 B. 12 C. 8 D. 6
11. 如图,在 ABC 中,ED / / BC ,ABC 和 ACB 的平分线分别交 ED 于点 G 、F ,若 FG 2 ,ED 6 ,则EB DC 的值为( )
A. 6 B. 7
C. 8 D. 9
12. 为半径画弧,交O′A′于点C′;
(3)以点C'为圆心,CD长为半径画弧,与第(2)步中所画的弧相交于点D′;
(4)过点D'画射线O′B′,则∠A′O′B′=∠AOB.
小聪作法正确的理由是( )
A. 由SSS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
B. 由SAS可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
C. 由ASA可得△O′C′D′≌△OCD,进而可证∠A′O′B′=∠AOB
D. 由“等边对等角”可得∠A′O′B′=∠AOB
13. 若,,则的值为( )
A. 4 B. -4 C. D.
14. 若关于x的分式方程-2=无解,则m的值为( )
A. 0 B. 2 C. 0或2 D. 无法确定
15. 如图,等边的边长为4,是边上的中线,是边上的动点,是边上一点,若,当取得最小值时,则的度数为( )
A. B. C. D.
16. 寒假到了,为了让同学们过一个充实而有意义假期,老师推荐给大家一本好书.已知小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x页,则根据题意可列出方程( )
A. B.
C. D.
二.填空题(本大题共3题,总计 12分)
17. 若,则分式__.
18. 如图,中,,,分别以点,为圆心,以大于的长为半径画弧交于点,,直线交于点,交于点.若,则__.
19. 观察下列各式
…
则________.
三.解答题(共7题,总计66分,解答应写出文字说明、证明过程或演算步骤)
20. 计算:
(1)(﹣a2)3÷a4+(a+2)(2a﹣3).
(2)(3a+2b﹣5)(3a﹣2b+5)
21. 分解因式:
(1)
(2)
22. 如图,的三个顶点的坐标分别是,,.
(1)在图中画出关于x轴对称的
(2)分别写出点A,B,C三点关于y轴对称的点,,的坐标;
(3)的面积为______.
23. 已知,如图,为等边三角形,,AD,BE相交于点P,于Q.
(1)求证:;
(2)求的度数;
(3)若,,求AD的长.
24. (1)若,求的值;
(2)请直接写出下列问题的答案:
①若,则___________;
②若,则__________.
25. 一水果店主分两批购进某一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.
(1)该水果店主购进第一批这种水果的单价是多少元?
(2)该水果店主计两批水果的售价均定为每箱40元,实际销售时按计划无损耗售完第一批后,发现第二批水果品质不如第一批,于是该店主将售价下降a%销售,结果还是出现了20%的损耗,但这两批水果销售完后仍赚了不低于1716元,求a的最大值.
26. 数学课上,刘老师出示了如下框中的题目:
如图,在等边中,E为线段AB上一点,D为线段CB延长线上一点,且,试确定AE与DB的大小关系,并说明理由.
小聪与同桌小明讨论后,仍不得其解.刘老师提示道:“数学中常通过把一个问题特殊化来找到解题思路”.两人茅塞顿开,于是进行了如下解答,请你根据他们提供的思路完成下面相应内容:
(1)特殊情况·探索结论
当点E为线段AB的中点时,如图1,确定线段AE与DB的大小关系.请你直接写出结论:AE________DB.(选填“>”,“<”或“=”)
(2)特例启发·解答题目
当E为线段AB上除中点外的任意一点时,其余条件不变,如图2,(1)中线段AE与DB的大小关系会发生改变吗?若不会,请证明;若改变,请说明理由.
(3)拓展结论·设计新题
经过以上的解答,小聪和小明发现如果把刘老师的题目稍加改变,就会得到这样一道题目:在等边中,点E在直线AB上,点D在直线BC上,且.若的边长为1,,求CD的长.
请你根据(1)(2)的探究过程,尝试解决两人改编的此问题,直接写出CD的长.
张家口市下万全区2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.【答案】:D
【解析】:解:A、不是轴对称图形,此项不符题意;
B、不是轴对称图形,此项不符题意;
C、不是轴对称图形,此项不符题意;
D、是轴对称图形,此项符合题意;
故选:D.
2.【答案】:A
【解析】:A.具有稳定性,符合题意;
B.不具有稳定性,故不符合题意;
C.不具有稳定性,故不符合题意;
D.不具有稳定性,故不符合题意,
故选:A.
