3.1.2椭圆的简单几何性质 同步练习(含答案)

文档属性

名称 3.1.2椭圆的简单几何性质 同步练习(含答案)
格式 zip
文件大小 114.0KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-11-08 06:01:37

文档简介

3.1.2椭圆的简单几何性质同步练习
一、选择题
1、设椭圆E的两焦点分别为F1,F2,以F1为圆心,|F1F2|为半径的圆与E交于P,Q两点.若△PF1F2为直角三角形,则E的离心率为(  )
A.-1          B.
C. D.+1
2、已知椭圆C的方程为+=1(a>b>0),焦距为2c,直线l:y=x与椭圆C相交于A,B两点,若|AB|=2c,则椭圆C的离心率为(  )
A. B.
C. D.
3、(多选)设椭圆+=1的右焦点为F,直线y=m(0<m<)与椭圆交于A,B两点,则(  )
A.|AF|+|BF|为定值
B.△ABF的周长的取值范围是[6,12]
C.当m=时,△ABF为直角三角形
D.当m=1时,△ABF的面积为
4、设B是椭圆C:+=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是(  )
A. B.
C. D.
5、已知椭圆C:16x2+4y2=1,则下列结论正确的是(  )
A.长轴长为 B.焦距为
C.短轴长为 D.离心率为
6、已知F1,F2是椭圆C:+=1的两个焦点,点M在C上,则|MF1|·|MF2|的最大值为(  )
A.13 B.12 C.9 D.6
7、已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若线段AB的中点坐标为(1,-1),则椭圆E的方程为(  )
A.+=1 B.+=1
C.+=1 D.+=1
8、1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开始了人造卫星的新篇章.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a,2c,则下列结论不正确的是(  )
A.卫星向径的取值范围是[a-c,a+c]
B.卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间
C.卫星向径的最小值与最大值的比值越大,椭圆轨道越扁
D.卫星运行速度在近地点时最大,在远地点时最小
9、设B是椭圆C:+y2=1的上顶点,点P在C上,则|PB|的最大值为(  )
A. B.
C. D.2
10、已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为(  )
A.1- B.2-
C. D.-1
11、椭圆C的焦点为F1(-1,0),F2(1,0),点P在C上,|F2P|=2,∠F1F2P=,则C的长轴长为(  )
A.2 B.2
C.2+ D.2+2
12、直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为(  )
A. B.
C. D.
二、填空题
13、已知F1、F2是椭圆的两个焦点,P是椭圆上的一点,且∠F1PF2=60°,则椭圆离心率的取值范围____________.
14、已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=________时,点B横坐标的绝对值最大.
15、已知P为椭圆+=1上一个动点,直线l过圆(x-1)2+y2=1的圆心与圆相交于A,B两点,则·的最大值为________,最小值为________.
16、已知椭圆+=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在一点P,使=,该椭圆的离心率的取值范围为________.
三、解答题
17、已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.
(1)若△POF2为等边三角形,求C的离心率;
(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.
18、已知椭圆E:+=1(a>b>0),若椭圆上一点P与其中心及长轴一个端点构成等腰直角三角形.
(1)求椭圆E的离心率;
(2)如图,若直线l与椭圆相交于A,B,且AB是圆(x-1)2+(y+1)2=5的一条直径,求椭圆E的标准方程.3.1.2椭圆的简单几何性质同步练习
(答案)
一、选择题
1、设椭圆E的两焦点分别为F1,F2,以F1为圆心,|F1F2|为半径的圆与E交于P,Q两点.若△PF1F2为直角三角形,则E的离心率为( A )
A.-1          B.
C. D.+1
2、已知椭圆C的方程为+=1(a>b>0),焦距为2c,直线l:y=x与椭圆C相交于A,B两点,若|AB|=2c,则椭圆C的离心率为( A )
