中小学教育资源及组卷应用平台
专题08 几何背景下等腰、直角三角形中的分类讨论 专项提升(精讲)
高频考点1:等腰三角形中的分类讨论
【解题技巧】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。
1.无图需分类讨论
①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论;
③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。
2.“两定一动”等腰三角形存在性问题:(常见于与坐标系综合出题,后续会专题进行讲解)
即:如图:已知,两点是定点,找一点构成等腰
方法:两圆一线
具体图解:①当时,以点为圆心,长为半径作⊙,点在⊙上(,除外)
②当时,以点为圆心,长为半径作⊙,点在⊙上(,除外)
③当时,作的中垂线,点在该中垂线上(除外)
例1.(2022·上虞市初二月考)在如图所示的三角形中,∠A=30°,点P和点Q分别是边AC和BC上的两个动点,分别连接BP和PQ,把△ABC分割成三个三角形△ABP,△BPQ,△PQC,若分割成的这三个三角形都是等腰三角形,则∠C有可能的值有________个.
【答案】7
【分析】①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时;③当APB,PB=BQ,PQ=CQ时;④AP=PB,PB=PQ,PQ=QC时;根据等腰三角形的性质和三角形的内角和即可得到结论.
【解析】解:如图所示,共有9种情况,∠C的度数有7个,分别为80°,40°,35°,20°,25°,100°,50°.
①当AB=AP,BQ=PQ,CP=CQ时;②当AB=AP,BP=BQ,PQ=QC时,
③当AP=AB,PQ=CQ,PB=PQ时.④当AP=AB,PQ=PC,BQ=PQ时,
⑤当AP=BP,CP=CQ,QB=PQ时,⑥当AP=PB,PB=BQ,PQ=CQ时;
⑦AP=PB,PB=PQ,PQ=QC时.⑧AP=PB,QB=PQ,PQ=CC时.⑨BP=AB,PQ=BQ,PQ=PC时.
【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.
变式1.(2022·保定市初二期中)如图,在平面直角坐标系中,点的坐标为,在轴上确定点,使为等腰三角形,则符合条件的点有( )
A.2个 B.3个 C.4个 D.5个
【答案】C
【分析】先计算OA的长,再以OA为腰或底分别讨论,进而得出答案.
【解析】解:如图,,当AO=OP1,AO=OP3时,P1(﹣,0),P3(,0),
当AP2=OP2时,P2(1,0),当AO=AP4时,P4(2,0),故符合条件的点有4个.故选:C.
【点睛】本题以平面直角坐标系为载体,主要考查了勾股定理和等腰三角形的定义,属于常考题型,全面分类、掌握解答的方法是关键.
例2.(2022·福建·厦门八年级期末)在平面直角坐标系中,点A(10,0)、B(0,3),以AB为边在第一象限作等腰直角△ABC,则点C的坐标为_______.
【答案】
【解析】
【分析】根据题意作出图形,分类讨论,根据三角形全等的性质与判定即可求得点的坐标
【详解】解:如图,
当为直角顶点时,则,作轴,
又,同理可得
根据三线合一可得是的中点,则,综上所述,点C的坐标为
故答案为:
【点睛】本题考查了等腰直角三角形的性质与判定,坐标与图形,全等三角形的性质与判定,分类讨论是解题的关键.
变式2.(2022·黑龙江密山·八年级期末)如图,直线MN与x轴、y轴分别相交于B、A两点,. (1)求A,B两点的坐标;(2)若点O到AB的距离为,求线段AB的长;(3)在(2)的条件下,x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形,若存在请直接写出满足条件的点P的坐标.
【答案】(1)A(0,6),B(8,0);(2)AB=10;(3)存在,(-8,0)、(-2,0)、(18,0).
【分析】(1)由非负数的性质知OA=6,OB=8,据此可得点A和点B的坐标;(2)根据求解可得;(3)先设点P(a,0),根据A(0,6),B(8,0)得,再分PA=AB和AB=PB两种情况分别求解可得.
