苏南中学2013年秋学期八年级第三次月考
数学试卷
(满分150分,时间120分钟)
一.选择题(共10小题,满分40分,每小题4分)
1.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有( )
A.
1对
B.
2对
C.
3对
D.
4对
2.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A.
∠A=∠C
B.
AD=CB
C.
BE=DF
D.
AD∥BC
3.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是( )
A.
△ABD≌△CBD
B.
△ABC≌△ADC
C.
△AOB≌△COB
D.
△AOD≌△COD
4.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A.
∠BCA=∠F
B.
∠B=∠E
C.
BC∥EF
D.
∠A=∠EDF
5.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )
A.
1个
B.
2个
C.
3个
D.
4个
6.在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是( )
A.
AB=DE,AC=DF
B.
AC=EF,BC=DF
C.
AB=DE,BC=EF
D.
∠C=∠F,BC=EF
7.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是( )
A.
8
B.
5
C.
3
D.
2
8.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?( )
A.
△ACF
B.
△ADE
C.
△ABC
D.
△BCF
9.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )
A.
50
B.
62
C.
65
D.
68
10.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为( )
A.
m+2n=1
B.
m﹣2n=1
C.
2n﹣m=1
D.
n﹣2m=1
二.填空题(共4小题,满分20分,每小题5分)
11.如图,AF=DC,BC∥EF,只需补充一个条件 _________ ,就得△ABC≌△DEF.
12.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是 _________ (只写一个条件即可).
13.已知点A、B的坐标分别为:(2,0),(2,4),以A、B、P为顶点的三角形与△ABO全等,写出三个符合条件的点P的坐标: _________ .
14.如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为 _________ ①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.
三.解答题(共9小题,满分90分)
15.(8分)如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;
求证:BC=DC.
16.(8分)如图,C是AB的中点,AD=BE,CD=CE.
求证:∠A=∠B.
17.(8分)如图所示,将一长方形纸片ABCD折叠,使点C与点A重合,点D落在点E处,折痕为MN,图中有全等三角形吗?若有,请找出并证明.
18.(8分)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连接DF.在所作图中,寻找一对全等三角形,并加以证明.(不写作法,保留作图痕迹)
19.(10分)如图,OP平分∠AOB,且OA=OB.
(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);
(2)从(1)中任选一个结论进行证明.
20.(10分)如图,公园有一条“Z”字形道路,其中AB∥CD,在E,M,F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.
21.(12分)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.
(1)叙述三角形全等的判定方法中的推论AAS;
(2)证明推论AAS.
要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.
22.(12分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
23.(14分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,
则BE _________ CF;EF _________ |BE﹣AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件 _________ ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
详细解析+考点分析+名师点评
一.选择题(共10小题,满分40分,每小题4分)
1.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有( )
A.
1对
B.
2对
C.
3对
D.
4对
考点:
全等三角形的判定.
分析:
首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.
解答:
解:∵在△ABC和△ADC中,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,∠BCA=∠DCA,
∵在△ABO和△ADO中,
∴△ABO≌△ADO(SAS),
∵在△BOC和△DOC中,
∴△BOC≌△DOC(SAS),
故选:C.
点评:
考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
2.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A.
∠A=∠C
B.
AD=CB
C.
BE=DF
D.
AD∥BC
考点:
全等三角形的判定.
分析:
求出AF=CE,再根据全等三角形的判定定理判断即可.
解答:
解:∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
A、∵在△ADF和△CBE中
∴△ADF≌△CBE(ASA),正确,故本选项错误;
B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;
C、∵在△ADF和△CBE中
∴△ADF≌△CBE(SAS),正确,故本选项错误;
D、∵AD∥BC,
∴∠A=∠C,
∵在△ADF和△CBE中
∴△ADF≌△CBE(ASA),正确,故本选项错误;
故选B.
点评:
本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
3.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是( )
A.
△ABD≌△CBD
B.
△ABC≌△ADC
C.
△AOB≌△COB
D.
△AOD≌△COD
考点:
全等三角形的判定.
分析:
根据轴对称的性质,对折的两部分是完全重合的,结合图形找出全等的三角形,然后即可得解.
解答:
解:∵四边形ABCD关于BD所在的直线对称,
∴△ABD≌△CBD,△AOB≌△COB,△AOD≌△COD,故A、C、D判断正确;
∵AB≠AD,
∴△ABC和△ADC不全等,故B判断不正确.
故选B.
点评:
本题考查了全等三角形的判定,根据对折的两部分是完全重合的找出全等的三角形是解题的关键.
4.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A.
∠BCA=∠F
B.
∠B=∠E
C.
BC∥EF
D.
∠A=∠EDF
考点:
全等三角形的判定.
分析:
全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.
解答:
解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;
B、∵在△ABC和△DEF中
,
∴△ABC≌△DEF(SAS),故本选项正确;
C、∵BC∥EF,
∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;
D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.
故选B.
点评:
本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.
5.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )
A.
1个
B.
2个
C.
3个
D.
4个
考点:
全等三角形的判定.
分析:
根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.