A. B.
C. D.
3、(多选)设椭圆+=1的右焦点为F,直线y=m(0<m<)与椭圆交于A,B两点,则( ACD )
A.|AF|+|BF|为定值
B.△ABF的周长的取值范围是[6,12]
C.当m=时,△ABF为直角三角形
D.当m=1时,△ABF的面积为
4、设B是椭圆C:+=1(a>b>0)的上顶点,若C上的任意一点P都满足|PB|≤2b,则C的离心率的取值范围是( C )
A. B.
C. D.
5、已知椭圆C:16x2+4y2=1,则下列结论正确的是( D )
A.长轴长为 B.焦距为
C.短轴长为 D.离心率为
6、已知F1,F2是椭圆C:+=1的两个焦点,点M在C上,则|MF1|·|MF2|的最大值为( C )
A.13 B.12 C.9 D.6
7、已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆E于A,B两点,若线段AB的中点坐标为(1,-1),则椭圆E的方程为( D )
A.+=1 B.+=1
C.+=1 D.+=1
8、1970年4月24日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开始了人造卫星的新篇章.人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为2a,2c,则下列结论不正确的是( D )
A.卫星向径的取值范围是[a-c,a+c]
B.卫星在左半椭圆弧的运行时间大于其在右半椭圆弧的运行时间
C.卫星向径的最小值与最大值的比值越大,椭圆轨道越扁
D.卫星运行速度在近地点时最大,在远地点时最小
9、设B是椭圆C:+y2=1的上顶点,点P在C上,则|PB|的最大值为( A )
A. B.
C. D.2
10、已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为( D )
A.1- B.2-
C. D.-1
11、椭圆C的焦点为F1(-1,0),F2(1,0),点P在C上,|F2P|=2,∠F1F2P=,则C的长轴长为( D )
A.2 B.2
C.2+ D.2+2
12、直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为( B )
A. B.
C. D.
填空题
13、已知F1、F2是椭圆的两个焦点,P是椭圆上的一点,且∠F1PF2=60°,则椭圆离心率的取值范围____.
14、已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=_____5___时,点B横坐标的绝对值最大.
15已知P为椭圆+=1上一个动点,直线l过圆(x-1)2+y2=1的圆心与圆相交于A,B两点,则·的最大值为____15____,最小值为____3____.
16、已知椭圆+=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0),若椭圆上存在一点P,使=,该椭圆的离心率的取值范围为___(-1,1)_____.
三、解答题
17、已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.
(1)若△POF2为等边三角形,求C的离心率;
(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.
解:(1)连接PF1(图略).由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.
(2)由题意可知,满足条件的点P(x,y)存在当且仅当
|y|·2c=16,·=-1,+=1,
即c|y|=16,①
x2+y2=c2,②
+=1.③
由②③及a2=b2+c2得y2=.
又由①知y2=,故b=4.
由②③及a2=b2+c2得x2=(c2-b2),
所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.
当b=4,a≥4时,存在满足条件的点P.
所以b=4,a的取值范围为[4,+∞).
18、已知椭圆E:+=1(a>b>0),若椭圆上一点P与其中心及长轴一个端点构成等腰直角三角形.
(1)求椭圆E的离心率;
(2)如图,若直线l与椭圆相交于A,B,且AB是圆(x-1)2+(y+1)2=5的一条直径,求椭圆E的标准方程.
解 (1)由题意不妨设椭圆上的点P的坐标为,代入椭圆方程可得+=1,即a2=3b2,∴a2=3b2=3(a2-c2),∴2a2=3c2,∴e=.
(2)由(1)得椭圆E的方程为+=1,易知直线l的斜率存在,设其方程为y=k(x-1)-1,A(x1,y1),B(x2,y2).
(3k2+1)x2-6k(k+1)x+3(k+1)2-3b2=0.
∴x1+x2=,
x1x2=.
又x1+x2=2,∴k=,∴x1x2=,
则|AB|=
==2,
∴b2=,则a2=10,
∴椭圆E的标准方程为+=1.