(1)
则A点的坐标为A(0,6),B点的坐标为(8,0)
(2),
(3)存在点P,使△ABP是以AB为腰的等腰三角形 设点P(a,0),根据A(0,6),B(8,0)得
①若PA=AB,则,即,解得a=8(舍)或a= 8,此时点P( 8,0);
②若AB=PB,即,即解得a=18或a= 2,此时点P(18,0)或( 2,0);
综上,存在点P,使△ABP使以AB为腰的等腰三角形,其坐标为( 8,0)或(18,0)或( 2,0).
【点睛】本题考察了非负数的性质、直角三角形的面积求法、勾股定理及等腰三角形的性质,分类讨论思想的运用是解决第3问的关键
例3.(2022·北京·八年级期中)Rt△ABC中,∠BAC=90°,AB=AC=2,以AC为一边.在△ABC外部作等腰直角三角形ACD,则线段BD的长为____.
【答案】或或.
【分析】根据题意分类讨论,①,②,③,分别作出图形,再结合已知条件勾股定理求解即可.
【详解】解:①如图,当时,
是等腰直角三角形,
,,;
②如图,当时,过点作,交的延长线于点,
,,是等腰直角三角形,
,,
又,是等腰直角三角形,,
在中,,,
在中,,在中,;
③如图,当时,
,是等腰直角三角形, ,
在中,,在中,.
综上所述,的长为:或或.故答案为:或或.
【点睛】本题考查了勾股定理,等腰三角形的性质,分类讨论是解题的关键.
变式3.(2021·浙江余杭·八年级期中)如图,已知在中,,,,若动点P从点B开始,按的路径运动,且速度为每秒2个单位长度,设出发的时间为t秒. (1)出发2秒后,求CP的长.(2)出发几秒钟后,CP恰好平分的周长.(3)当t为何值时,为等腰三角形?
【答案】(1)PC =(2)出发3秒钟后,CP恰好平分△ABC的周长(3)t=3或5.4或6或6.5时,△BCP为等腰三角形
【分析】(1)勾股定理求得的长,进而根据速度求得出发2秒后的长,中勾股定理求解即可;(2)由于CP恰好平分的周长,则P点不可能位于线段BC和AC上,即对P点在线段AB上进行探究,根据题意列出一元一次方程,解方程求解即可;(3)①当P在AB上时,若BP=BC时,②当P在AC上时,若BP=BC时,③当P在AC上时,若CB=CP时,④当P在AB上时,若PC=PB时,根据题意列出一元一次方程解方程求解即可
(1)由∠B=90°,AC=10,BC=6, ∴AB=8,
∵P从点B开始,按B→A→C→B,且速度为2,∴出发2秒后,则BP=4,AP=6,
∵∠B=90°,∴在中,由勾股定理得PC= ;
(2)P点不可能位于线段BC和AC上,即对P点在线段AB上进行探究,
根据题意可得,6+2t=10+8-2t ;解得t=3 出发3秒钟后,CP恰好平分△ABC的周长
(3)①当P在AB上时,若BP=BC时,得到2t=6;则t=3,
②当P在AC上时,若BP=BC时,过点作,则
在中,在中,
即解得
③当P在AC上时,若CB=CP时,即解得
④当P在AC上时,若PC=PB时,得到2t=6;则t=6.5.
综上可得t=3或5.4或6或6.5时,△BCP为等腰三角形.
【点睛】本题考查了勾股定理,一元一次方程的应用,等腰三角形的性质与判定,分类讨论是解题的关键.
例4.(2022·江西宜春·八年级期末)规定:在直角三角形中,如果直角边是斜边的一半,那么它所对的锐角为30°.等腰三角形ABC中,于点D,若,则底角的度数为______.
【答案】或或
【分析】分两种情况:①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.
【详解】①BC为腰,∵AD⊥BC于点D,,∴∠ACD=30°,
如图1,AD在△ABC内部时,底角∠B=75°;
如图2,延长BC,过A作AD⊥BC于D,AD在△ABC外部时,底角∠B==15°;
②BC为底,如图3,∵AD⊥BC于点D,,∴AD=BD=CD,
∴△ABC是等腰直角三角形,∴底角∠B=45°,
综上所述,等腰三角形ABC的顶角度数为或或.故答案为:或或.