解答:
解:∵∠E=∠F=90°,∠B=∠C,AE=AF,
∴△AEB≌△AFC;(AAS)
∴∠FAM=∠EAN,
∴∠EAN﹣∠MAN=∠FAM﹣∠MAN,即∠EAM=∠FAN;(故③正确)
又∵∠E=∠F=90°,AE=AF,
∴△EAM≌△FAN;(ASA)
∴EM=FN;(故①正确)
由△AEB≌△AFC知:∠B=∠C,AC=AB;
又∵∠CAB=∠BAC,
∴△ACN≌△ABM;(故④正确)
由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;
故选C.
点评:
此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.
6.在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是( )
A.
AB=DE,AC=DF
B.
AC=EF,BC=DF
C.
AB=DE,BC=EF
D.
∠C=∠F,BC=EF
考点:
直角三角形全等的判定.
分析:
针对选项提供的已知条件,结合直角三角形全等的判定方法对选项逐一验证,其中B虽是两边相等,但不是对应边对应相等,也不能判定三角形全等.
解答:
解:A、由SAS能判定△ABC和△DEF全等;
B、当∠A=∠D=90°时,AC与EF不是对应边,不能判定△ABC和△DEF全等;
C、由HL能判定△ABC和△DEF全等;
D、由AAS能判定△ABC和△DEF全等.
故选B.
点评:
本题考查了直角三角形全等的判定方法:SSS,ASA,SAS,AAS,HL.做题时要认真验证各选项是否符合全等要求.
7.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是( )
A.
8
B.
5
C.
3
D.
2
考点:
直角三角形全等的判定;全等三角形的性质.
分析:
根据已知条件,观察图形得∠CAE+∠ACD=∠ACD+∠BCD,∠CAE=∠BCD,然后证△AEC≌△CDB后求解.
解答:
解:∵∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,
∴∠CAE+∠ACD=∠ACD+∠BCD,
∴∠CAE=∠BCD,
又∵∠AEC=∠CDB=90°,AC=BC,
∴△AEC≌△CDB.
∴CE=BD=2,CD=AE=5,
∴ED=CD﹣CE=5﹣2=3(cm).
故选C.
点评:
本题考查了直角三角形全等的判定方法;题目利用全等三角形的判定和性质求解,发现并利用∠CAE+∠ACD=∠ACD+∠BCD,∠CAE=∠BCD,是解题的关键.
8.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?( )
A.
△ACF
B.
△ADE
C.
△ABC
D.
△BCF
考点:
全等三角形的判定.
分析:
根据全等三角形的判定定理(SAS,ASA,AAS,SSS)结合图形进行判断即可.
解答:
解:根据图象可知△ACD和△ADE全等,
理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,
∴△ACD≌△AED,
即△ACD和△ADE全等,
故选B.
点评:
本题考查了全等三角形的判定的应用,主要考查学生的观察图形的能力和推理能力,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.
9.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )
A.
50
B.
62
C.
65
D.
68
考点:
全等三角形的判定与性质.
专题:
压轴题.
分析:
由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;
同理证得△BGC≌△DHC,GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.
解答:
解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH?∠EAB=∠EFA=∠BGA=90°,
∠EAF+∠BAG=90°,∠ABG+∠BAG=90°?∠EAF=∠ABG,
∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG?△EFA≌△ABG
∴AF=BG,AG=EF.
同理证得△BGC≌△DHC得GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16
故S=(6+4)×16﹣3×4﹣6×3=50.
故选A.
点评:
本题考查的是全等三角形的判定的相关知识.作辅助线是本题的关键.
10.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为( )
A.
m+2n=1
B.
m﹣2n=1
C.
2n﹣m=1
D.
n﹣2m=1
考点:
全等三角形的判定与性质;坐标与图形性质;三角形的角平分线、中线和高.
专题:
压轴题.
分析:
根据OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,得出C点在∠BOA的角平分线上,进而得出C点横纵坐标相等,进而得出答案.
解答:
解:∵OA=OB;分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,
∴C点在∠BOA的角平分线上,
∴C点到横纵坐标轴距离相等,进而得出,m﹣1=2n,
即m﹣2n=1.
故选:B.
点评:
此题主要考查了角平分线的性质以及坐标点的性质,利用角平分线的作法得出C点坐标性质是解题关键.
二.填空题(共4小题,满分20分,每小题5分)
11.如图,AF=DC,BC∥EF,只需补充一个条件 BC=EF ,就得△ABC≌△DEF.
考点:
全等三角形的判定.
专题:
开放型.
分析:
补充条件BC=EF,首先根据AF=DC可得AC=DF,再根据BC∥EF可得∠EFC=∠BCF,然后再加上条件CB=EF可利用SAS定理证明△ABC≌△DEF.
解答:
解:补充条件BC=EF,
∵AF=DC,
∴AF+FC=CD+FC,
即AC=DF,
∵BC∥EF,
∴∠EFC=∠BCF,
∵在△ABC和△DEF中,
,
∴△ABC≌△DEF(SAS).
故答案为:BC=EF.