3.【答案】:C
【解析】:数据0.00000456用科学记数法表示为:.
故选:C.
4.【答案】:C
【解析】:解:∵∠A=70°-∠B,
∴∠A+∠B=70°,
∴∠C=180°-(∠A+∠B)=180°-70°=110°.
故选C.
5.【答案】:B
【解析】:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;
当长是3cm的边是腰时,底边长是:13﹣3﹣3=7(cm),而3+3<7,不满足三角形的三边关系.
故底边长:3cm.
故选:B.
6.【答案】:A
【解析】:,
又与的乘积中不含的一次项,
,
解得.
故选:A.
7.【答案】:A
【解析】:解:一个正多边形,它的一个内角恰好是一个外角的5倍,且一个内角与一个外角的和为,
这个正多边形的每个外角都相等,且外角的度数为,
这个正多边形的边数为,
故选:A.
8.【答案】:C
【解析】:解:∵DE是AC的垂直平分线,
∴AD=CD,AC=2AE=6cm,
又∵△ABD的周长=AB+BD+AD=13cm,
∴AB+BD+CD=13cm,
即AB+BC=13cm,
∴△ABC的周长=AB+BC+AC=13+6=19cm.
故选:C.
9.【答案】:D
【解析】:∵△ABC≌△ADE,∠BAD=94°,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB=×(180°﹣94°)=43°,
∵AE//BD,
∴∠DAE=∠ADB=43°,
∴∠BAC=∠DAE=43°.
故选:D.
10.【答案】:B
【解析】:作DE⊥AB于E,
∵AD平分∠BAC,DE⊥AB,DC⊥AC,
∴DE=CD=3,
∴△ABD的面积为×3×8=12,
故选:B.
11.【答案】:C
【解析】:∵ED∥BC,
∴∠EGB=∠GBC,∠DFC=∠FCB,
∵∠GBC=∠GBE,∠FCB=∠FCD,
∴∠EGB=∠EBG,∠DCF=∠DFC,
∴BE=EG,CD=DF,
∵FG=2,ED=6,
∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,
故选C.
12.【答案】:A
【解析】:解:由作图得OD=OC=OD′=OC′,CD=C′D′,
则根据“SSS”可判断△C′O′D′≌△COD.
故选:A.
13.【答案】:A
【解析】:因为,
所以,
因为,
所以,
联立方程组可得:
解方程组可得,
所以,
故选A.
14.【答案】:C
【解析】:解:方程两边都乘以(x-3)得:
整理得:(m-2)x=2m-6,
由分式方程无解,
一种情况是未知数系数为0得:m-2=0,m=2,
一种情况是方程有增根得:x 3=0,即x=3,
把x=3代入整式方程得:m=0,
故选:C.
15.【答案】:C
【解析】:作点E关于AD对称的点M,连接CM,与AD交于点F,
∵△ABC是等边三角形,AD⊥BC,
∴M在AB上,
∴MF=EF,
∴EF+CF=MF+CF=CM,
即此时EF+CF最小,且为CM,
∵AE=2,
∴AM=2,即点M为AB中点,
∴∠ECF=30°,
故选C.
【画龙点睛】本题考查了轴对称最短路线问题,等边三角形的性质,等腰三角形的性质等知识点的应用,找到CM是解题的关键.
16.【答案】:D
【解析】:解:设小芳每天看书x页,则小荣每天看页,
由题意得: ,
故选:D.
二. 填空题
17.【答案】: 1
【解析】:原分式,
,
.
故答案为:1.
18.【答案】: 6
【解析】:连接,如图,
由作法得垂直平分,
,
,
,
,
,
.
故答案为:6.
19.【答案】:
【解析】:解:由上述式子可归纳出:
故答案为:.
三.解答题
20【答案】:
(1)a2+a﹣6;
(2)9a2﹣4b2+20b﹣25
【解析】:
【小问1详解】
解:(﹣a2)3÷a4+(a+2)(2a﹣3)
=﹣a6÷a4+2a2﹣3a+4a﹣6
=﹣a2+2a2﹣3a+4a﹣6
=a2+a﹣6;
【小问2详解】
解:(3a+2b﹣5)(3a﹣2b+5)
=[3a+(2b﹣5)][3a﹣(2b﹣5)]
=(3a)2﹣(2b﹣5)2
=9a2﹣(4b2﹣20b+25)
=9a2﹣4b2+20b﹣25.
