第三章 函数的概念与性质 章末检测(含解析)

文档属性

名称 第三章 函数的概念与性质 章末检测(含解析)
格式 zip
文件大小 105.5KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-11-04 12:31:48

文档简介

第三章 函数的概念与性质章末检测
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1、(2022·宿州月考)函数y=的定义域为(  )
A.(-∞,1]      B.
C.(-∞,2] D.∪
2、(2022·怀宁期中)已知函数f(2x-1)=x2-3,则f(3)=(  )
A.1 B.2
C.4 D.6
3、在下列函数中,值域为(0,+∞)的是(  )
A.y= B.y=
C.y= D.y=x2+1
4、已知函数f(x)=(m-1)x2-2mx+3是偶函数,则在(-∞,0)上此函数(  )
A.是增函数       B.不是单调函数
C.是减函数 D.不能确定
5、(2022·浙江模拟)已知函数f(x)=ax2+bx+c的图象如图所示,则(  )
A.bab
C.b>a+c,c2a+c,c2>ab
6、已知函数f(x)=x2+(k-2)x在[1,+∞)上是增函数,则k的取值范围为(  )
A.(-∞,0] B.[0,+∞)
C.(-∞,1] D.[1,+∞)
7、已知函数f(x)的图象关于直线x=1对称,当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,设a=f,b=f(2),c=f(e),则a,b,c的大小关系为( D )
A.c>a>b   B.c>b>a
C.a>c>b   D.b>a>c
8、(2022·湖北月考)已知定义在R上的奇函数f(x)在(-∞,0]上单调递减,若f(-2)=1,则满足|f(2x)|≤1的x的取值范围是(  )
A.[-1,1]        B.[-2,2]
C.(-∞,-1]∪[1,+∞) D.(-∞,-2]∪[2,+∞)
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)
9、下列各组函数是同一函数的为(  )
A.f(x)=x2-2x-1,g(s)=s2-2s-1
B.f(x)=x-1,g(x)=
C.f(x)=,g(x)=
D.f(x)=,g(x)=x
10、已知函数y=xα(α∈R)的图象过点(3,27),下列说法正确的是(  )
A.函数y=xα的图象过原点
B.函数y=xα是奇函数
C.函数y=xα是单调减函数
D.函数y=xα的值域为R
11、已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是(  )
A.y=f(|x|) B.y=f(-x)
C.y=xf(x) D.y=f(x)+x
12、(2022·北京模拟)已知函数f(x)=关于函数f(x)的结论正确的是(  )
A.f(x)的定义域是R
B.f(x)的值域是(-∞,5)
C.若f(x)=3,则x的值为
D.f(x)图象与y=2有两个交点
三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13、已知函数f(x)=若f(a)=2,则实数a=___________.
14、(2022·广东模拟)已知函数f(x)是定义在R上的奇函数,当x∈(0,+∞)时,f(x)=x2-x-1,则当x∈(-∞,0)时,f(x)=________.
15、若函数f(2x-1)定义域为[0,1],则y=f(2x+1)的定义域是________.
16、定义:如果在函数y=f(x)定义域内的给定区间[a,b]上存在x0(a四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)
17、已知函数f(x)的解析式为f(x)=
(1)求f,f,f(-1)的值;
(2)画出这个函数的图象;
(3)求f(x)的最大值.
18、设f(x)是R上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积.
19、已知幂函数f(x)=x(m∈Z)为偶函数,且在区间(0,+∞)上单调递增.
(1)求函数f(x)的解析式;
(2)设函数g(x)=+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围.
20、(2022·柳州模拟)已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1;
②当x>0时,f(x)>-1.
(1)求f(0)的值,并证明f(x)在R上是单调增函数;
(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.
21、“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数;当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.
(1)当0<x≤20时,求函数v关于x的函数解析式;
(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
22、已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,当a,b∈[-1,1],a+b≠0时,有>0成立.