点评:
此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
12.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是 ∠B=∠C(答案不唯一) (只写一个条件即可).
考点:
全等三角形的判定.
专题:
开放型.
分析:
由题意得,AE=AD,∠A=∠A(公共角),可选择利用AAS、SAS进行全等的判定,答案不唯一.
解答:
解:添加∠B=∠C.
在△ABE和△ACD中,∵,
∴△ABE≌△ACD(AAS).
故答案可为:∠B=∠C.
点评:
本题考查了全等三角形的判定,属于开放型题目,解答本题需要同学们熟练掌握三角形全等的几种判定定理.
13.已知点A、B的坐标分别为:(2,0),(2,4),以A、B、P为顶点的三角形与△ABO全等,写出三个符合条件的点P的坐标: (4,0)或(4,4)或(0,4) .
考点:
全等三角形的性质;坐标与图形性质.
专题:
开放型.
分析:
画出图形,根据全等三角形的性质和坐标轴与图形的性质可求点P的坐标.
解答:
解:如图,
∵△ABO≌△ABP,
∴①OA=AP1,点P1的坐标:(4,0);
②OA=BP2,点P2的坐标:(0,4);
③OA=BP3,点P3的坐标:(4,4).
故填:(4,0),(4,4),(0,4).
点评:
本题考查了全等三角形的性质及坐标与图形的性质;解题关键是要懂得找全等三角形,利用全等三角形的性质求解.
14.如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为 ①②④ ①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.
考点:
全等三角形的判定与性质.
分析:
要得到OE=OF,就要让△OCE≌△OCF,①②④都行,只有③EC=FC不行,因为证明三角形全等没有边边角定理.
解答:
解:①若①∠OCE=∠OCF,根据三角形角平分线的性质可得,∠EOC=∠COF,故居ASA定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;
②若∠OEC=∠OFC,同①可得△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;
③若EC=FC条件不够不能得出.错误;
④若EF⊥OC,根据SSS定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确.
故填①②④.
点评:
本题主要考查了三角形全等的判与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.
三.解答题(共9小题,满分90分)
15.(8分)如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;
求证:BC=DC.
考点:
全等三角形的判定与性质.
专题:
证明题;压轴题.
分析:
先求出∠ACB=∠ECD,再利用“角边角”证明△ABC和△EDC全等,然后根据全等三角形对应边相等证明即可.
解答:
证明:∵∠BCE=∠DCA,
∴∠BCE+∠ACE=∠DCA+∠ACE,
即∠ACB=∠ECD,
在△ABC和△EDC中,,
∴△ABC≌△EDC(ASA),
∴BC=DC.
点评:
本题考查了全等三角形的判定与性质,求出相等的角∠ACB=∠ECD是解题的关键,也是本题的难点.
16.(8分)如图,C是AB的中点,AD=BE,CD=CE.
求证:∠A=∠B.
考点:
全等三角形的判定与性质.
专题:
证明题;压轴题.
分析:
根据中点定义求出AC=BC,然后利用“SSS”证明△ACD和△BCE全等,再根据全等三角形对应角相等证明即可.
解答:
证明:∵C是AB的中点,
∴AC=BC,
在△ACD和△BCE中,,
∴△ACD≌△BCE(SSS),
∴∠A=∠B.
点评:
本题考查了全等三角形的判定与性质,比较简单,主要利用了三边对应相等,两三角形全等,以及全等三角形对应角相等的性质.
17.(8分)如图所示,将一长方形纸片ABCD折叠,使点C与点A重合,点D落在点E处,折痕为MN,图中有全等三角形吗?若有,请找出并证明.
考点:
全等三角形的判定.
专题:
探究型.
分析:
根据折叠前后不变的量,找到△ABN≌△AEM,两边和夹角对应相等.
解答:
解:有,△ABN≌△AEM.
证明:∵四边形ABCD是长方形,
∴AB=DC,∠B=∠C=∠DAB=90°
∵四边形NCDM翻折得到四边形NAEM,
∴AE=CD,∠E=∠D=90°,∠EAN=∠C=90°.
∴AB=AE,∠B=∠E,
∠DAB=∠EAN,
即:∠BAN+∠NAM=∠EAM+∠NAM,
∴∠BAN=∠EAM.
在△ABN与△AEM中,
∴△ABN≌△AEM(ASA).
点评:
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
18.(8分)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连接DF.在所作图中,寻找一对全等三角形,并加以证明.(不写作法,保留作图痕迹)
考点:
作图—基本作图;直角三角形全等的判定.
专题:
作图题.
分析:
先根据题意作图,再利用AAS判定△BOE≌△BOF全等即可.
解答:
解:(1)画角平分线,线段的垂直平分线;((3分),仅画出1条得2分)
(2)△BOE≌△BOF(4分),证明全等.(6分)
证明:∵BD为∠ABC的角平分线
∴∠ABO=∠OBF
∵EF⊥BD
∴∠BOE=∠BOF
在△BOE与△BOF中,
,
∴△BOE≌△BOF(ASA)
点评:
此题不但要求学生对常用的画图方法有所掌握,还要对全等三角形的判定方法能够熟练运用.
