专题06 全等三角形的基本模型 专项提升(精讲)-【备考期中期末】 2022-2023学年八年级上学期高频考点+专项提升精讲精练(浙教版)(解析卷)

文档属性

名称 专题06 全等三角形的基本模型 专项提升(精讲)-【备考期中期末】 2022-2023学年八年级上学期高频考点+专项提升精讲精练(浙教版)(解析卷)
格式 zip
文件大小 8.1MB
资源类型 试卷
版本资源 浙教版
科目 数学
更新时间 2022-11-07 13:11:40

文档简介

中小学教育资源及组卷应用平台
专题06 全等三角形的基本模型 专项提升(精讲)
全等在初中数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,该份资料就全等三角形中平移型全等、轴对称(翻折)型全等、旋转型全等、三垂直型全等、一线三等角型全等、手拉手型全等、半角模型、倍长中线模型、截长补短模型等经典模型进行梳理及对应试题分析,方便掌握。
高频考点1:平移模型
【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.
【常见模型】
例1.(2022·浙江杭州·八年级期中)如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,AB // DE,AB = DE,∠A = ∠D.(1)求证:;(2)若BF = 11,EC = 5,求BE的长.
【答案】(1)见解析;(2)BE=3.
【分析】(1)根据平行线的性质由AB∥DE得到∠ABC=∠DEF,然后根据“ASA”可判断△ABC≌△DEF;
(2)根据三角形全等的性质可得BC=EF,由此可求出BE=CF,则利用线段的和差关系求出BE.
【详解】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,
在△ABC和△DEF中 ∴△ABC≌△DEF(ASA);
(2)解:∵△ABC≌△DEF,∴BC=EF,∴BC-EC=EF-EC,即BE=CF,
∵BF=11,EC=5,∴BF-EC=6.∴BE+CF=6.∴BE=3.
【点睛】本题考查了全等三角形的判定与性质,掌握全等三角形的判定与性质是解答此题的关键.
变式1. (2022 富顺县校级月考)如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.
【思路】可以根据已知利用SAS判定△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图(2)、(3)时,其余条件不变,结论仍然成立.可以利用全等三角形的常用的判定方法进行验证.
【解答过程】解:∵AB=CD,∴AB+BC=CD+BC,即AC=BD.∵DE∥AF,∴∠A=∠D.
在△AFC和△DEB中,,∴△AFC≌△DEB(SAS).
在(2),(3)中结论依然成立.
如在(3)中,∵AB=CD,∴AB﹣BC=CD﹣BC,即AC=BD,
∵AF∥DE,∴∠A=∠D.
在△ACF和△DEB中,,∴△ACF≌△DEB(SAS).
变式2.(2022 雁塔区校级期中)如图①点A、B、C、D在同一直线上,AB=CD,作CE⊥AD,BF⊥AD,且AE=DF.(1)证明:EF平分线段BC;(2)若△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.
【解题思路】(1)由AB=CD,利用等式的性质得到AC=BD,再由AE=DF,利用HL得到直角三角形ACE与直角三角形DBF全等,利用全等三角形对应边相等得到EC=BF,再利用AAS得到三角形ECG与三角形FBG全等,利用全等三角形对应边相等得到BG=CG,即可得证;
(2)(1)中的结论成立,理由为:由AC=DB,利用等式的性质得到AC=BD,再由AE=DF,利用HL得到直角三角形ACE与直角三角形DBF全等,利用全等三角形对应边相等得到EC=BF,再利用AAS得到三角形ECG与三角形FBG全等,利用全等三角形对应边相等得到BG=CG,即可得证.
【解答过程】(1)证明:∵CE⊥AD,BF⊥AD,∴∠ACE=∠DBF=90°,
∵AB=CD,∴AB+BC=BC+CD,即AC=DB,
在Rt△ACE和Rt△DBF中,,
∴Rt△ACE≌Rt△DBF(HL),∴CE=FB,
在△CEG和△BFG中,,
∴△CEG≌△BFG(AAS),∴CG=BG,即EF平分线段BC;
(2)(1)中结论成立,理由为:
证明:∵CE⊥AD,BF⊥AD,∴∠ACE=∠DBF=90°,
∵AB=CD,∴AB﹣BC=CD﹣BC,即AC=DB,
在Rt△ACE和Rt△DBF中,,
∴Rt△ACE≌Rt△DBF(HL),∴CE=FB,
在△CEG和△BFG中,,
∴△CEG≌△BFG(AAS),∴CG=BG,即EF平分线段BC.
高频考点2:轴对称模型
【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.
【常见模型】
例2.(2022·河南南阳市·八年级期末)如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点O,(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.
【答案】(1)见解析;(2)78°
【分析】(1)由AE=DB得出AE+EB=DB+EB,即AB=DE,利用HL即可证明Rt△ABC≌Rt△DEF;
(2)根据直角三角形的两锐角互余得∠ABC=39°,根据全等三角形的性质得∠ABC=∠DEF=39°,由三角形外角的性质即可求解.
【详解】(1)证明:∵AE=DB,∴AE+EB=DB+EB,即AB=DE.
又∵∠C=∠F=90°,AC=DF,∴Rt△ABC≌Rt△DEF.
(2)∵∠C=90°,∠A=51°,∴∠ABC=∠C-∠A=90°-51°=39°.
由(1)知Rt△ABC≌Rt△DEF,∴∠ABC=∠DEF.∴∠DEF=39°.
∴∠BOF=∠ABC+∠BEF=39°+39°=78°.
【点睛】本题主要考查直角三角形的两锐角互余,三角形外角的性质,全等三角形的判定与性质,证明三角形全等是解题的关键.
