2022-2023初四数学第一学期期中质量检测
一选择题(共10小题)
1.sin45°的倒数是( )
A. B. C. D.1
2.在Rt△ACB中,∠C=90°,AB=8,sinA=,则BC的长为( )
A.6 B.7.5 C.8 D.12.5
3.对于反比例函数的图象,下列说法不一定正确的是( )
A.图象经过点(1,﹣2022)
B.图象分布在二、四象限
C.图象关于原点成中心对称
D.图象上的两点(x1,y1),(x2,y2),若x1>x2,则y1>y2
4.如图所示是一个左右两侧不等长的跷跷板,跷板AB长为4米,支柱OH垂直地面.如图①,当AB的一端A接触地面时,AB与地面的夹角的正弦值为;如图②,当AB的另一端B接触地面时,AB与地面的夹角的正弦值为,则支柱OH的长为( )
A.0.5米 B.0.6米 C.0.8米 D.米
5.如图,在4×4正方形网格中,点A,B,C为网格交点,AD⊥BC,垂足为D,则sin∠BAD的值为( )
A. B. C. D.
6. 已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b>m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1,其中正确的是( )
A.2个 B.3个 C.4个 D.1个
7.如图,圆规两脚OA,OB张开的角度∠AOB为α,OA=OB=10,则两脚张开的距离AB为( )
A.10sinα B.10cosα C. D.
8..已知二次函数y=ax2+bx+c的x与y的部分对应值如表.
x ﹣3 ﹣2 ﹣1 0 1 3
y ﹣27 ﹣13 ﹣3 3 5 ﹣3
下列结论:①a<0;②方程ax2+bx+c=3的解为x1=0,x2=2;③当x>2时,y<0,其中,所有正确结论的序号为( )
① B.①② C.②③ D.①②③
9.有一个矩形苗圃园,其中一边靠墙,另外边用长为20m的篱笆围成.已知墙长为15m,若平行于墙的一边长不小于8m,则这个苗圃园面积的最大值和最小值分别为( )
A.48m2,37.5m2 B.50m2,32m2
C.50m2,37.5m2 D.48m2,32m2
10.如图,直线y=﹣x+4与x轴、y轴分别相交于点A,B,过点B作BC⊥AB,使BC=2BA.将△ABC绕点O顺时针旋转,每次旋转90°,当第2022次旋转结束时,点C的对应点C′落在反比例函数y=的图象上,则k的值为( )
A.﹣40 B.40 C.80 D.﹣80
填空(共6题)
11.函数y=+的自变量x的取值范围是
12.若抛物线y=ax2﹣x+1与x轴有公共点,则a的取值范围是
13已知二次函数y=﹣(x﹣m)2﹣1,当x>1时,y随x的增大而减小,则m的取值范围
14.如图,一架水平飞行的无人机在A处测得正前方河岸边C处的俯角为α,tanα=2,无人机沿水平线AF方向继续飞行80米至B处时,被河对岸D处的小明测得其仰角为30°.无人机距地面的垂直高度用AM表示,点M,C,D在同一条直线上,其中MC=100米,则河流的宽度CD为
15. 把二次函数y=2(x﹣2)2﹣5的图象向右平移2个单位后,再向上平移3个单位,所得的函数图象顶点坐标
16.如图,在反比例函数的图象上,有点P1,P2,P3,P4,…,Pn,…,它们的横坐标依次为1,2,3,4,…,n,…,分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,S4,…,Sn,…,则S1+S2+S3+ +S2022的结果为
三解答
17.计算2cos30°﹣tan45°﹣
18.小丽与爸妈在公园里荡秋千.如图,小丽坐在秋千的起始位置A处,OA与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m高的B处接住她后用力一推,爸爸在C处接住她.若妈妈与爸爸到OA的水平距离BD、CE分别为1.8m和2.4m,∠BOC=90°.
(1)△CEO与△ODB全等吗?请说明理由.
(2)爸爸在距离地面多高的地方接住小丽的?
(3)秋千的起始位置A处与距地面的高是多少米?
19.如图1所示,某公园有一个直径为16米的圆形喷水池,喷出的水柱为抛物线,且各方向喷出的水柱恰好落在水池内,过喷水管口所在铅垂线OA每一个截面均可得到两条关于OA对称的抛物线,如图2,以喷水池中心O为原点,喷水管口所在铅垂线为纵轴,建立平面直角坐标系.
(1)若喷出的水柱在距水池中心3米处达到最高,且高度为5米,求水柱所在抛物线的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
20.市政府为实现5G网络全覆盖,2021~2025年拟建设5G基站三千个.如图,在斜坡CB上有一建成的基站塔AB,斜坡CB的坡比为1:2.4.小芳在坡脚C测得塔顶A的仰角为45°,然后她沿坡面CB行走了13米到达D处,在D处测得塔顶A的仰角为53°.(点A、B、C、D均在同一平面内,CE为地平线)(参考数据:sin53°≈,cos53°≈,tan53°≈)
(1)求D处的竖直高度;(2)求基站塔AB的高.
21. 小丽家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温y(℃)与开机时间x(分)满足一次函数关系,当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y(℃)与开机时间x(分)成反比例关系,当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答问题:
(1)当0≤x≤10时,求水温y(℃)与开机时间x(分)的函数关系式;
(2)求图中t的值;
(3)若小丽在通电开机后即外出散步,请你预测小丽散步70分钟回到家时,饮水机内的温度约为多少℃?
22.威海市是全国旅游胜地,2020年受新冠疫情的影响,外来游客在逐年下降.某景区外来游客人数从2019年的2.25万下降到2021年的1.44万.
(1)求2019年到2021年该景区外来游客人数平均每年降低的百分率;
(2)该景区要建一个游乐场(如图所示),其中AD、CD分别靠现有墙DM、DN(墙DM长为27米,墙DN足够长),其余用篱笆围成.篱笆DE将游乐场隔成等腰直角△CED和长方形ADEB两部分,并在三处各留2米宽的大门.已知篱笆总长为54米.
①当AB多长时,游乐场的面积为320平方米?
②当AB为多少米时,游乐场的面积达到最大,最大为 多少平方米?
23.矩形OABC的顶点A,C分别在x,y轴的正半轴上,点F是边BC上的一个动点(不与点B,C重合),过点F的反比例函数的图象与边AB交于点E(8,m),AB=4.
(1)如图1,若BE=3AE.①求反比例函数的表达式;②将矩形OABC折叠,使O点与F点重合,折痕分别与x,y轴交于点H,G,求线段OG的长度.
(2)如图2,连接OF,EF,请用含m的关系式表示OAEF的面积,并求OAEF的面积的最大值.
24.如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6).
(1)求抛物线的解析式及顶点M的坐标;
(2)求直线AB的函数解析式及sin∠ABO的值;连接OC.若过点O的直线交线段AC于点P,将三角形AOC的面积分成1:2的两部分,请求出点P的坐标;
(3)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.2022-2023初四数学第一学期期中质量检测
第一卷 选择题(满分:30分)
18.
19.
姓名: 学号: 考号: 班级: 考场: 座号: 考号(班号)填涂区
20.
1 6
2 7
3 8
4 9
5 10
第二卷 客观题 满分:(90 分)
11、 、 12、 13、
14、 15、 16、
17.计算2cos30°﹣tan45°﹣
24.
23.
21.
22.