(1)判断f(x)在区间[-1,1]上的单调性,并证明;
(2)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.第三章 函数的概念与性质章末检测(答案)
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1、(2022·宿州月考)函数y=的定义域为( D )
A.(-∞,1]      B.
C.(-∞,2] D.∪
2、(2022·怀宁期中)已知函数f(2x-1)=x2-3,则f(3)=( A )
A.1 B.2
C.4 D.6
3、在下列函数中,值域为(0,+∞)的是( B )
A.y= B.y=
C.y= D.y=x2+1
4、已知函数f(x)=(m-1)x2-2mx+3是偶函数,则在(-∞,0)上此函数(  )
A.是增函数       B.不是单调函数
C.是减函数 D.不能确定
解析:A 因为函数f(x)=(m-1)x2-2mx+3是偶函数,所以函数图象关于y轴对称,即=0,解得m=0.所以f(x)=-x2+3为开口向下的抛物线,所以在(-∞,0)上此函数单调递增.故选A.
5、(2022·浙江模拟)已知函数f(x)=ax2+bx+c的图象如图所示,则(  )
A.bab
C.b>a+c,c2a+c,c2>ab
解析:D 由题图知,a>0,b>0,c<0,f(1)=a+b+c=0,f(-1)=a-b+c<0,所以c=-(a+b),b>a+c,所以c2-ab=[-(a+b)]2-ab=a2+b2+ab>0,即c2>ab.故选D.
6、已知函数f(x)=x2+(k-2)x在[1,+∞)上是增函数,则k的取值范围为(  )
A.(-∞,0] B.[0,+∞)
C.(-∞,1] D.[1,+∞)
解析:B 函数f(x)=x2+(k-2)x的对称轴为x=-,且开口向上,因为f(x)在[1,+∞)上是增函数,所以-≤1,解得k≥0.故选B.
7、已知函数f(x)的图象关于直线x=1对称,当x2>x1>1时,[f(x2)-f(x1)](x2-x1)<0恒成立,设a=f,b=f(2),c=f(e),则a,b,c的大小关系为( D )
A.c>a>b   B.c>b>a
C.a>c>b   D.b>a>c
解析:由已知得f(x)在(1,+∞)上单调递减,又f=f,∵e>>2,∴f(e)8、(2022·湖北月考)已知定义在R上的奇函数f(x)在(-∞,0]上单调递减,若f(-2)=1,则满足|f(2x)|≤1的x的取值范围是(  )
A.[-1,1]        B.[-2,2]
C.(-∞,-1]∪[1,+∞) D.(-∞,-2]∪[2,+∞)
解析:A 根据奇函数的性质,得f(x)在R上单调递减,且f(2)=-1.由|f(2x)|≤1,得-1≤f(2x)≤1,即f(2)≤f(2x)≤f(-2),所以2≥2x≥-2,解得-1≤x≤1,故选A.
二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得0分)
9、下列各组函数是同一函数的为( AC )
A.f(x)=x2-2x-1,g(s)=s2-2s-1
B.f(x)=x-1,g(x)=
C.f(x)=,g(x)=
D.f(x)=,g(x)=x
10、已知函数y=xα(α∈R)的图象过点(3,27),下列说法正确的是(  )
A.函数y=xα的图象过原点
B.函数y=xα是奇函数
C.函数y=xα是单调减函数
D.函数y=xα的值域为R
解析:ABD 因为函数y=xα(α∈R)的图象过点(3,27),所以27=3α,即α=3,所以f(x)=x3,A项,因为f(0)=0,所以函数y=x3的图象过原点,因此本说法正确;B项,因为f(-x)=(-x)3=-x3=-f(x),所以函数y=x3是奇函数,因此本说法正确;C项,因为y=x3是实数集上的单调递增函数,所以本说法不正确;D项,因为y=x3的值域是全体实数集,所以本说法正确.故选A、B、D.