【点睛】本题考查了含30°角的直角三角形的性质,等腰三角形的性质,分类讨论是解题的关键.
变式4.(2022·重庆市八年级期中)如图1,一副直角三角板△ABC和△DEF,∠BAC=∠EDF=90°,∠B=45°,∠F=30°,点B、D、C、F在同一直线上,点A在DE上.如图2,△ABC固定不动,将△EDF绕点D逆时针旋转α(0°<α<135°)得△E′DF',当直线E′F′与直线AC、BC所围成的三角形为等腰三角形时,α的大小为___.
【答案】7.5°或75°或97.5°或120°
【分析】设直线E′F′与直线AC、BC分别交于点P、Q,根据△CPQ为等腰三角形,分三种情况:①当∠PCQ为顶角时,∠CPQ=∠CQP,如图1,可求得α=7.5°;如图2,△CPQ为等腰三角形中,∠PCQ为顶角,可求得α=∠EDE′=90°+7.5°=97.5°;②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,可得∠CPQ=90°,如图3,进而求得α=90°-15°=75°;③如图4,当∠CQP为顶角时,∠CPQ=∠PCQ=45°,可得∠CQP=90°,进而求得α=∠EDE′=∠EDQ+∠QDE′=90°+30°=120°.
【详解】解:设直线E′F′与直线AC、BC分别交于点P、Q,
∵△CPQ为等腰三角形,∴∠PCQ为顶角或∠CPQ为顶角或∠CQP为顶角,
①当∠PCQ为顶角时,∠CPQ=∠CQP,如图1,
∵∠BAC=∠EDF=90°,∠B=45°,∠F=30°,∴∠E′DF′=90°,∠ACB=45°,∠E′F′D=30°,
∵∠CPQ+∠CQP=∠ACB=45°,∴∠CQP=22.5°,
∵∠E′F′D=∠CQP+∠F′DQ,∴∠F′DQ=∠E′F′D-∠CQP=30°-22.5°=7.5°,∴α=7.5°;
如图2,∵△CPQ为等腰三角形中,∠PCQ为顶角,∴∠CPQ=∠CQP=67.5°,
∵∠E′DF′=90°,∠F′=30°,∴∠E′=60°,∴∠E′DQ=∠CQP-∠E′=67.5°-60°=7.5°,
∴α=∠EDE′=90°+7.5°=97.5°;
②当∠CPQ为顶角时,∠CQP=∠PCQ=45°,∴∠CPQ=90°,如图3,
∵∠DE′F′=∠CQP+∠QDE′,∴∠QDE′=∠DE′F′-∠CQP=60°-45°=15°,∴α=90°-15°=75°;
③如图4,当∠CQP为顶角时,∠CPQ=∠PCQ=45°,
∴∠CQP=90°,∴∠QDF′=90°-∠DF′E′=60°,∴∠QDE′=∠E′DF′-∠QDF′=30°,
∴α=∠EDE′=∠EDQ+∠QDE′=90°+30°=120°;综上所述,α的大小为7.5°或75°或97.5°或120°.
故答案为:7.5°或75°或97.5°或120°.
【点睛】本题考查了等腰三角形性质,直角三角形性质,旋转的性质,三角形内角和定理等,解题关键是运用数形结合思想和分类讨论思想思考解决问题.
高频考点2:直角三角形中的分类讨论:
【解题技巧】
1.无图需分类讨论——经典运用:已知边长度无法确定是直角边还是斜边时要分类讨论。
2.“两定一动”直角三角形存在性问题:(常见于与坐标系综合出题,后续会专题进行讲解)
即:如图:已知,两点是定点,找一点构成
方法:两线一圆
具体图解:①当时,过点作的垂线,点在该垂线上(除外)
②当时,过点作的垂线,点在该垂线上(除外)
③当时,以为直径作圆,点在该圆上(,除外)
例1.(2022·江西九江·八年级期末)已知在平面直角坐标系中A(﹣2,0)、B(2,0)、C(0,2).点P在x轴上运动,当点P与点A、B、C三点中任意两点构成直角三角形时,点P的坐标为________.
