中小学教育资源及组卷应用平台
课题学习 最短路径问题
一、内容和内容解析
1.内容
利用轴对称研究某些最短路径问题.
2.内容解析
最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为基础知识,有时还要借助轴对称、平移、旋转等变换进行研究.
本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题.
基于以上分析,确定本节课的教学重点是:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力.
二、目标和目标解析
1.教学目标
能利用轴对称解决简单的最短路径问题,体会图形的变换在解决最值问题中的作用,感悟转化思想,进一步获得数学活动的经验,增强应用意识.
2. 教学目标解析
学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”,把实际问题抽象为数学问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.
三、教学问题诊断分析
最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手.
对于直线异侧的两点,怎样在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路.
在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,学生想不到,不会用.
教学时,教师可从“直线异侧的两点”过渡到“直线同侧的两点”,为学生搭建“脚手架”.在证明“最短”时,教师可告诉学生,证明“最大”“最小”这类问题,常常要另选一个量,通过与求证的那个“最大”“最小”的量进行比较来证明.由于另取的点具有任意性,所以结论对于直线上的每一点(C点除外)都成立
本节课的教学难点是:如何利用轴对称将最短路径问题转化为线段和最小问题.
四、教学过程设计
1.创设问题情境
问题1 如图,从A地到B地有三条路可供选择,你会选择哪条路距离最短?说说你的理由.
师生活动:学生回答问题,说出理由:两点之间,线段最短.
【设计意图】让学生回顾“两点之间,线段最短”,为引入新课作准备.
问题2:如图,要在燃气管道l上修建一个泵站,分别向A、B两村供气,泵站修在管道的什么地方,可使所用的输气管线最短?
师生活动:学生回答,连接AB,线段AB与l的交点即为泵站修建的位置.
【设计意图】让学生进一步感受“两点之间,线段最短”,为把“同侧的两点”转化为“异侧的两点”做铺垫.
2.将实际问题抽象为数学问题
问题3 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:
从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?
精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.
你能将这个问题抽象为数学问题吗?
师生活动:学生尝试回答,并相互补充,最后达成共识:(1)将A,B 两地抽象为两个点,将河l 抽象为一条直线;(2)在直线l上找到一点C,使AC与BC的和最小?
【设计意图】学生通过动手操作,在具体感知轴对称图形特征的基础上,抽象出轴对称图形的概念.
3.解决数学问题
问题4 如图,点A,B 在直线l 的同侧,在直线l上找到一点C,使AC 与BC的和最小?
师生活动:学生独立思考,尝试画图,相互交流.
如果学生有困难,教师可作如下提示:
(1)如果点B在点A的异侧,如何在直线l上找到一点C,使AC 与BC的和最小
(2)现在点B与点A在同侧,能否将点B移到l 的另一侧点处,且满足直线l上的任意一点C,都能保持
(3)你能根据轴对称的知识,找到(2)中符合条件的点吗?
师生共同完成作图,如下图.
作法:(1)作点B 关于直线l 的对称点B′;
(2)连接AB′,与直线l 相交于点C.则点C 即为所求.
【设计意图】教师一步一步引导学生,如何将同侧的两点转化为异侧的两点,为问题的解决提供思路,渗透转化思想.
4.证明AC +BC “最短”
问题4 你能用所学的知识证明AC +BC最短吗?
师生活动:学生独立思考,相互交流,师生共同完成证明过程.
证明:如图,在直线l 上任取一点(与点C 不重合),连接AC′,BC′,.
由轴对称的性质知,
,.
∴,
.
在△中,,
∴ .
即AC +BC 最短.
追问1:证明AC +BC最短时,为什么要在直线l上任取一点(与点C但不重合)?
师生活动:学生相互交流,教师适时点拨,最后达成共识:若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC +BC,就说明AC +BC最小.
【设计意图】让学生体会作法的正确性,提高逻辑思维能力.
追问2:回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?
师生活动:学生回答,相互补充.
【设计意图】学生在反思中,体会轴对称的桥梁作用,感悟转化思想,丰富数学活动经验.
5.巩固练习
如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.
师生活动:学生分析解题思路,独立完成画图,教师适时点拨.
【设计意图】让学生进一步巩固解决最短路径问题的基本策略和基本方法.
6.归纳小结
教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.
(1)本节课研究问题的基本过程是什么?
(2)轴对称在所研究问题中起什么作用?
师生活动:教师引导,学生小结.
【设计意图】:引导学生把握研究问题的基本策略和方法,体会轴对称在解决最短路径问题中的作用,感悟转化思想的重要价值.
7.布置作业:
教科书复习题13第15题.
五、目标检测设计
某实验中学八(1)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?
【设计意图】考查学生解决“最短路径问题”的能力.
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)