变式1. (2022·浙江·八年级期中)如图,已知,若要使得,则添加的一个条件不能是( )
A. B. C.AB=DC D.AC=DB
【答案】C
【分析】根据全等三角形的判定方法对各选项进行判断,即可得出结论.
【详解】解:∵,BC=CB,
A、当添加∠A=∠D时,可利用“AAS”判断△ABC≌△DCB,故此选项不符合题意;
B、当添加时,可利用“ASA”判断△ABC≌△DCB,故此选项不符合题意;
C、当添加AB=DC时,利用“SSA”不能判断△ABC≌△DCB,故此选项符合题意;
D、当添加AC=DB时,可利用“SAS”判断△ABC≌△DCB,故此选项不符合题意.故选:C.
【点睛】本题考查全等三角形的判定:全等三角形的判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
变式2. (2022·安徽·八年级期末)如图,AB=AC,D、E分别是AB、AC的中点,AM⊥CD于M,AN⊥BE干N.求证:AM=AN.
【解题思路】利用已知条件先证明△DBC≌△EBC,再证明△AMD≌△ANE,即可解答.
【解答过程】解:∵AB=AC,D、E分别是AB、AC的中点,∴AD=BD=AE=EC,∠B=∠C,
在△DBC和△EBC中 ∴△DBC≌△EBC,∴∠BDC=∠BDE,
∵∠BDC=∠ADM,∠BEC=∠AEN,∴∠ADM=∠AEN,
在△AMD和△ANE中∵∴△AMD≌△ANE∴AM=AN.
高频考点3:旋转模型
【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件.
【常见模型】
例3.(2022·江苏镇江市·八年级期末)如图,,
求证:(1);(2).
【答案】(1)见解析;(2)见解析
【分析】(1)根据垂直得到,求出,即可得到结果;(2)设交于,交于,根据全等三角形的性质得到,再根据已知条件转换即可;
【详解】证明:,,,
,,
在和中,,;
如图,设交于,交于,
,,,,
,,.
【点睛】本题主要考查了全等三角形的判定与性质,准确证明是解题的关键.
变式1.(2022·浙江八年级月考)如图,已知,,且,,,则的度数为( )
A. B. C. D.
【答案】C
【分析】由已知得△ABC≌△ADE,故有∠BAC=∠DAE,由∠EAB=120°及∠CAD=10°可求得∠AFB的度数,进而得∠GFD的度数,在△FGD中,由三角形的外角等于不相邻的两个内角的和即可求得∠EGF的度数.
【详解】在△ABC和△ADE中 ∴ △ABC≌△ADE(SAS)∴∠BAC=∠DAE
∵∠EAB=∠BAC+∠DAE+∠CAD=120°∴∠BAC=∠DAE
∴∠BAF=∠BAC+∠CAD=65°∴在△AFB中,∠AFB=180°-∠B-∠BAF=90°∴∠GFD=90°
在△FGD中,∠EGF=∠D+∠GFD=115°故选:C
【点睛】本题考查了三角形全等的判定和性质、三角形内角和定理,关键求得∠BAC的度数.
变式2. (2022 浦东新区期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.
【解题思路】(1)延长BD交CE于F,易证△EAC≌△DAB,可得BD=CE,∠ABD=∠ACE,根据∠AEC+∠ACE=90°,可得∠ABD+∠AEC=90°,即可解题;
(2)延长BD交CE于F,易证∠BAD=∠EAC,即可证明△EAC≌△DAB,可得BD=CE,∠ABD=∠ACE,根据∠ABC+∠ACB=90°,可以求得∠CBF+∠BCF=90°,即可解题.
【解答过程】证明:(1)延长BD交CE于F,
在△EAC和△DAB中,,
∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,
∵∠AEC+∠ACE=90°,∴∠ABD+∠AEC=90°,∴∠BFE=90°,即EC⊥BD;
(2)延长BD交CE于F,
∵∠BAD+∠CAD=90°,∠CAD+∠EAC=90°,∴∠BAD=∠EAC,
∵在△EAC和△DAB中,,
∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,
∵∠ABC+∠ACB=90°,∴∠CBF+∠BCF=∠ABC﹣∠ABD+∠ACB+∠ACE=90°,
∴∠BFC=90°,即EC⊥BD.
高频考点4:一线三等角模型
【模型解读】基本图形如下:此类图形通常告诉BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.
【常见模型】
例4.(2022 覃塘区期中)已知:D,A,E三点都在直线m上,在直线m的同一侧作△ABC,使AB=AC,连接BD,CE.(1)如图①,若∠BAC=90°,BD⊥m,CE⊥m,求证:△ABD≌△ACE;
(2)如图②,若∠BDA=∠AEC=∠BAC,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.
【解题思路】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA;
(2)由∠BDA=∠AEC=∠BAC,就可以求出∠BAD=∠ACE,进而由ASA就可以得出△BAD≌△ACE,就可以得出BD=AE,DA=CE,即可得出结论.
【解答过程】解:(1)证明:如图①,∵D,A,E三点都在直线m上,∠BAC=90°,
∴∠BAD+∠CAE=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,
∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,
在△ABD和△ACE中,,∴△ABD≌△ACE(AAS);
(2)DE=BD+CE.理由是:如图②,∵∠BDA=∠AEC=∠BAC,
∴由三角形内角和及平角性质,得:∠BAD+∠ABD=∠BAD+∠CAE=∠CAE+∠ACE,
∴∠ABD=∠CAE,∠BAD=∠ACE,
在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),
∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE.