19.(10分)如图,OP平分∠AOB,且OA=OB.
(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);
(2)从(1)中任选一个结论进行证明.
考点:
全等三角形的判定.
专题:
证明题;开放型.
分析:
先根据∠AOP=∠BOP,OP=OP,OA=OB,(SAS)得出△APO≌△BPO,其他三角形全等就能依次得出.
解答:
解:(1)△APO≌△BPO,△ADO≌△BCO,△OCP≌△ODP,△ACP≌△BDP.
(2)证明△APO≌△BPO,
∵OP平分∠AOB,
∴∠AOP=∠BOP,
又∵OP=OP,OA=OB,(SAS)
∴△APO≌△BPO.
点评:
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
20.(10分)如图,公园有一条“Z”字形道路,其中AB∥CD,在E,M,F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.
考点:
全等三角形的应用.
专题:
应用题.
分析:
问题可以转化为证明∠BME=∠CMF,也就需要证明这两个角所在的三角形全等.围绕已知,找全等的条件.
解答:
解:三个小石凳在一条直线上.
证明如下:连接EM,MF,
∵M为BC中点,
∴BM=MC.
又∵AB∥CD,
∴∠EBM=∠FCM.
在△BEM和△CFM中,
BE=CF,∠EBM=∠FCM,BM=CM,
∴△BEM≌△CFM(SAS),
∴∠BME=∠CMF,
又∠BMF+∠CMF=180°,
∴∠BMF+∠BME=180°,
∴E,M,F在一条直线上.
点评:
本题考查了全等三角形的应用;关键是要把题目的问题转化为证明角相等,进而借助线段BC得到结论,说明E,M,F在一条直线上.
21.(12分)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.
(1)叙述三角形全等的判定方法中的推论AAS;
(2)证明推论AAS.
要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.
考点:
全等三角形的判定;命题与定理.
分析:
(1)两边及其夹角分别对应相等的两个三角形全等.
(2)根据三角形内角和定理和全等三角形的判断定理ASA来证明.
解答:
解:(1)三角形全等的判定方法中的推论AAS指的是:两角及其中一角的对边对应相等的两个三角形全等.
(2)已知:在△ABC与△DEF中,∠A=∠D,∠C=∠F,BC=EF.
求证:△ABC≌△DEF.
证明:如图,在△ABC与△DEF中,∠A=∠D,∠C=∠F(已知),
∴∠A+∠C=∠D+∠F(等量代换).
又∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和定理),
∴∠B=∠E.
∵在△ABC与△DEF中,
,
∴△ABC≌△DEF(ASA).
点评:
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
22.(12分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
考点:
全等三角形的判定与性质.
专题:
证明题;压轴题.
分析:
(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;
(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.
解答:
(1)证明:∵AD∥BC,∴∠ADE=∠BFE,
∵E为AB的中点,∴AE=BE,
在△AED和△BFE中,
,
∴△AED≌△BFE(AAS);
(2)解:EG与DF的位置关系是EG垂直平分DF,
理由为:连接EG,
∵∠GDF=∠ADE,∠ADE=∠BFE,
∴∠GDF=∠BFE,
由(1)△AED≌△BFE得:DE=EF,即GE为DF上的中线,
∴GE垂直平分DF.
点评:
此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.
23.(14分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,
则BE = CF;EF = |BE﹣AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件 ∠α+∠BCA=180° ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
考点:
直角三角形全等的判定;三角形内角和定理.
专题:
几何综合题;压轴题.
分析:
由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.
解答:
解:(1)①∵∠BCA=90°,∠α=90°,
∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,
∴∠CBE=∠ACF,
∵CA=CB,∠BEC=∠CFA;
∴△BCE≌△CAF,
∴BE=CF;EF=|BE﹣AF|.
②所填的条件是:∠α+∠BCA=180°.
证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.
∵∠BCA=180°﹣∠α,
∴∠CBE+∠BCE=∠BCA.
又∵∠ACF+∠BCE=∠BCA,
∴∠CBE=∠ACF,
又∵BC=CA,∠BEC=∠CFA,
∴△BCE≌△CAF(AAS)
∴BE=CF,CE=AF,
又∵EF=CF﹣CE,
∴EF=|BE﹣AF|.
(2)EF=BE+AF.
点评:
本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.
苏南中学2013年秋学期八年级第三次月考
数学试卷
(满分150分,时间120分钟)
一.选择题(共10小题,满分40分,每小题4分)
1.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有( )
A.
1对
B.
2对
C.
3对
D.
4对
2.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A.
∠A=∠C
B.
AD=CB
C.
BE=DF
D.
AD∥BC
3.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是( )
A.
△ABD≌△CBD
B.
△ABC≌△ADC
C.
△AOB≌△COB
D.
△AOD≌△COD
4.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A.
∠BCA=∠F
B.
∠B=∠E
C.
BC∥EF
D.
∠A=∠EDF
5.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )
A.
1个
B.
2个
C.
3个
D.
4个
6.在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是( )
A.
AB=DE,AC=DF
B.
AC=EF,BC=DF
C.