【答案】(0,0),(,0),(﹣2,0)
【分析】因为点P、A、B在x轴上,所以P、A、B三点不能构成三角形.再分Rt△PAC和Tt△PBC两种情况进行分析即可.
【详解】解:∵点P、A、B在x轴上,∴P、A、B三点不能构成三角形.
设点P的坐标为(m,0).当△PAC为直角三角形时,
①∠APC=90°,易知点P在原点处坐标为(0,0);
②∠ACP=90°时,如图,∵∠ACP=90°∴AC2+PC2=AP2,
,解得,m=,∴点P的坐标为(,0);
当△PBC为直角三角形时,①∠BPC=90°,易知点P在原点处坐标为(0,0);
②∠BCP=90°时,∵∠BCP=90°,CO⊥PB,∴PO=BO=2,∴点P的坐标为(﹣2,0).
综上所述点P的坐标为(0,0),(,0),(﹣2,0).
【点睛】本题考查了勾股定理及其逆定理,涉及到了数形结合和分类讨论思想.解题的关键是不重复不遗漏的进行分类.
变式1.(2022·江苏兴化·八年级期中)在Rt△ABC中,∠BAC=90°,点D、E在边BC所在的直线上,且AB=DB,AC=EC,则∠DAE的度数为________.
【答案】45°或135°
【分析】分四种情况:若点D、E在线段BC上时;若点D在线段BC上,点E在BC的延长线上时;若点D在CB的延长线上点E在BC的延长线上时;若点D在CB的延长线上,点E在线段BC上时讨论,即可求解.
【详解】解:如图,若点D、E在线段BC上时,
∵AB=DB,AC=EC,∴∠BAD=∠ADB,∠CAE=∠AEC,
∴∠BAE+∠DAE=∠CAD+∠C,∠CAD+∠DAE=∠BAE+∠B,
∴∠BAE+∠CAD+2∠DAE=∠CAD+∠BAE+∠B+∠C,∴2∠DAE=∠B+∠C,
∵∠BAC=90°,∴∠B+∠C=90°,∴∠DAE=45°;
如图,若点D在线段BC上,点E在BC的延长线上时,
∵AC=EC,∴可设∠E=∠CAE =x,∴∠ACB=∠E+∠CAE=2x,∵∠BAC=90°,∴∠B=90°-∠ACB=90°-2x,
∵AB=DB,∴ ,∵∠ADB=∠DAE+∠E,∴∠DAE=45°;
如图,若点D在CB的延长线上,点E在BC的延长线上时,
∵AC=EC,∴∠E=∠CAE,∴∠ACB=∠E+∠CAE=2∠CAE,
∵AB=DB,∴∠D=∠BAD,∴∠ABC=∠D+∠BAD=2∠BAD,
∵∠BAC=90°,∴∠ABC+∠ACB=90°,∴2∠CAE+2∠BAD=90°,∴∠CAE+∠BAD=45°,
∴∠DAE=∠CAE+∠BAD+∠BAC=135°;如图,若点D在CB的延长线上,点E在线段BC上时,
∵AB=DB,∴可设∠D=∠BAD=y,∴∠ABC=∠D+∠BAD=2y,∴∠ABC=2y,
∵∠BAC=90°,∴∠C=90°-2y,∵AC=EC,∴∠AEC=∠CAE= ,
∵∠AEC=∠D+∠DAE,∴∠DAE=45°综上所述,∠DAE的度数为45°或135°.故答案为:45°或135°
【点睛】本题主要考查等腰三角形的性质,直角三角形两锐角互余,利用分类讨论思想解答是解题的关键.
变式2.(2022 海州区校级一模)如图,在△ABC中,AB=BC=6,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为 .