变式1.(2022·无锡市八年级月考)(1)如图1,直线m经过等腰直角△ABC的直角顶点A,过点B、C分别作BD⊥m,CE⊥m,垂足分别是D、E.求证:BD+CE=DE;
(2)如图2,直线m经过△ABC的顶点A,AB=AC,在直线m上取两点 D、E,使∠ADB=∠AEC=α,补充∠BAC= (用α表示),线段BD、CE与DE之间满足BD+CE=DE,补充条件后并证明;
(3)在(2)的条件中,将直线m绕着点A逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB=∠AEC= (用α表示).通过观察或测量,猜想线段BD、CE与DE之间满足的数量关系,并予以证明.
【答案】(1)证明见详解,(2)∠BAC=,证法见详解,(3)180 -,DE=EC-BD,证明见详解.
【分析】(1)根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA;
(2)补充∠BAC=α.利用△ADB≌△CAE,即可得出三角形对应边之间的关系,即可得出答案;
(3)180 -α,DE=CE-BD,根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA,即可得出三角形对应边之间的关系,即可得出答案.
【详解】证明:(1)∵BD⊥m,CE⊥m,∠ABC=90°,AC=BC,
∴△ADB和△AEC都是直角三角形,∴∠DBA+∠DAB=90°,∴∠ECA+∠EAC=90°,
∵∠BAC=90°,∠DAB+∠EAC=90 ,∴∠DAB=∠ECA,
又∵∠ADB=∠CEA=90°,AB=BC,所以△ADB≌△CEA(AAS),
BD=AE,DA=EC,DE=DA+AE=EC+BD,BD+CE=DE.
(2)∵等腰△ABC中,AC=CB,∠ADB=∠BAC=∠CEA=α,
∴∠DAB+∠EAC=180°-α,∠ECA+∠CAE=180 -α,∴∠DAB=∠ECA,
∵∠ADB=∠CEA=α,AC=CB,∴△ADB≌△CEA(AAS),∴CE=AD,BD=AE,
∴AD+BE=CE+CD,所以BD+CE=DE.
(3)180 -α,数量关系为DE=CE-BD,
∵∠ADB=∠AEC= 180 -α,∠BAC=α,∴∠ABD+∠BAD=α,∠BAD+∠EAC=α,∴∠ABD=∠CAE,
∵AB=AC,∴△BAD≌△ACE(AAS),∴AD=CE,BD=AE,∴DE=AD-AE=EC-BD.
【点睛】点评:此题主要考查了三角形全等的证明,根据已知得出∠DAB=∠ECA,再利用全等三角形的判定方法得出是解决问题的关键.
变式2.(2022 香坊区期末)如图,在△ABC中,点D是边BC上一点,CD=AB,点E在边AC上,且AD=DE,∠BAD=∠CDE.(1)如图1,求证:BD=CE;(2)如图2,若DE平分∠ADC,在不添加辅助线的情况下,请直接写出图中所有与∠ADE相等的角(∠ADE除外).
【解题思路】(1)由“SAS”可证△ABD≌△DCE,可得BD=CE;
(2)由全等三角形的性质可得∠B=∠C,由三角形的外角性质和角平分线的性质可求解.
【解答过程】解:(1)在△ABD和△DCE中,
,∴△ABD≌△DCE(SAS),∴BD=CE;
(2)∵△ABD≌△DCE,∴∠B=∠C,
∵DE平分∠ADC,∴∠ADE=∠CDE=∠BAD,
∵∠ADC=∠B+∠BAD=∠ADE+∠CDE,
∴∠B=∠ADE=∠BAD=∠EDC=∠C,
∴与∠ADE相等的角有∠EDC,∠BAD,∠B,∠C.
高频考点5:三垂直全等模型
【模型解读】模型主体为两个直角三角形,且两条斜边互相垂直。
【常见模型】
例5.(2022·江西赣州市·八年级期末)已知:,,,.
(1)试猜想线段与的位置关系,并证明你的结论.
(2)若将沿方向平移至图2情形,其余条件不变,结论还成立吗?请说明理由.
(3)若将沿方向平移至图3情形,其余条件不变,结论还成立吗?请说明理由.
【答案】(1),见解析;(2)成立,理由见解析;(3)成立,理由见解析
【分析】(1)先用判断出,得出,进而判断出,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.
【详解】解:(1)理由如下:∵,,∴
在和中∴,∴
∵,∴,∴,∴;
(2)成立,理由如下:
∵,,∴,
在和中,
∴,∴,
∵,∴,∴,
在中,,∴;
(3)成立,理由如下:∵,,∴
在和中,
∴,∴,
∵,∴,
在中,,∴.
【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出是解本题的关键.
变式1.(2022·广东·八年级期末)如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,CE=AC,则下列结论中正确的是(  )
A.E为BC中点 B.2BE=CD C.CB=CD D.△ABC≌△CDE
【答案】D
【分析】首先利用HL定理证明Rt△ABC≌Rt△CDE,然后根据全等三角形的性质,即可一一判断.
【详解】∵∠ACB=∠CED=90° 在Rt△ABC与Rt△CDE中,,∴Rt△ABC≌Rt△CDE(HL),
∴CB=DE,CE=AC,CD=AB,△ABC≌△CDE,故D符合题意,其他选项不符合题意故选:D.