【画龙点睛】本题考查了整式的混合运算,在进行运算时注意符号是否有变化.
21【答案】:
(1)
(2)
【解析】:
【小问1详解】
解:原式
.
【小问2详解】
解:原式
.
22【答案】:
(1)见解析;(2)、、;(3)2.5.
【解析】:
解:(1)如图,即是所作的图形;
(2),,
点A,B,C三点关于y轴对称点,,的坐标为:
、、;
(3)如图,
故答案为:.
.
23【答案】:
(1)见解析 (2)60°
(3)7
【解析】:
【小问1详解】
证明:为等边三角形,
,,
在△AEB与△CDA中,
,
;
【小问2详解】
解:,
,
,
;
【小问3详解】
解:,,
,
,
,
,
.
24【答案】:
(1)12;(2)①;②17
【解析】:
(1)∵,
∴,
∴;
(2)①∵,
∴=,
∴;
故答案为:;
②设a=4-x,b=5-x,
∵a-b=4-x-(5-x)=-1,
∴,
∴,
∵ab=,
∴,
∴,
故答案为:17.
25【答案】:
(1)水果店主购进第一批这种水果的单价是20元;(2)a的最大值是30.
【解析】:
(1)设第一批水果的单价是x元,
,
解得,x=20,
经检验,x=20是原分式方程的解,
答:水果店主购进第一批这种水果的单价是20元;
(2)由题意可得,
,
解得,a≤30,
答:a的最大值是30.
26【答案】:
(1)=
(2)不会改变,仍有.见解析
(3)3或1
【解析】:
【小问1详解】
解:∵△ABC为等边三角形,E为AB的中点,
∴∠BCE=30°,∠ABC=60°,AE=BE,
∵DE=CE,
∴∠D=∠BCE=30°,
∵∠ABC=∠D+∠BED,
∴∠BED=30°,
∴∠D=∠BED,
∴DB=BE=AE;
故答案为:=
【小问2详解】
解:不会改变,仍有.证明如下:
如图,过点E作EF∥BC,交AC于点F.
∵是等边三角形,
∴,.
∵EF∥BC,
∴,.
∴,
∴是等边三角形.
∴.
∴,即.
∵,
∴.
∵,,
∴,
在和中,
,
∴(SAS),
∴.
∵,
∴.
【小问3详解】
解:如图,若点E在AB的延长线上,点D在CB的延长线上,
∵△ABC是等边三角形,
∴AB=AC=BC=1,∠ABC=∠ACB=60°,
∵AE=2,
∴AB=BC=BE=1,
∵∠ABC=∠BEC+∠BCE,
∴∠BEC=∠BCE=30°,
∴∠ACE=90°,
∴△ACE是直角三角形,
∵DE=CE,
∴∠D=∠BCE=30°,
∵∠DBE=∠ABC=60°,
∴∠DEB=180°-30°-60°=90°,即△DEB是直角三角形.
∴BD=2BE=2
∴CD=BD+BC=1+2=3;
如图,若点E在BA的延长线上,点D在BC的延长线上,过点E作EM⊥BD于点M,
∵△ABC等边三角形,
∴AB=AC=BC=1,∠ABC=∠ACB=60°,
∴∠BEM=30°,
∴BE=2BM,
∵AE=2,
∴BE=3,
∴,
∴CM=BM-BC=0.5,
∵CE=DE,
∴CD=2CM=1;
如图,若点E在AB的延长线上,点D在BC的延长线上,
∵△ABC是等边三角形,
∴AB=AC=BC=1,∠ABC=∠ACB=60°,
∴∠CBE=120°,
∵AE=2,
∴AB=BC=BE=1,
∵∠ABC=∠BEC+∠BCE,
∴∠BEC=∠BCE=30°,
∴∠ECD=∠BEC+∠CBE=150°,
∵CE=DE,
∴∠D=∠ECD=150°,不符合三角形内角和定理,,舍去;
如图,若点E在BA的延长线上,点D在CB的延长线上,则∠EDC<∠ABC,∠ECB>∠ACB,
∵∠EDC<∠ABC,∠ECB>∠ACB,且∠ABC=∠ACB=60°,
∴∠EDC<∠DCE,
∴DE≠CE,不合题意,舍去;
综上所述,CD的长为3或1.
【画龙点睛】本题主要考查对全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.