解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,
∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,
∵AB=BC=6,∴AP=6×=3;当∠ABP=90°时(如图2),
∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP=3,
在直角三角形ABP中,AP==3;如图3,∵AO=BO,∠APB=90°,∴PO=AO,
∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=3,故答案为3或3或3.
例2.(2022·浙江·八年级专题练习)如图,,点A是延长线上的一点,,动点P从点A出发沿以的速度移动,动点Q从点O出发沿以的速度移动,如果点同时出发,用表示移动的时间,当_____s时,是等腰三角形;当___s时,是直角三角形.
【答案】 或5 4或10
【分析】根据是等腰三角形,分两种情况进行讨论:点在上,或点在上;根据是直角三角形,分两种情况进行讨论:,或,据此进行计算即可.
【详解】解:如图,当时,是等腰三角形,
,,当时,,解得;
如图,当时,是等腰三角形,
,,当时,,解得;
如图,当时,是直角三角形,且,
,,当时,,解得;
如图,当时,是直角三角形,且,
,,当时,,解得:t=10.
故答案为:或5;4或10.
【点睛】本题主要考查了等腰三角形的性质以及直角三角形的性质,解决问题的关键是进行分类讨论,分类时注意不能遗漏,也不能重复.
变式3.(2022·河北承德·八年级期末)如图,,,动点P从点B出发,以每秒1个单位长度的速度沿射线运动,嘉琪在研究过程中发现,随着点Р运动,形状在发生变化,设点P的运动时间为t秒.
(1)当是直角三角形时,t的值为_________;
(2)当是钝角三角形时,t满足的条件是____________.
【答案】 和6 或
【分析】(1)分两种情况讨论:当∠APB=90°时;当∠BAP=90°时,结合直角三角形的性质,即可求解;(2)由(1)得,当时,∠APB>90°;当时,∠BAP>90°,即可求解.
【详解】解:(1)如图,当∠APB=90°时,
∵,∴∠BAP=30°,∴AB=2BP,
∵,∴,此时;如图,当∠BAP=90°时,
∵,∴∠BPA=30°,∴BP=2AB=6,此时t=6;
综上所述,t的值为和6;故答案为:和6;
(2)由(1)得,当时,∠APB>90°;当时,∠BAP>90°;
∴当是钝角三角形时,t满足的条件是或.
故答案为:或
【点睛】本题主要考查了直角三角形的性质,熟练掌握直角三角形中,30度角所对的直角边等于斜边的一半是解题的关键.
变式4.(2022·浙江·诸暨市八年级期中)如图∠MAN=60°,若△ABC的顶点 B在射线AM上,且AB=6,动点C从点A出发,以每秒1个单位沿射线AN运动,当运动时间 t是_______秒时,△ABC是直角三角形.
【答案】3或12
【分析】分∠ACB=90°和∠ABC=90°两种情况,据含30°角的直角三角形的性质求出AC,再求出答案即可.
【详解】解:如图:当△ABC是以∠ACB=90°的直角三角形时,
∵∠MAN=60°,∴∠ABC=30°,∴AC=,∴运动时间 t=秒,
当△ABC是以∠ABC=90°的直角三角形时,
∵∠MAN=60°,∴∠ACB=30°,∴AC=,∴运动时间 t=秒,
当运动时间 t是3或12秒时,△ABC是直角三角形.故答案为:3或12
【点睛】本题考查了三角形的内角和定理和含30°角的直角三角形的性质,能熟记含30°角的直角三角形的性质是解此题的关键.
例3.(2022·河南·郑州三模)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点P是边AC上一动点,把△ABP沿直线BP折叠,使得点A落在图中点A′处,当△AA′C是直角三角形时,则线段CP的长是_________.
【答案】4或3
【分析】分类讨论分别当∠AA′C=90°时,当∠ACA′=90°时,根据折叠的性质函数直角三角形的性质即可得到结论.