【点睛】本题考查全等三角形的判定与性质,掌握HL定理判定三角形全等是解题关键
变式2. (2022·浙江初二期中)如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.(1)∠D和∠ECB相等吗?若相等,请说明理由;(2)△ADC≌△BCE吗?若全等,请说明理由;(3)能否找到与AB+AD相等的线段,并说明理由。
【答案】解:(1)相等,理由如下∵∠DCE=90°,∠DAC=90°,
∴∠ECB+∠ACD=90°,∠D+∠ACD=90°∴∠D=∠ECB;
(2)全等,理由如下
在△ADC和△BCE中∴△ADC≌△BCE
(3)能,BE和AC,理由如下
∵△ADC≌△BCE∴AD=BC,AC=BE
∵AC=AB+BC∴AC=AB+AD ∴BE= AB+AD
高频考点6: 手拉手模型
【模型分析】
将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。
【模型图示】
公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得。
【常见模型】
(等腰)
(等边)
(等腰直角)
例6.(2022·甘肃庆阳市·八年级期末)在学习全等三角形知识时、教学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型” 兴趣小组进行了如下操究:
(1)如图1、两个等腰三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE,连接BD、CE、如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB全等的三角形是 ,此线BD和CE的数量关系是
(2)如图2、两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和CE的数量关系和位置关系,并说明理由:
(3)如图3,已知△ABC、请完成作图:以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE(等边三角形三条边相等,三个角都等于60°),连接BE,CD,两线交于点P,并直接写出线段BE和CD的数量关系及∠PBC+∠PCB的度数、
【答案】(1)△AEC,BD=CE;(2)BD=CE且BD⊥CE,理由见解析;(3)作图见解析,BE=CD,∠PBC+∠PCB=60°.
【分析】(1)根据SAS证明两个三角形全等即可;(2)通过条件证明△DAB≌△EAC(SAS),得到∠DBC+∠ECB=90°,即可证明BD⊥CE,从而得到结果;(3)根据已知条件证明即可得到证明;
【详解】解:(1)∵AB=AC,AE=AD,∠BAC=∠DAE,∴,
即,∴,∴BD=CE;
(2)BD=CE且BD⊥CE;理由如下:因为∠DAE=∠BAC=90°,如图2.
所以∠DAE+∠BAE=∠BAC+∠BAE.所以∠DAB=∠EAC.
在△DAB和△EAC中,所以△DAB≌△EAC(SAS).
所以BD=CE,∠DBA=∠ECA.
因为∠ECA+∠ECB+∠ABC=90°,所以∠DBA+∠ECB+∠ABC=90°. 即∠DBC+∠ECB=90°.
所以∠BPC=180°-(∠DBC+∠ECB)=90°.所以BD⊥CE.综上所述:BD=CE且BD⊥CE.
(3)如图3所示,BE=CD,∠PBC+∠PCB=60°.
由图可知,AD=AB,AE=AC,
∴,即,
∴,∴BE=CD,,
又∵,∴,
∴,∴∠PBC+∠PCB=60°.
【点睛】本题主要考查了全等三角形的知识点应用,准确分析图形是解题的关键.
变式1.(2022·河南八年级月考)(1)作图发现:如图1,已知,小涵同学以、为边向外作等边和等边,连接,.这时他发现与的数量关系是 .(2)拓展探究:如图2,已知,小涵同学以、为边向外作正方形和正方形,连接,,试判断与之间的数量关系,并说明理由.
【答案】(1)BE=CD;(2)BE=CD,理由见解析;
【分析】(1)利用等边三角形的性质得出,然后有,再利用SAS即可证明,则有;
(2)利用正方形的性质得出,然后有,再利用SAS即可证明,则有;
【详解】(1)如图1所示:和都是等边三角形,,
,即,
在和中,,.
(2),四边形和均为正方形,
,,,

在和中,,,
变式2. (2022·江西上饶市·八年级月考)如图, AB=CB, BD=BE, ∠ABC=∠DBE=a.
(1)当a=60°, 如图①则,∠DPE的度数______________
(2)若△BDE绕点B旋转一定角度,如图②所示,求∠DPE(用a表示)
【答案】(1)60°;(2)∠DPE=a
【分析】(1)利用SAAS证得△ABE≌△CBD,利用全等三角形的性质得到∠AEB=∠CDB,再利用三角形内角和定义以及等边三角形的性质即可解答;(2)利用SAAS证得△ABE≌△CBD,利用全等三角形的性质得到∠AEB=∠BDC,再利用三角形内角和定理即可完成.
【详解】(1)解:∵∠ABC=∠DBE∴∠ABC+∠CBE=∠DBE+∠CBE即∠ABE=∠CBD
在△ABE和△CBD中 ∴△ABE≌△CBD(SAS)∴∠AEB=∠CDB
∵∠ABC=∠DBE,AB=CB, BD=BE∴△ABC和△EBD是等边三角形∴∠BDE=∠EDB=60°
∵∠EDP+∠CDB=60°∴∠EDP+∠AEB=60°
∵∠DPE+∠AEB+∠BED+∠EDP=180°∴∠DPE=60°故答案为:60°
(2)如图:∵∠ABC=∠DBE=a∴∠ABC﹣∠EBC=∠DBE﹣∠EBC即∠ABE=∠CBD
在△ABE和△CBD中 ∴△ABE≌△CBD(SAS)∴∠AEB=∠BDC
∵∠DQB+∠DBE+∠BDC=180° ∠EQP+∠DPE+∠AEB=180°
又∵∠DQB=∠EQP∴∠DBE=∠DPE ∴∠DPE=a
【点睛】本题主要考查全等三角形的判定及性质,还涉及了等边三角形的判定及性质、三角形内角和定理等知识点,熟练掌握相关性质定理是解题关键.
高频考点7: 半角全等模型
【模型分析】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
【常见模型】
常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.
例7.(2022·河南新乡市·八年级期中)已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
(1)当∠MBN绕B点旋转到AE=CF时(如图1),求证:△ABE≌△CBF.(2)当∠MBN绕点B旋转到AE≠CF时,如图2,猜想线段AE,CF,EF有怎样的数量关系,并证明你的猜想.(3)当∠MBN绕点B旋转到图3这种情况下,猜想线段AE,CF,EF有怎样的数量关系,并证明你的猜想.
