15.3等腰三角形(1)

文档属性

名称 15.3等腰三角形(1)
格式 zip
文件大小 27.2KB
资源类型 教案
版本资源 沪科版
科目 数学
更新时间 2013-12-08 09:56:41

图片预览

文档简介

15.3等腰三角形
教学内容:P132-133
教学目的:
经历操作、发现、猜想、证明的过程,培养学生的逻辑思维能力;
掌握等腰三角形的性质及其两个推论;
运用等腰三角形的性质及其推论进行有关证明和计算
教学重难点:
重点是等腰三角形的性质定理及其证明;难点是“三线合一”的理解及例1的讲解
关键:运用观察、操作来领悟规律,以全等三角形为推理工具,在交流中突破难点
教学方法:直观教学发现法和启发诱导教学法,与学生实践操作、合作探究
教具:长方形纸片、剪刀、自制等腰三角形纸片
教学过程
创设情景,引入新知
活动1:请同学们把一张长方形的纸片对折,剪去(或用刀子裁)一个角,再把它展开,得到的是什么样三角形
教师示范操作,然后学生跟着动手操作,观察得出结论:“剪刀剪过的两条边是相等的;剪出的图形是等腰三角形”,根据学生回答,板书:等腰三角形
师生共同回顾:有两条边相等的三角形,叫做等腰三角形,相等的两边叫做腰,另一条边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角
教师提问:剪出的三角形是轴对称图形吗?你能发现这个三角形有哪些特点吗?说一说你的猜想
学生思考并发表自已的看法,教师提出本节课所要解决的问题
师生归纳:等腰三角形是轴对称图形,底边上的中线所在的直线是它的对称轴(板书)
教师说明:对称轴是一条直线,而三角形的中线是线段,因此不能说等腰三角形底边上的中线是它的对称轴。
合作交流,探索新知
(
A
D
B( C )
) (
A
C
B
D
)活动2:教师出示刚才剪下的等腰三角形纸片,标上字母如图所示:
把边AB叠合到边AC上,这时点B与C重合,并出现折痕AD,观察图图形,△ADB与△ADC有什么关系?图中哪些线段或角相等?AD与BC垂直吗?为什么?
学生回答:△ADB与△ADC重合,∠B=∠C,∠BAD=∠CAD,∠ADB=∠CDA,BD=CD
活动3:由上面的性质我们可以得到等腰三角形如下性质:
定理1:等腰三角形的两底角相等,简称:等边对等角(板书)
教师提问:这个命题的题设是什么?结论是什么?学生可结合图形回答
(板书)已知:在△ABC中,AB=AC
求证:∠B=∠C
说明:将等腰三角形写成已知时,通常写成“在△ABC中,AB=AC”而不写成“等腰”两个字
教师引等学生回答:要证两个角相等可以转化前面所学过的三角形全等,而图形只有一个三角形,如何添加辅助线使它转化为两个三角形
通过刚才的折叠等腰三角形的实验,很容易得到辅助线,作高AD或作顶角的平分线AD,可由两位学生板演,教师巡视,并给订正。
同学们思考一下,还有没有其它辅助线的作法,教师可作提示:作中线AD,由学生口答,或者指导学生看课本证明。
教师归纳等腰三角形性质1,并指出它的几何符号语言的书写:
如上图:∵ AB=AC(已知)
∴∠B=∠C(等边对等角)
教师提出问题:练习1(口答)
等腰直角三角形每一个锐角的度数是多少度?
如果等腰三角形的底角等于40°,那么它的顶角的度数是多少?
3、如果等腰三角形的顶角是40°,那么它的底角的度数是多少?
如果等腰三角形的一个角是40°,那么其它的两个角各是多少度?
如果等腰三角形的一个内角是120°,则其它的两个角各是多少度?
等边三角形各内角有什么关系?各等于多少度?
要求学生完成教师提出的问题,教师归纳:
(1)等腰三角形中顶角与底角的关系:顶角十 2 ×底角=180°
(2)推论:等边三角形三个内角相等,每一个内角都等于60°(板书)
教师与学生合作分析,口述(2)的证明过程。
活动4:提出问题:从性质1的证明过程可以知道,BD=CD,
∠ADB=∠ADC=90°,由此,你能得出等腰三角形还具有什么性质?
让学生运用数学语言表述所发现的规律,师生共同归纳得出:
定理2 等腰三角形的顶角的平分线垂直平分底边(板书)
即:等腰三角形顶角的平分线、底边上的中线和底边上的高互相重合
三线合一(板书)
活动5:教师出示课本例1
例1 如图在△ABC中,AB=AC,∠BAC=120°,点D、E是底边的两点,且BD=AD,CE=AE,求∠DAE的度数
(
A
B
C
D
E
)
分析例1,剖析推理方法及依据,提出讨论问题,引导学生思考,根据学生回答教师板书例1过程,解略
巩固练习,强化新知
(
A
C
B
D
)练习2:课本练习第2题(出示小黑板)
如图,在ABC中,AB=AC
(1)∵AD⊥BD,∴∠______ = ∠_____; ______ = ______(等腰三角形底边上的高与______、______重合)
(2)∵AD是中线 ∴_____ ⊥_____;∠_____= ∠_____(等腰三角形底边上的中线与_____、_____重合)
(3)∵AD是角平分线 ∴____ ⊥ ____;____= ____(等腰三角形顶角的平分线与______、_____重合)
师生互动,总结新知
请同学们回顾本节课所学的内容,有哪些收获?
师生活动:学生思考后,用自己语言归纳,教师适时点评,并关注以下几个问题:1、等边对等角;2、等腰三角形三线合一;3、等边三角形性质;4、等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线)
作业设计,深化新知
课本练习第2题、习题15.3第1题