AB=DE,BC=EF
D.
∠C=∠F,BC=EF
7.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是( )
A.
8
B.
5
C.
3
D.
2
8.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?( )
A.
△ACF
B.
△ADE
C.
△ABC
D.
△BCF
9.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )
A.
50
B.
62
C.
65
D.
68
10.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为( )
A.
m+2n=1
B.
m﹣2n=1
C.
2n﹣m=1
D.
n﹣2m=1
二.填空题(共4小题,满分20分,每小题5分)
11.如图,AF=DC,BC∥EF,只需补充一个条件 _________ ,就得△ABC≌△DEF.
12.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是 _________ (只写一个条件即可).
13.已知点A、B的坐标分别为:(2,0),(2,4),以A、B、P为顶点的三角形与△ABO全等,写出三个符合条件的点P的坐标: _________ .
14.如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为 _________ ①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.
三.解答题(共9小题,满分90分)
15.(8分)如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;
求证:BC=DC.
16.(8分)如图,C是AB的中点,AD=BE,CD=CE.
求证:∠A=∠B.
17.(8分)如图所示,将一长方形纸片ABCD折叠,使点C与点A重合,点D落在点E处,折痕为MN,图中有全等三角形吗?若有,请找出并证明.
18.(8分)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连接DF.在所作图中,寻找一对全等三角形,并加以证明.(不写作法,保留作图痕迹)
19.(10分)如图,OP平分∠AOB,且OA=OB.
(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);
(2)从(1)中任选一个结论进行证明.
20.(10分)如图,公园有一条“Z”字形道路,其中AB∥CD,在E,M,F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.
21.(12分)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.
(1)叙述三角形全等的判定方法中的推论AAS;
(2)证明推论AAS.
要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.
22.(12分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
23.(14分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,
则BE _________ CF;EF _________ |BE﹣AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件 _________ ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
详细解析+考点分析+名师点评
一.选择题(共10小题,满分40分,每小题4分)
1.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有( )
A.
1对
B.
2对
C.
3对
D.
4对
考点:
全等三角形的判定.
分析:
首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.
解答:
解:∵在△ABC和△ADC中,
∴△ABC≌△ADC(SSS),
∴∠BAC=∠DAC,∠BCA=∠DCA,
∵在△ABO和△ADO中,
∴△ABO≌△ADO(SAS),
∵在△BOC和△DOC中,
∴△BOC≌△DOC(SAS),
故选:C.
点评:
考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
2.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )
A.
∠A=∠C
B.
AD=CB
C.
BE=DF
D.
AD∥BC
考点:
全等三角形的判定.
分析:
求出AF=CE,再根据全等三角形的判定定理判断即可.
解答:
解:∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
A、∵在△ADF和△CBE中
∴△ADF≌△CBE(ASA),正确,故本选项错误;
B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;
C、∵在△ADF和△CBE中
∴△ADF≌△CBE(SAS),正确,故本选项错误;
D、∵AD∥BC,
∴∠A=∠C,
∵在△ADF和△CBE中
∴△ADF≌△CBE(ASA),正确,故本选项错误;
故选B.
点评:
本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.
3.如图是一个风筝设计图,其主体部分(四边形ABCD)关于BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断不正确的是( )
A.
△ABD≌△CBD
B.
△ABC≌△ADC
C.
△AOB≌△COB
D.
△AOD≌△COD
考点:
全等三角形的判定.
分析:
根据轴对称的性质,对折的两部分是完全重合的,结合图形找出全等的三角形,然后即可得解.
解答:
解:∵四边形ABCD关于BD所在的直线对称,
∴△ABD≌△CBD,△AOB≌△COB,△AOD≌△COD,故A、C、D判断正确;
∵AB≠AD,
∴△ABC和△ADC不全等,故B判断不正确.
故选B.
点评:
本题考查了全等三角形的判定,根据对折的两部分是完全重合的找出全等的三角形是解题的关键.
4.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )
A.
∠BCA=∠F
B.
∠B=∠E
C.
BC∥EF
D.
∠A=∠EDF
考点:
全等三角形的判定.
分析:
全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.
解答:
解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;
B、∵在△ABC和△DEF中
,
∴△ABC≌△DEF(SAS),故本选项正确;
C、∵BC∥EF,
∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;
D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.
故选B.
点评:
本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.
5.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的有( )
A.
1个
B.
2个
C.
3个
D.
4个
考点:
全等三角形的判定.
分析:
根据已知的条件,可由AAS判定△AEB≌△AFC,进而可根据全等三角形得出的结论来判断各选项是否正确.
解答:
解:∵∠E=∠F=90°,∠B=∠C,AE=AF,
∴△AEB≌△AFC;(AAS)
∴∠FAM=∠EAN,
∴∠EAN﹣∠MAN=∠FAM﹣∠MAN,即∠EAM=∠FAN;(故③正确)
又∵∠E=∠F=90°,AE=AF,
∴△EAM≌△FAN;(ASA)
∴EM=FN;(故①正确)
由△AEB≌△AFC知:∠B=∠C,AC=AB;
又∵∠CAB=∠BAC,
∴△ACN≌△ABM;(故④正确)
由于条件不足,无法证得②CD=DN;故正确的结论有:①③④;
故选C.
