苏教版义务教育教科书《数学》三年级下册第82~83页的“想想做做”第5~12题。
1.使学生联系生活经验,结合具体情境进一步认识一个整体的几分之一和几分之几,理解一个整体的几分之一和几分之几的含义;能够把分数和长度及人民币进行结合,并在具体情境中进行运用。
2.使学生了解生活中的量可以用分数表示,感受分数在生活中的应用,通过应用培养观察、分析和演绎推理能力,培养积极思考、善于思考的学习态度。
进一步理解一个整体的几分之几的含义。
理解如何用分数表示长度、人民币和数量的含义。
课件。
▍流程一:引入新课
谈话:我们已经学习了用分数表示一个整体的几分之几和几分之一,学习了这部分内容,你知道了哪些知识?今天这节课,练习认识一个整体的几分之几和几分之一。(板书课题)
▍流程二:基础巩固
1.用分数表示涂色部分。
指名学生口答,说一说你是怎么想的。
提问:第2题涂色部分有两朵花为什么用表示呢?第4题涂色部分用分数表示为什么是?
明确:不管是一个物体还是一些物体都可以看成一个整体,看平均分成几份,其中的一份就是几分之一,这样的几份就是几分之几。
2.3个是( );( )个是;里有( )个,里有( )个。
3.完成“想想做做”第5题。
出示题目要求,让学生独立完成在书上。
交流:你是怎样填的?(展示学生作业)
预设:可以让学生根据分数的意义思考,也可以让学生根据平均分的份数说明,还可以让学生结合分子分母大小比较思考。
教师可根据学生的回答,帮助补充表达完整。在学生理解的基础上,适时说明:两个分数比较大小时,当分子相同时,分母大的反而小,分母小的反而大;当分母相同时,分子大的比较大,分子小的比较小。
4.完成“想想做做”第6题。
学生直接写得数。
交流得数,选择加法和减法分别说说怎样解答的。
说明:分母相同的分数相加减时,分母不变,分子相加减。
▍流程三:巩固练习
1.完成“想想做做”第7题。
让学生填空并交流结果。
提问:填写分数时怎样想的?这是谁的?谁的?
追问:这条线段上4份可以表示几分之几?还能在线段上表示哪些分数?
追问:把一条线段平均分成10份,这样的1份就是这条线段的十分之一,这样的几份就是十分之几。如果把直尺的1分米平均分成10份,每份可以表示几分之几,这个几分之几是多长?为什么?
2.完成“想想做做”第8题。
让学生看图,明确尺子上是10厘米,也就是1分米。
学生结合尺子想一想,在书上填一填。
交流:你是怎样填的?说说你的想法。
3厘米是1分米的几分之几?9厘米呢?
说明:因为1分米是10厘米,所以1厘米是1分米的,就是分米;7厘米是1分米的,就是分米;几厘米就是1分米的十分之几,也就是十分之几分米。(板书:1分米的十分之几是几厘米,是十分之几分米)
让学生自己试着说一说,和同桌说一说。再指名说。
3.完成“想想做做”第9题。
引导学生看图,明确是几个1角,是几元。
学生看图想一想,在书上填一填。
交流结果,说说怎样想的。
提问:5角是1元的几分之几,7角呢?
说明:1角是1元的,就是元;3角是1元的,就是元;几角就是1元的十分之几,也就是十分之几元。(板书:1元的十分之几是几角,是十分之几元)
4.完成“想想做做”第10题。
学生读题,独立完成。
集体反馈,让有错误的学生说一说是怎么想的。
交流:你是怎样填的?
▍流程四:实践运用
1.完成“想想做做”第11题。
让同桌试着做游戏,明确游戏中本人的胜、负判断。
提问:我们可以怎么检查?你负的次数和你同桌什么的次数相同?你胜的次数和你同桌哪个数据相同?平呢?
交流:你在游戏中胜了几次,占总次数的几分之几?负的次数呢?
2.完成“想想做做”第12题。
学生填空、交流,说说怎样想的。
▍流程五:全课小结
这节课你有什么收获?你还有哪些方面不明白吗?
认识一个整体的几分之几(2)
七 分数的初步认识(二)
4 认识一个整体的几分之几(2)
●教学内容
●教学目标
●教学重点
●教学难点
●教学准备
●教学过程
设计思想 复习回顾一个整体的几分之一和几分之几的知识,为本节练习课热身。第1题的设计由一个图形的几分之几,到一些物体的几分之几,再到一些图形的几分之几。让学生在练习中区分其不同点,提醒学生不管是一个物体还是一个图形还是一些物体或图形,都把它看成一个整体。再次聚焦“一个整体”这一概念。第2题设计,复习一个整体的几分之几的含义,为后面练习分数的大小比较及分数的加减法起到铺垫作用。
设计思想 “想想做做”第5、6题的设计让学生充分理解分数的意义,进一步加深对分数意义的运用。教师让学生交流表达自己解答的方法,从而让学生总结出分数大小比较的方法和同分母分数加减法的方法。
设计思想 认识分数是认识小数的基础,下一单元中小数的认识也是从米、分米、厘米、毫米以及元、角、分引入的,本节课的难点也是分数和长度以及人民币相结合,去理解几分之几和几分之一。因此,第7、8、9、10这类题型能为学生学习小数铺垫更充分的知识储备,理解这几道题目使学生对分数有更深刻的理解,也是学生认知的提高。先认识线段的十分之几,再到直尺上用“1分米的十分之几表示几厘米”;接着让学生认识“十分之几元表示几角”比较抽象,借助于教材的直观图,让学生根据图片理解“几角就是十分之几元”,最后第10题让学生进行知识的初步练习,为后面的认识小数做准备。
●板书设计