【答案】(1)见解析;(2)AE+CF=EF,证明见解析;(3)AE﹣CF=EF,证明见解析
【分析】(1)利用SAS定理证明△ABE≌△CBF;(2)延长DC至点K,使CK=AE,连接BK,分别证明△BAE≌△BCK、△KBF≌△EBF,根据全等三角形的性质、结合图形证明结论;(3)延长DC至G,使CG=AE,仿照(2)的证明方法解答.
【详解】(1)证明:在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);
(2)解:AE+CF=EF,理由如下:延长DC至点K,使CK=AE,连接BK,
在△BAE与△BCK中,,∴△BAE≌△BCK(SAS),∴BE=BK,∠ABE=∠KBC,
∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,
在△KBF与△EBF中,,
∴△KBF≌△EBF(SAS),∴KF=EF,∴AE+CF=KC+CF=KF=EF;
(3)解:AE﹣CF=EF,理由如下:延长DC至G,使CG=AE,
由(2)可知,△BAE≌△BCG(SAS),∴BE=BG,∠ABE=∠GBC,
∠GBF=∠GBC﹣∠FBC=∠ABE﹣∠FBC=120°+∠FBC﹣60°﹣∠FBC=60°,∴∠GBF=∠EBF,
∵BG=BE,∠GBF=∠EBF,BF=BF,∴△GBF≌△EBF,∴EF=GF,∴AE﹣CF=CG﹣CF=GF=EF.
【点睛】本题考查的是全等三角形的判定和性质,正确作出辅助线、掌握全等三角形的判定定理和性质定理是解题的关键.
变式1.(2022·浙江·绍兴八年级期中)问题情境:在等边△ABC的两边AB,AC上分别有两点M,N,点D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.
特例探究:如图1,当DM=DN时,(1)∠MDB=   度;(2)MN与BM,NC之间的数量关系为   ;
归纳证明:(3)如图2,当DM≠DN时,在NC的延长线上取点E,使CE=BM,连接DE,猜想MN与BM,NC之间的数量关系,并加以证明.
拓展应用:(4)△AMN的周长与△ABC的周长的比为   .
【答案】(1)30;(2)MN=BM+NC;(3)MN=BM+NC,证明见解析;(4)
【分析】(1)先证明△MDN是等边三角形,则MN=DM=DN,再证明Rt△DBM≌Rt△DCN(HL),得∠BDM=∠CDN=30°;(2)由(1)得DM=2BM,可得结论MN=2BM=BM+NC;归纳证明:先证△DBM≌△DCE(HL),得DM=DE,∠BDM=∠CDE,再证△MDN≌△EDN(SAS),得MN=NE,可得结论MN=BM+CN;
拓展应用:(3)首先根据题意利用SAS证明△DBM≌△DCE,然后证明△MDN≌△EDN,根据全等三角形对应相等通过线段之间的转化即可得到MN=BM+NC;
(4)由(3)得到MN=BM+NC,则△AMN的周长=2AB,△ABC的周长=3AB,即可得出结论.
【详解】特例探究:解:(1)∵DM=DN,∠MDN=60°,
∴△MDN是等边三角形,∴MN=DM=DN,
∵∠BDC=120°,BD=DC,∴∠DBC=∠DCB=30°,
∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBM=∠DCN=90°,
∵BD=CD,DM=DN,∴Rt△DBM≌Rt△DCN(HL),
∴∠MDB=∠NDC=30°,故答案为:30;
(2)由(1)得:DM=2BM,DM=MN,Rt△DBM≌Rt△DCN(HL),
∴BM=CN,∴DM=MN=2BM=BM+NC,即MN=BM+NC;
归纳证明(3)解:猜想:MN=BM+NC,证明如下:
∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,
∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,
∴∠MBD=∠NCD=90°.∴∠MBD=∠ECD=90°,
又∵BD=CD,BM=CE,∴△DBM≌△DCE(SAS),
∴DM=DE,∠MDB=∠EDC,
∵∠MDN=60°,∠BDC=120°,∴∠MDB+∠NDC=60°,
∴∠EDN=∠NDC+∠EDC=∠MDB+∠NDC=60°,
∴∠EDN=∠MDN,
又∵DN=DN,∴△MDN≌△EDN(SAS),
∴MN=EN=EC+NC=BM+NC;
拓展应用(4)解:由(1)(2)得:MN=BM+NC,
∴△AMN的周长=AM+MN+AN=AM+BM+NC+AN=AB+AC=2AB,
∵△ABC是等边三角形,∴AB=BC=AC,∴△ABC的周长=3AB,
∴△AMN的周长与△ABC的周长的比为=,故答案为:.
【点睛】此题考查了等边三角形的性质的,全等三角形的判定和性质等知识,解题的关键是熟练掌握等边三角形的性质,全等三角形的判定和性质.
变式2. (2022·南昌八年级期中)在图1、图2,图3中.点E、F分别是四边形边上的点;下面请你根据相应的条件解决问题.
特例探索:(1)在图1中,四边形为正方形(正方形四边相等,四个内角均为直角),,延长至G,使.则__________.
在图2中,,,,,,;则__________.
归纳证明:(2)在图3中,,.且,请你观察(1)中的结果,猜想图3中线段之间的数量关系,用等式表示出来,并利用图3证明你发现的关系式.