点评:
此题主要考查的是全等三角形的判定和性质,做题时要从最容易,最简单的开始,由易到难.
6.在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是( )
A.
AB=DE,AC=DF
B.
AC=EF,BC=DF
C.
AB=DE,BC=EF
D.
∠C=∠F,BC=EF
考点:
直角三角形全等的判定.
分析:
针对选项提供的已知条件,结合直角三角形全等的判定方法对选项逐一验证,其中B虽是两边相等,但不是对应边对应相等,也不能判定三角形全等.
解答:
解:A、由SAS能判定△ABC和△DEF全等;
B、当∠A=∠D=90°时,AC与EF不是对应边,不能判定△ABC和△DEF全等;
C、由HL能判定△ABC和△DEF全等;
D、由AAS能判定△ABC和△DEF全等.
故选B.
点评:
本题考查了直角三角形全等的判定方法:SSS,ASA,SAS,AAS,HL.做题时要认真验证各选项是否符合全等要求.
7.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是( )
A.
8
B.
5
C.
3
D.
2
考点:
直角三角形全等的判定;全等三角形的性质.
分析:
根据已知条件,观察图形得∠CAE+∠ACD=∠ACD+∠BCD,∠CAE=∠BCD,然后证△AEC≌△CDB后求解.
解答:
解:∵∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,
∴∠CAE+∠ACD=∠ACD+∠BCD,
∴∠CAE=∠BCD,
又∵∠AEC=∠CDB=90°,AC=BC,
∴△AEC≌△CDB.
∴CE=BD=2,CD=AE=5,
∴ED=CD﹣CE=5﹣2=3(cm).
故选C.
点评:
本题考查了直角三角形全等的判定方法;题目利用全等三角形的判定和性质求解,发现并利用∠CAE+∠ACD=∠ACD+∠BCD,∠CAE=∠BCD,是解题的关键.
8.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?( )
A.
△ACF
B.
△ADE
C.
△ABC
D.
△BCF
考点:
全等三角形的判定.
分析:
根据全等三角形的判定定理(SAS,ASA,AAS,SSS)结合图形进行判断即可.
解答:
解:根据图象可知△ACD和△ADE全等,
理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,
∴△ACD≌△AED,
即△ACD和△ADE全等,
故选B.
点评:
本题考查了全等三角形的判定的应用,主要考查学生的观察图形的能力和推理能力,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.
9.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )
A.
50
B.
62
C.
65
D.
68
考点:
全等三角形的判定与性质.
专题:
压轴题.
分析:
由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;
同理证得△BGC≌△DHC,GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.
解答:
解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH?∠EAB=∠EFA=∠BGA=90°,
∠EAF+∠BAG=90°,∠ABG+∠BAG=90°?∠EAF=∠ABG,
∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG?△EFA≌△ABG
∴AF=BG,AG=EF.
同理证得△BGC≌△DHC得GC=DH,CH=BG.
故FH=FA+AG+GC+CH=3+6+4+3=16
故S=(6+4)×16﹣3×4﹣6×3=50.
故选A.
点评:
本题考查的是全等三角形的判定的相关知识.作辅助线是本题的关键.
10.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为( )
A.
m+2n=1
B.
m﹣2n=1
C.
2n﹣m=1
D.
n﹣2m=1
考点:
全等三角形的判定与性质;坐标与图形性质;三角形的角平分线、中线和高.
专题:
压轴题.
分析:
根据OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,得出C点在∠BOA的角平分线上,进而得出C点横纵坐标相等,进而得出答案.
解答:
解:∵OA=OB;分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,
∴C点在∠BOA的角平分线上,
∴C点到横纵坐标轴距离相等,进而得出,m﹣1=2n,
即m﹣2n=1.
故选:B.
点评:
此题主要考查了角平分线的性质以及坐标点的性质,利用角平分线的作法得出C点坐标性质是解题关键.
二.填空题(共4小题,满分20分,每小题5分)
11.如图,AF=DC,BC∥EF,只需补充一个条件 BC=EF ,就得△ABC≌△DEF.
考点:
全等三角形的判定.
专题:
开放型.
分析:
补充条件BC=EF,首先根据AF=DC可得AC=DF,再根据BC∥EF可得∠EFC=∠BCF,然后再加上条件CB=EF可利用SAS定理证明△ABC≌△DEF.
解答:
解:补充条件BC=EF,
∵AF=DC,
∴AF+FC=CD+FC,
即AC=DF,
∵BC∥EF,
∴∠EFC=∠BCF,
∵在△ABC和△DEF中,
,
∴△ABC≌△DEF(SAS).
故答案为:BC=EF.
点评:
此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
12.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是 ∠B=∠C(答案不唯一) (只写一个条件即可).
考点:
全等三角形的判定.
专题:
开放型.
分析:
由题意得,AE=AD,∠A=∠A(公共角),可选择利用AAS、SAS进行全等的判定,答案不唯一.
