24..2.1点和圆的位置关系 课件[上学期]

文档属性

名称 24..2.1点和圆的位置关系 课件[上学期]
格式 rar
文件大小 231.7KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2006-10-31 21:16:00

图片预览

文档简介

课件23张PPT。点与圆的位置关系24.2与圆有关的位置关系 放寒假了,爱好运动的小华、小强、小兵三人相邀搞一次掷飞镖比赛。他们把靶子钉在一面土墙上,规则是谁掷出落点离红心越近,谁就胜。如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好? 如图,设⊙O的半径为r,A点在圆内,
B点在圆上,C点在圆外,那么OA<r, OB=r, OC>r.反过来也成立,即 点的位置可以确定该点到圆心的距离与半径的关系,反过来,已知点到圆心的距离与半径的关系可以确定该点和圆的位置关系。例1、如图,已知矩形ABCD
的边AB=3厘米,AD=4厘米。
(1)以点A为圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(2)若以A点为圆心作圆A,使B、C、D
三点中至少有一个点在圆内,且至少有一个
点在圆外,则圆A的半径r的取值范围是什么?确定圆的条件类比确定直线的条件:经过一点可以作无数条直线;经过两点只能作一条直线.●A●A●B确定圆的条件想一想,经过一点可以作几个圆?经过两点,三点,…,呢?1.作圆,使它过已知点A.你能作出几个这样的圆?●A2.作圆,使它过已知点A,B.你能作出几个这样的圆?●A●B确定圆的条件2. 过已知点A,B作圆,可以作无数个圆.经过两点A,B的圆的圆心在线段AB的垂直平分线上.
以线段AB的垂直平分线上的任意一点为圆心,这点到A或B的距离为半径作圆.你准备如何(确定圆心,半径)作圆?其圆心的分布有什么特点?与线段AB有什么关系?●A●B确定圆的条件3.作圆,使它过已知点A,B,C(A,B,C三点不在同一条直线上),你能作出几个这样的圆?老师提示:
能否转化为2的情况:经过两点A,B的圆的圆心在线段AB的垂直平分线上. 你准备如何(确定圆心,半径)作圆?其圆心的位置有什么特点?与A,B,C有什么关系?●B●C经过两点B,C的圆的圆心在线段AB的垂直平分线上.●A经过三点A,B,C的圆的圆心应该这两条垂直平分线的交点O的位置.●O确定圆的条件请你作圆,使它过已知点A,B,C(A,B,C三点不在同一条直线上).以O为圆心,OA(或OB,或OC)为半径,作⊙O即可.请你证明你做得圆符合要求.●B●C●A●O证明:∵点O在AB的垂直平分线上,∴⊙O就是所求作的圆,∴OA=OB.同理,OB=OC.∴OA=OB=OC.∴点A,B,C在以O为圆心的圆上.这样的圆可以作出几个?为什么?.三点定圆定理 不在一条直线上的三个点确定一个圆.在上面的作图过程中.老师期望:
将这个结论及其证明作为一种模型对待.∵直线DE和FG只有一个交点O,并且点O到A,B,C三个点的距离相等,∴经过点A,B,C三点可以作一个圆,并且只能作一个圆.三角形与圆的位置关系因此,三角形的三个顶点确定一个圆,这圆叫做三角形的外接圆.这个三角形叫做圆的内接三角形.外接圆的圆心是三角形三边垂直平分线的的交点,叫做三角形的外心.老师提示:
多边形的顶点与圆的位置关系称为接. 经过三角形三个顶点可以画一个圆,并且只能画一个.一个三角形的外接圆有几个?
一个圆的内接三角形有几个?◆经过三角形三个顶点的圆叫做三角形的外接圆。三角形的外心就是三角形三条边的垂直平分线
的交点,它到三角形三个顶点的距离相等。
◆这个三角形叫做这个圆的内接三角形。◆三角形外接圆的圆心叫做这个三角形的外心。想一想 分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系. 三角形与圆的位置关系分别作出锐角三角形,直角三角形,钝角三角形的外接圆,并说明与它们外心的位置情况锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.老师期望:
作三角形的外接圆是必备基本技能,定要熟练掌握. 如图,已知等边三角形ABC中,边长为
6cm,求它的外接圆半径。1、如图,已知 Rt⊿ABC 中 ,
若 AC=12cm,BC=5cm,
求的外接圆半径。 练习一如图,等腰⊿ABC中, ,
,求外接圆的半径。练习二四边形与圆的位置关系如果四边形的四个顶点在一个圆,这圆叫做四边形的外接圆.这个四边形叫做圆的内接四边形.我们可以证明圆内接四边的两个重要性质:
1.圆内接四边形对角互补.
2.圆内接四边形对的一个外角等于它的内对角.
3.对角互补的四边形内接于圆.CODBA如图:圆内接四边形ABCD中, ∵ ∠BAD等于弧BCD所对圆心角的一半,∠BCD等于弧BAD所对圆心角的一半.
而弧BCD所对的圆心角+弧BAD所对的圆心角=360°, ∴∠BAD+∠BCD=180°. 同理∠ABC+∠ADC=180°.圆内接四边形的对角互补.四边形与圆的位置关系如果延长BC到E,那么
∠DCE+∠BCD =180°.∴∠A=∠DCE.又 ∵∠A +∠BCD=180°,四边形与圆的位置关系因为∠A是与∠DCE相邻的内角∠DCB的对角,我们把∠A叫做∠DCE的内对角.圆内接四边形的一个外角等于它的内对角.反思自我想一想,你的收获和困惑有哪些?说出来,与同学们分享.小结与归纳◆用数量关系判断点和圆的位置关系。
◆不在同一直线上的三点确定一个圆。◆求解特殊三角形直角三角形、等边三角形、
等腰三角形的外接圆半径。◆在求解等腰三角形外接圆半径时,运用了
方程的思想,希望同学们能够掌握这种
方法,领会其思想。