实际应用:(3)图4是某公路筑建工程平面示意图,指挥中心设在O处,A处、B处分别是甲、乙两公路起点,它们分别在指挥中心的北偏东和南偏东的方向上.且A、B两处分别与指挥中心O的距离相等:其中甲公路是从A处开始沿正东方向筑建,乙公路是从B处开始沿北偏东40方向筑建:甲、乙两公路的路基筑建速度分别是每天150米、180米,当两公路同时开工后的第五天收工时,分别筑建到C、D处,经测量.试求C与D两处之间的距离.
【答案】(1)5,2.5;(2)EF=BE+FD;(3)1650m.
【分析】(1)先证明出△ABE△ADG,再根据∠DAF+∠BAE=45°得出∠EAF=∠FAG,利用△AEF△AGF即可得出结果;延长CD到G,使BE=DG,连接AG,同理证明即可;
(2)延长FD到G,使BE=DG,利用条件证明△ABE△ADG,再根据∠DAF+∠BAE=45°得出∠EAF=∠FAG,利用△AEF△AGF即可得出结论;(3)依照结论(2),延长DB到E,使BE=AC,连接OE,通过求证△OAC△OBE和△OCD△OED得出CD=DE=BD+BE=BD+AC,代入数据求值即可.
【详解】(1)∵BE=DG=2,∠B=∠ADG=90°,AB=AD;
∴△ABE△ADG(SAS),∴AE=AG, ∠BAE=∠DAG,
又∵∠DAF+∠BAE=45°,∴∠DAF+∠DAG=45°,∴∠EAF=∠FAG,
∴△AEF△AGF(SAS),∴EF=GD+DF=3+2=5;
延长CD到G,使BE=DG,连接AG,同理可证:△ABE△ADG,△AEF△AGF,∴EF=GD+DF=2.5;
(2)延长FD到G,使BE=DG,
∵BE=DG,∠B=∠ADG,AB=AD;∴△ABE△ADG(SAS),∴AE=AG, ∠BAE=∠DAG,
又∵∠DAF+∠BAE=45°,∴∠DAF+∠DAG=45°,∴∠EAF=∠FAG,
∴△AEF△AGF(SAS),∴EF=GD+DF=DF+BE;
(3)分析可得(2)中结论仍然成立,延长DB到E,使BE=AC,连接OE,
∵∠OAC=90°+20°=110°,∠DBE=180°-70°=110°,OA=OB,∴△OAC△OBE,
∴OE=OC,即可证明△OCD△OED,∴CD=DE=BD+BE=BD+AC=(150+180)5=1650m.
【点睛】此题属于推理探究类综合题考查全等三角形的性质及判定,有一定难度,主要总结该类题的规律解题即可.
高频考点8:截长补短模型
【模型分析】截长补短的方法适用于求证线段的和差倍分关系。截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段。该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等)。
【模型图示】
(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段。
例:如图,求证BE+DC=AD
方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE
(2)补短:将短线段延长,证与长线段相等
例:如图,求证BE+DC=AD
方法:①延长DC至点M处,使CM=BE,证DM=AD;②延长DC至点M处,使DM=AD,证CM=BE
例1.(2022·广西玉林市·八年级期末)在中,,点D、E分别在、上,连接、和;并且有,.(1)求的度数;(2)求证:.
【答案】(1);(2)见解析
【分析】(1)由,,可得为等边三角形,由,,,可证
(2)延长至F,使,连接, 由,,且,可证 由,可证为等边三角形,可得, 可推出结论,
【详解】解:(1)∵,,∴为等边三角形, ∴,
∵,,∵,∴
(2)如图,延长至F,使,连接, 由(1)得为等边三角形,
∴,∵,
又∵,且,∴,
在与中,∴
∴,∴,∴
又∵,∴为等边三角形∴,
又∵,且,∴,
【点睛】本题考查等边三角形的判定与性质,三角形全等判定与性质,线段和差,三角形外角性质,关键是引辅助线构造三角形全等证明等边三角形.
变式1.(2022·四川南充·八年级期末)(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.
思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.
方法1:在上截取,连接,得到全等三角形,进而解决问题;
方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.
结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.
(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;
【答案】(1)证明见解析;(2);理由见解析;
【分析】(1)方法1:在上截取,连接,得到全等三角形,进而解决问题;方法2:延长到点,使得,连接,得到全等三角形,进而解决问题;
(2)延长到点,使,连接,证明,可得,即
【详解】解:(1)方法1:在上截,连接,如图.平分,.
在和中,,,,.
,..,.
方法2:延长到点,使得,连接,如图.
平分,.在和中,,
.,.
,.,,.
(2)、、之间的数量关系为:.(或者:,).
延长到点,使,连接,如图2所示.
由(1)可知,.为等边三角形.,.
,..
,为等边三角形.,.
,,即.
在和中,,.,
,.
高频考点9:倍长中线模型
【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
【常见模型】
例1.(2022·河南新乡学院附属中学八年级月考)如图,在△ABC中,AB=5,AC=3,AD是BC边上的中线,AD的取值范围是( )
A.1<AD<6 B.1<AD<4 C.2<AD<8 D.2<AD<4
【答案】B
【分析】先延长到,且,并连接,由于,,利用易证,从而可得,在中,再利用三角形三边的关系,可得,从而易求.
【详解】解:延长到,使,连接,则AE=2AD,
∵,,,∴,,
在中,,即,∴.故选:.
【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.
变式1.(2022·湖北八年级期末)在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.(1)如图1,是的中线,求的取值范围.我们可以延长到点,使,连接,易证,所以.接下来,在中利用三角形的三边关系可求得的取值范围,从而得到中线的取值范围是 ;
(2)如图2,是的中线,点在边上,交于点且,求证:;
(3)如图3,在四边形中,,点是的中点,连接,且,试猜想线段之间满足的数量关系,并予以证明.