解答:
解:添加∠B=∠C.
在△ABE和△ACD中,∵,
∴△ABE≌△ACD(AAS).
故答案可为:∠B=∠C.
点评:
本题考查了全等三角形的判定,属于开放型题目,解答本题需要同学们熟练掌握三角形全等的几种判定定理.
13.已知点A、B的坐标分别为:(2,0),(2,4),以A、B、P为顶点的三角形与△ABO全等,写出三个符合条件的点P的坐标: (4,0)或(4,4)或(0,4) .
考点:
全等三角形的性质;坐标与图形性质.
专题:
开放型.
分析:
画出图形,根据全等三角形的性质和坐标轴与图形的性质可求点P的坐标.
解答:
解:如图,
∵△ABO≌△ABP,
∴①OA=AP1,点P1的坐标:(4,0);
②OA=BP2,点P2的坐标:(0,4);
③OA=BP3,点P3的坐标:(4,4).
故填:(4,0),(4,4),(0,4).
点评:
本题考查了全等三角形的性质及坐标与图形的性质;解题关键是要懂得找全等三角形,利用全等三角形的性质求解.
14.如图,已知点C是∠AOB平分线上一点,点E,F分别在边OA,OB上,如果要得到OE=OF,需要添加以下条件中的某一个即可,请你写出所有可能结果的序号为 ①②④ ①∠OCE=∠OCF;②∠OEC=∠OFC;③EC=FC;④EF⊥OC.
考点:
全等三角形的判定与性质.
分析:
要得到OE=OF,就要让△OCE≌△OCF,①②④都行,只有③EC=FC不行,因为证明三角形全等没有边边角定理.
解答:
解:①若①∠OCE=∠OCF,根据三角形角平分线的性质可得,∠EOC=∠COF,故居ASA定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;
②若∠OEC=∠OFC,同①可得△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确;
③若EC=FC条件不够不能得出.错误;
④若EF⊥OC,根据SSS定理可求出△OEC≌△OFC,由三角形全等的性质可知OE=OF.正确.
故填①②④.
点评:
本题主要考查了三角形全等的判与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.
三.解答题(共9小题,满分90分)
15.(8分)如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;
求证:BC=DC.
考点:
全等三角形的判定与性质.
专题:
证明题;压轴题.
分析:
先求出∠ACB=∠ECD,再利用“角边角”证明△ABC和△EDC全等,然后根据全等三角形对应边相等证明即可.
解答:
证明:∵∠BCE=∠DCA,
∴∠BCE+∠ACE=∠DCA+∠ACE,
即∠ACB=∠ECD,
在△ABC和△EDC中,,
∴△ABC≌△EDC(ASA),
∴BC=DC.
点评:
本题考查了全等三角形的判定与性质,求出相等的角∠ACB=∠ECD是解题的关键,也是本题的难点.
16.(8分)如图,C是AB的中点,AD=BE,CD=CE.
求证:∠A=∠B.
考点:
全等三角形的判定与性质.
专题:
证明题;压轴题.
分析:
根据中点定义求出AC=BC,然后利用“SSS”证明△ACD和△BCE全等,再根据全等三角形对应角相等证明即可.
解答:
证明:∵C是AB的中点,
∴AC=BC,
在△ACD和△BCE中,,
∴△ACD≌△BCE(SSS),
∴∠A=∠B.
点评:
本题考查了全等三角形的判定与性质,比较简单,主要利用了三边对应相等,两三角形全等,以及全等三角形对应角相等的性质.
17.(8分)如图所示,将一长方形纸片ABCD折叠,使点C与点A重合,点D落在点E处,折痕为MN,图中有全等三角形吗?若有,请找出并证明.
考点:
全等三角形的判定.
专题:
探究型.
分析:
根据折叠前后不变的量,找到△ABN≌△AEM,两边和夹角对应相等.
解答:
解:有,△ABN≌△AEM.
证明:∵四边形ABCD是长方形,
∴AB=DC,∠B=∠C=∠DAB=90°
∵四边形NCDM翻折得到四边形NAEM,
∴AE=CD,∠E=∠D=90°,∠EAN=∠C=90°.
∴AB=AE,∠B=∠E,
∠DAB=∠EAN,
即:∠BAN+∠NAM=∠EAM+∠NAM,
∴∠BAN=∠EAM.
在△ABN与△AEM中,
∴△ABN≌△AEM(ASA).
点评:
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
18.(8分)如图,在△ABC中,作∠ABC的平分线BD,交AC于D,作线段BD的垂直平分线EF,分别交AB于E,BC于F,垂足为O,连接DF.在所作图中,寻找一对全等三角形,并加以证明.(不写作法,保留作图痕迹)
考点:
作图—基本作图;直角三角形全等的判定.
专题:
作图题.
分析:
先根据题意作图,再利用AAS判定△BOE≌△BOF全等即可.