11、已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是(  )
A.y=f(|x|) B.y=f(-x)
C.y=xf(x) D.y=f(x)+x
解析:BD 由奇函数的定义f(-x)=-f(x)验证,A项,f(|-x|)=f(|x|),为偶函数;B项,f[-(-x)]=f(x)=-f(-x),为奇函数;C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;D项,f(-x)+(-x)=-[f(x)+x],为奇函数.可知B、D正确.
12、(2022·北京模拟)已知函数f(x)=关于函数f(x)的结论正确的是(  )
A.f(x)的定义域是R
B.f(x)的值域是(-∞,5)
C.若f(x)=3,则x的值为
D.f(x)图象与y=2有两个交点
解析:BC 由函数f(x)=知,定义域为(-∞,-1]∪(-1,2),即(-∞,2),A错误;x≤-1时,f(x)=x+2∈(-∞,1],-1三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)
13、已知函数f(x)=若f(a)=2,则实数a=___________.
解析:当a≥0时,f(a)=a+1=2,解得a=1,符合条件.当a<0时,f(a)=4a=2,解得a=,不符合条件,所以实数a=1.
14、(2022·广东模拟)已知函数f(x)是定义在R上的奇函数,当x∈(0,+∞)时,f(x)=x2-x-1,则当x∈(-∞,0)时,f(x)=________.
解析:函数f(x)是定义在R上的奇函数,当x∈(0,+∞)时,f(x)=x2-x-1,则当x∈(-∞,0)时,-x∈(0,+∞),f(-x)=(-x)2-(-x)-1=x2+x-1,故f(x)=-f(-x)=-x2-x+1.
答案:-x2-x+1
15、若函数f(2x-1)定义域为[0,1],则y=f(2x+1)的定义域为________.
解析:∵y=f(2x-1)定义域为[0,1].
∴-1≤2x-1≤1,要使y=f(2x+1)有意义应满足-1≤2x+1≤1,解得-1≤x≤0,
因此y=f(2x+1)定义域为[-1,0].
16、定义:如果在函数y=f(x)定义域内的给定区间[a,b]上存在x0(a四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)
17、已知函数f(x)的解析式为f(x)=
(1)求f,f,f(-1)的值;
(2)画出这个函数的图象;
(3)求f(x)的最大值.
解:(1)∵>1,∴f=-2×+8=5.
∵0<<1,∴f=+5=.
∵-1<0,∴f(-1)=-3+5=2.
(2)这个函数的图象如图.
在函数f(x)=3x+5的图象上截取x≤0的部分,
在函数f(x)=x+5的图象上截取0<x≤1的部分,
在函数f(x)=-2x+8的图象上截取x>1的部分.
图中实线组成的图形就是函数f(x)的图象.
(3)由函数图象可知,当x=1时,f(x)取最大值6.
18、设f(x)是R上的奇函数,f(x+2)=-f(x),当0≤x≤1时,f(x)=x.
(1)求f(π)的值;
(2)当-4≤x≤4时,求f(x)的图象与x轴所围成图形的面积.
解:(1)由f(x+2)=-f(x)得,
f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
所以f(x)是以4为周期的周期函数,又f(x)为奇函数,
所以f(π)=f(-1×4+π)=f(π-4)=-f(4-π)=-(4-π)=π-4.
(2)由f(x)是奇函数且f(x+2)=-f(x),
得f[(x-1)+2]=-f(x-1)=f[-(x-1)],
即f(1+x)=f(1-x).
故函数y=f(x)的图象关于直线x=1对称.
又当0≤x≤1时,f(x)=x,且f(x)的图象关于原点成中心对称,则f(x)的图象如图所示.
当-4≤x≤4时,设f(x)的图象与x轴围成的图形面积为S,则S=4S△OAB=4×=4.
19、已知幂函数f(x)=x(m∈Z)为偶函数,且在区间(0,+∞)上单调递增.
(1)求函数f(x)的解析式;
(2)设函数g(x)=+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围.