【答案】(1);(2)见解析;(3),证明见解析
【分析】(1)延长到点,使,连接,即可证明,则可得,在中,根据三角形三边关系即可得到的取值范围,进而得到中线的取值范围;
(2)延长到点使,连接,由(1)知,则可得,由可知,,由角度关系即可推出,故,即可得到;
(3)延长到,使,连接,即可证明,则可得由,以及角度关系即可证明点在一条直线上,通过证明≌,即可得到,进而通过线段的和差关系得到.
【详解】(1)延长到点,使,连接,
∵是的中线,∴,
在和中,,,,
∴,∴,
在中,,
∴,即,∴;
(2)证明:延长到点使,连接,
由(1)知,
∴,,,
,,,,,
(3),延长到,使,连接,
,,
,,,点在一条直线上,
,∴,
∴在和中,,,,
∴≌,,∵,.
【点睛】本题考查三角形中线、全等三角形的证明和性质、三角形的三边关系、等腰三角形的性质、平行线的性质、平角的概念、线段的和差关系等,正确的作出辅助线以及综合运用以上知识是解答本题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题06 全等三角形的基本模型 专项提升(精讲)
全等在初中数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,该份资料就全等三角形中平移型全等、轴对称(翻折)型全等、旋转型全等、三垂直型全等、一线三等角型全等、手拉手型全等、半角模型、倍长中线模型、截长补短模型等经典模型进行梳理及对应试题分析,方便掌握。
高频考点1:平移模型
【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.
【常见模型】
例1.(2022·浙江杭州·八年级期中)如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,AB // DE,AB = DE,∠A = ∠D.(1)求证:;(2)若BF = 11,EC = 5,求BE的长.
变式1. (2022 富顺县校级月考)如图1,A,B,C,D在同一直线上,AB=CD,DE∥AF,且DE=AF,求证:△AFC≌△DEB.如果将BD沿着AD边的方向平行移动,如图2,3时,其余条件不变,结论是否成立?如果成立,请予以证明;如果不成立,请说明理由.
2.(2022 雁塔区校级期中)如图①点A、B、C、D在同一直线上,AB=CD,作CE⊥AD,BF⊥AD,且AE=DF.(1)证明:EF平分线段BC;(2)若△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.
点2:轴对称模型
【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.
【常见模型】
例2.(2022·河南南阳市·八年级期末)如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点O,(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.
变式1. (2022·浙江·八年级期中)如图,已知,若要使得,则添加的一个条件不能是( )
A. B. C.AB=DC D.AC=DB
变式2. (2022·安徽·八年级期末)如图,AB=AC,D、E分别是AB、AC的中点,AM⊥CD于M,AN⊥BE干N.求证:AM=AN.
高频考点3:旋转模型
【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件.
【常见模型】
例3.(2022·江苏镇江市·八年级期末)如图,,
求证:(1);(2).
变式1.(2022·浙江八年级月考)如图,已知,,且,,,则的度数为( )
A. B. C. D.
变式2. (2022 浦东新区期末)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.
频考点4:一线三等角模型
【模型解读】基本图形如下:此类图形通常告诉BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.
【常见模型】
例4.(2022 覃塘区期中)已知:D,A,E三点都在直线m上,在直线m的同一侧作△ABC,使AB=AC,连接BD,CE.(1)如图①,若∠BAC=90°,BD⊥m,CE⊥m,求证:△ABD≌△ACE;
(2)如图②,若∠BDA=∠AEC=∠BAC,请判断BD,CE,DE三条线段之间的数量关系,并说明理由.
1.(2022·无锡市八年级月考)(1)如图1,直线m经过等腰直角△ABC的直角顶点A,过点B、C分别作BD⊥m,CE⊥m,垂足分别是D、E.求证:BD+CE=DE;
(2)如图2,直线m经过△ABC的顶点A,AB=AC,在直线m上取两点 D、E,使∠ADB=∠AEC=α,补充∠BAC= (用α表示),线段BD、CE与DE之间满足BD+CE=DE,补充条件后并证明;
(3)在(2)的条件中,将直线m绕着点A逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB=∠AEC= (用α表示).通过观察或测量,猜想线段BD、CE与DE之间满足的数量关系,并予以证明.
变式2.(2022 香坊区期末)如图,在△ABC中,点D是边BC上一点,CD=AB,点E在边AC上,且AD=DE,∠BAD=∠CDE.(1)如图1,求证:BD=CE;(2)如图2,若DE平分∠ADC,在不添加辅助线的情况下,请直接写出图中所有与∠ADE相等的角(∠ADE除外).
高频考点5:三垂直全等模型
【模型解读】模型主体为两个直角三角形,且两条斜边互相垂直。
【常见模型】
例5.(2022·江西赣州市·八年级期末)已知:,,,.
(1)试猜想线段与的位置关系,并证明你的结论.
(2)若将沿方向平移至图2情形,其余条件不变,结论还成立吗?请说明理由.
(3)若将沿方向平移至图3情形,其余条件不变,结论还成立吗?请说明理由.