解答:
解:(1)画角平分线,线段的垂直平分线;((3分),仅画出1条得2分)
(2)△BOE≌△BOF(4分),证明全等.(6分)
证明:∵BD为∠ABC的角平分线
∴∠ABO=∠OBF
∵EF⊥BD
∴∠BOE=∠BOF
在△BOE与△BOF中,
,
∴△BOE≌△BOF(ASA)
点评:
此题不但要求学生对常用的画图方法有所掌握,还要对全等三角形的判定方法能够熟练运用.
19.(10分)如图,OP平分∠AOB,且OA=OB.
(1)写出图中三对你认为全等的三角形(注:不添加任何辅助线);
(2)从(1)中任选一个结论进行证明.
考点:
全等三角形的判定.
专题:
证明题;开放型.
分析:
先根据∠AOP=∠BOP,OP=OP,OA=OB,(SAS)得出△APO≌△BPO,其他三角形全等就能依次得出.
解答:
解:(1)△APO≌△BPO,△ADO≌△BCO,△OCP≌△ODP,△ACP≌△BDP.
(2)证明△APO≌△BPO,
∵OP平分∠AOB,
∴∠AOP=∠BOP,
又∵OP=OP,OA=OB,(SAS)
∴△APO≌△BPO.
点评:
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
20.(10分)如图,公园有一条“Z”字形道路,其中AB∥CD,在E,M,F处各有一个小石凳,且BE=CF,M为BC的中点,请问三个小石凳是否在一条直线上?说出你推断的理由.
考点:
全等三角形的应用.
专题:
应用题.
分析:
问题可以转化为证明∠BME=∠CMF,也就需要证明这两个角所在的三角形全等.围绕已知,找全等的条件.
解答:
解:三个小石凳在一条直线上.
证明如下:连接EM,MF,
∵M为BC中点,
∴BM=MC.
又∵AB∥CD,
∴∠EBM=∠FCM.
在△BEM和△CFM中,
BE=CF,∠EBM=∠FCM,BM=CM,
∴△BEM≌△CFM(SAS),
∴∠BME=∠CMF,
又∠BMF+∠CMF=180°,
∴∠BMF+∠BME=180°,
∴E,M,F在一条直线上.
点评:
本题考查了全等三角形的应用;关键是要把题目的问题转化为证明角相等,进而借助线段BC得到结论,说明E,M,F在一条直线上.
21.(12分)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.
(1)叙述三角形全等的判定方法中的推论AAS;
(2)证明推论AAS.
要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.
考点:
全等三角形的判定;命题与定理.
分析:
(1)两边及其夹角分别对应相等的两个三角形全等.
(2)根据三角形内角和定理和全等三角形的判断定理ASA来证明.
解答:
解:(1)三角形全等的判定方法中的推论AAS指的是:两角及其中一角的对边对应相等的两个三角形全等.
(2)已知:在△ABC与△DEF中,∠A=∠D,∠C=∠F,BC=EF.
求证:△ABC≌△DEF.
证明:如图,在△ABC与△DEF中,∠A=∠D,∠C=∠F(已知),
∴∠A+∠C=∠D+∠F(等量代换).
又∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和定理),
∴∠B=∠E.
∵在△ABC与△DEF中,
,
∴△ABC≌△DEF(ASA).
点评:
本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
22.(12分)如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
考点:
全等三角形的判定与性质.
专题:
证明题;压轴题.
分析:
(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;
(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.
解答:
(1)证明:∵AD∥BC,∴∠ADE=∠BFE,
∵E为AB的中点,∴AE=BE,
在△AED和△BFE中,
,
∴△AED≌△BFE(AAS);
(2)解:EG与DF的位置关系是EG垂直平分DF,
理由为:连接EG,
∵∠GDF=∠ADE,∠ADE=∠BFE,
∴∠GDF=∠BFE,
由(1)△AED≌△BFE得:DE=EF,即GE为DF上的中线,
∴GE垂直平分DF.
点评:
此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.
23.(14分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CFA=∠α.
(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:
①如图1,若∠BCA=90°,∠α=90°,
则BE = CF;EF = |BE﹣AF|(填“>”,“<”或“=”);
②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件 ∠α+∠BCA=180° ,使①中的两个结论仍然成立,并证明两个结论成立.
(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).
考点:
直角三角形全等的判定;三角形内角和定理.
专题:
几何综合题;压轴题.
分析:
由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.
解答:
解:(1)①∵∠BCA=90°,∠α=90°,
∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,
∴∠CBE=∠ACF,
∵CA=CB,∠BEC=∠CFA;
∴△BCE≌△CAF,
∴BE=CF;EF=|BE﹣AF|.
②所填的条件是:∠α+∠BCA=180°.
证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.
∵∠BCA=180°﹣∠α,
∴∠CBE+∠BCE=∠BCA.
又∵∠ACF+∠BCE=∠BCA,
∴∠CBE=∠ACF,
又∵BC=CA,∠BEC=∠CFA,
∴△BCE≌△CAF(AAS)
∴BE=CF,CE=AF,
又∵EF=CF﹣CE,
∴EF=|BE﹣AF|.
(2)EF=BE+AF.
点评:
本题综合考查全等三角形、等边三角形和四边形的有关知识.注意对三角形全等,相似的综合应用.