解:(1)∵f(x)在区间(0,+∞)上单调递增,∴-m2+2m+3>0,即m2-2m-3<0,解得-1当m=0或2时,f(x)=x3,不是偶函数;
当m=1时,f(x)=x4,是偶函数.
故函数f(x)的解析式为f(x)=x4.
(2)由(1)知f(x)=x4,则g(x)=x2+2x+c=(x+1)2+c-1.
由g(x)>2对任意的x∈R恒成立,得g(x)min>2(x∈R).
∵g(x)min=g(-1)=c-1,∴c-1>2,解得c>3.
故实数c的取值范围是(3,+∞).
20、(2022·柳州模拟)已知定义在R上的函数f(x)满足:①f(x+y)=f(x)+f(y)+1;
②当x>0时,f(x)>-1.
(1)求f(0)的值,并证明f(x)在R上是单调增函数;
(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4.
解:(1)令x=y=0,得f(0)=-1.
在R上任取x1>x2,则x1-x2>0,f(x1-x2)>-1.
又f(x1)=f[(x1-x2)+x2]=f(x1-x2)+f(x2)+1,所以f(x1)-f(x2)=f(x1-x2)+1>0,所以f(x1)>f(x2),
所以函数f(x)在R上是单调增函数.
(2)由f(1)=1,得f(2)=3,f(3)=5.
由f(x2+2x)+f(1-x)>4,
得f(x2+2x)+f(1-x)+1>5,
即f(x2+x+1)>f(3),
又函数f(x)在R上是增函数,故x2+x+1>3,
解得x<-2或x>1,
故原不等式的解集为{x|x<-2或x>1}.
21、“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v(单位:千克/年)是养殖密度x(单位:尾/立方米)的函数.当x不超过4尾/立方米时,v的值为2千克/年;当4<x≤20时,v是x的一次函数;当x达到20尾/立方米时,因缺氧等原因,v的值为0千克/年.
(1)当0<x≤20时,求函数v关于x的函数解析式;
(2)当养殖密度x为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.
解 (1)由题意得当0<x≤4时,v=2;
当4<x≤20时,设v=ax+b,
显然v=ax+b在(4,20]内是减函数,
由已知得解得
所以v=-x+,
故函数v=
(2)设年生长量为f(x)千克/立方米,依题意并由(1)可得,
f(x)=
当0<x≤4时,f(x)为增函数,故f(x)max=f(4)=4×2=8;
当4<x≤20时,f(x)=-x2+x=-(x2-20x)=-(x-10)2+,f(x)max=f(10)=12.5.
所以当x=10时,f(x)的最大值为12.5.
即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.
22、已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,当a,b∈[-1,1],a+b≠0时,有>0成立.
(1)判断f(x)在区间[-1,1]上的单调性,并证明;
(2)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.
解 (1)f(x)在区间[-1,1]上单调递增.证明如下:
任取x1,x2∈[-1,1],且x1<x2,
则-x2∈[-1,1].
∵f(x)为奇函数,
∴f(x1)-f(x2)=f(x1)+f(-x2)=·(x1-x2).
由已知条件得>0.
又x1-x2<0,
∴f(x1)-f(x2)<0,即f(x1)<f(x2).
∴f(x)在区间[-1,1]上单调递增.
(2)∵f(1)=1,f(x)在区间[-1,1]上单调递增,
∴在区间[-1,1]上,f(x)≤1.
∵f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,
∴m2-2am+1≥1,
即m2-2am≥0对所有的a∈[-1,1]恒成立.
设g(a)=-2ma+m2.
①若m=0,则g(a)=0≥0,对a∈[-1,1]恒成立.
②若m≠0,则g(a)为a的一次函数,
若g(a)≥0,
对a∈[-1,1]恒成立,必须有g(-1)≥0,且g(1)≥0,
∴m≤-2或m≥2.
综上所述,实数m的取值范围是{m|m=0,或m≥2,或m≤-2}.