变式1.(2022·广东·八年级期末)如图,在△ABC和△CDE中,若∠ACB=∠CED=90°,AB=CD,CE=AC,则下列结论中正确的是(  )
A.E为BC中点 B.2BE=CD C.CB=CD D.△ABC≌△CDE
变式2. (2022·浙江初二期中)如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC于B,且DC=EC.(1)∠D和∠ECB相等吗?若相等,请说明理由;(2)△ADC≌△BCE吗?若全等,请说明理由;(3)能否找到与AB+AD相等的线段,并说明理由。
高频考点6: 手拉手模型
【模型分析】
将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等。
【模型图示】
公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”。对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得。
【常见模型】
(等腰)
(等边)
(等腰直角)
例6.(2022·甘肃庆阳市·八年级期末)在学习全等三角形知识时、教学兴趣小组发现这样一个模型:它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们得知这种模型称为“手拉手模型” 兴趣小组进行了如下操究:
(1)如图1、两个等腰三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE,连接BD、CE、如果把小等腰三角形的腰长看作小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是“手拉手模型”,在这个模型中,和△ADB全等的三角形是 ,此线BD和CE的数量关系是
(2)如图2、两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,连接BD,CE,两线交于点P,请判断线段BD和CE的数量关系和位置关系,并说明理由:
(3)如图3,已知△ABC、请完成作图:以AB、AC为边分别向△ABC外作等边△ABD和等边△ACE(等边三角形三条边相等,三个角都等于60°),连接BE,CD,两线交于点P,并直接写出线段BE和CD的数量关系及∠PBC+∠PCB的度数、
变式1.(2022·河南八年级月考)(1)作图发现:如图1,已知,小涵同学以、为边向外作等边和等边,连接,.这时他发现与的数量关系是 .(2)拓展探究:如图2,已知,小涵同学以、为边向外作正方形和正方形,连接,,试判断与之间的数量关系,并说明理由.
变式2. (2022·江西上饶市·八年级月考)如图, AB=CB, BD=BE, ∠ABC=∠DBE=a.
(1)当a=60°, 如图①则,∠DPE的度数______________
(2)若△BDE绕点B旋转一定角度,如图②所示,求∠DPE(用a表示)
高频考点7: 半角全等模型
【模型分析】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
【常见模型】
常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.
例7.(2022·河南新乡市·八年级期中)已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.
(1)当∠MBN绕B点旋转到AE=CF时(如图1),求证:△ABE≌△CBF.(2)当∠MBN绕点B旋转到AE≠CF时,如图2,猜想线段AE,CF,EF有怎样的数量关系,并证明你的猜想.(3)当∠MBN绕点B旋转到图3这种情况下,猜想线段AE,CF,EF有怎样的数量关系,并证明你的猜想.
变式1.(2022·浙江·绍兴八年级期中)问题情境:在等边△ABC的两边AB,AC上分别有两点M,N,点D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.
特例探究:如图1,当DM=DN时,(1)∠MDB=   度;(2)MN与BM,NC之间的数量关系为   ;
归纳证明:(3)如图2,当DM≠DN时,在NC的延长线上取点E,使CE=BM,连接DE,猜想MN与BM,NC之间的数量关系,并加以证明.
拓展应用:(4)△AMN的周长与△ABC的周长的比为   .
变式2. (2022·南昌八年级期中)在图1、图2,图3中.点E、F分别是四边形边上的点;下面请你根据相应的条件解决问题.
特例探索:(1)在图1中,四边形为正方形(正方形四边相等,四个内角均为直角),,延长至G,使.则__________.
在图2中,,,,,,;则__________.
归纳证明:(2)在图3中,,.且,请你观察(1)中的结果,猜想图3中线段之间的数量关系,用等式表示出来,并利用图3证明你发现的关系式.
实际应用:(3)图4是某公路筑建工程平面示意图,指挥中心设在O处,A处、B处分别是甲、乙两公路起点,它们分别在指挥中心的北偏东和南偏东的方向上.且A、B两处分别与指挥中心O的距离相等:其中甲公路是从A处开始沿正东方向筑建,乙公路是从B处开始沿北偏东40方向筑建:甲、乙两公路的路基筑建速度分别是每天150米、180米,当两公路同时开工后的第五天收工时,分别筑建到C、D处,经测量.试求C与D两处之间的距离.
高频考点8:截长补短模型
【模型分析】截长补短的方法适用于求证线段的和差倍分关系。截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段。该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等)。
【模型图示】
(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段。
例:如图,求证BE+DC=AD
方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE
(2)补短:将短线段延长,证与长线段相等
例:如图,求证BE+DC=AD
方法:①延长DC至点M处,使CM=BE,证DM=AD;②延长DC至点M处,使DM=AD,证CM=BE
例1.(2022·广西玉林市·八年级期末)在中,,点D、E分别在、上,连接、和;并且有,.(1)求的度数;(2)求证:.
变式1.(2022·四川南充·八年级期末)(1)阅读理解:问题:如图1,在四边形中,对角线平分,.求证:.
思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.
方法1:在上截取,连接,得到全等三角形,进而解决问题;
方法2:延长到点,使得,连接,得到全等三角形,进而解决问题.
结合图1,在方法1和方法2中任选一种,添加辅助线并完成证明.
(2)问题解决:如图2,在(1)的条件下,连接,当时,探究线段,,之间的数量关系,并说明理由;
高频考点9:倍长中线模型
【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
【常见模型】
例1.(2022·河南新乡学院附属中学八年级月考)如图,在△ABC中,AB=5,AC=3,AD是BC边上的中线,AD的取值范围是( )
A.1<AD<6 B.1<AD<4 C.2<AD<8 D.2<AD<4
变式1.(2022·湖北八年级期末)在通过构造全等三角形解决的问题中,有一种典型的方法是倍延中线.(1)如图1,是的中线,求的取值范围.我们可以延长到点,使,连接,易证,所以.接下来,在中利用三角形的三边关系可求得的取值范围,从而得到中线的取值范围是 ;
(2)如图2,是的中线,点在边上,交于点且,求证:;
(3)如图3,在四边形中,,点是的中点,连接,且,试猜想线段之间满足的数量关系,并予以证明.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录