【详解】解:如图1,当∠AA′C=90°时,
∵以直线BP为轴把△ABP折叠,使得点A落在图中点A′处,∴AP=A′P,∴∠PAA′=∠AA′P,
∵∠ACA′+∠PAA′=∠CA′P+∠AA′P=90°,∴∠PCA′=∠PA′C,∴PC=PA′,∴PC=AC=4,
如图2,当∠ACA′=90°时,∵在Rt△ABC中,∠ACB=90°,且AC=8,BC=6.∴AB=10,
∵以直线BP为轴把△ABP折叠,使得点A落在图中点A′处,∴A′B=AB=10,PA=PA′,∴A′C=4,
设PC=x,∴AP=8-x,∵A′C2+PC2=PA′2,∴42+x2=(8-x)2,解得:x=3,∴PC=3,
综上所述:当△AA′C是直角三角形时,则线段CP的长是4或3,故答案为:4或3.
【点睛】本题考查了翻折变换(折叠问题)直角三角形的性质,正确的作出图形是解题的关键.
变式5.(2022·上海普陀·八年级期末)在Rt△ABC中,∠C=90°,AC=6,点D为边BC上一点,将△ACD沿直线AD翻折得到△AED,点C的对应点为点E,联结BE,如果△BDE是以BD为直角边的等腰直角三角形,那么BC的长等于______.
【答案】12或
【分析】根据题意可知,需要分两种情况,,,画出对应的图形,再根据折叠的性质及等腰直角三角形的性质可求解.
【详解】解:①当时,如图,
此时,四边形是正方形,则,
又是等腰直角三角形,,所以;
②当时,如图,
设,则,,由折叠可知,,
由题意可知,,,,
即是等腰直角三角形,,,
,,解得,
.故答案为:12或.
【点睛】本题考查了翻折变换、勾股定理、解直角三角形、等腰直角三角形的性质与判定等知识,解题的关键是学会用分类讨论的思想解决问题.
例4.(2022 饶平县校级期中)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.
【答案】 (1)是 (2)BN=8或10
【解答】解:(1)是.
理由:∵AM2+BN2=1.52+22=6.25,MN2=2.52=6.25,
∴AM2+NB2=MN2,
∴AM、MN、NB为边的三角形是一个直角三角形,
∴点M、N是线段AB的勾股分割点.
(2)设BN=x,则MN=24﹣AM﹣BN=18﹣x,
①当MN为最大线段时,依题意MN2=AM2+NB2,
即(18﹣x)2=x2+36,
解得x=8;
②当BN为最大线段时,依题意BN2=AM2+MN2.
即x2=36+(18﹣x)2,
解得x=10,
综上所述,BN=8或10.
变式6.(2022·广东广州·八年级阶段练习)在中,若过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.例如:如图,在中,,,若过顶点的一条直线交于点,且,则直线是的关于点的二分割线.如图,已知,同时满足:①为最小角;②存在关于点的二分割线,则的度数为______.
【答案】或或
【解析】
【分析】根据关于点B的二分割线的定义即可得到结论.
【详解】解:如图2所示:,
如图3所示:,
如图所示:,
故答案为:或或.
【点睛】本题考查了直角三角形,等腰三角形的性质,正确地理解“△ABC的关于点B的二分割线”是解题的关键
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题08 几何背景下等腰、直角三角形中的分类讨论 专项提升(精讲)
高频考点1:等腰三角形中的分类讨论
【解题技巧】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。
1.无图需分类讨论
①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论;
③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。
2.“两定一动”等腰三角形存在性问题:(常见于与坐标系综合出题,后续会专题进行讲解)
即:如图:已知,两点是定点,找一点构成等腰
方法:两圆一线
具体图解:①当时,以点为圆心,长为半径作⊙,点在⊙上(,除外)
②当时,以点为圆心,长为半径作⊙,点在⊙上(,除外)
③当时,作的中垂线,点在该中垂线上(除外)
例1.(2022·上虞市初二月考)在如图所示的三角形中,∠A=30°,点P和点Q分别是边AC和BC上的两个动点,分别连接BP和PQ,把△ABC分割成三个三角形△ABP,△BPQ,△PQC,若分割成的这三个三角形都是等腰三角形,则∠C有可能的值有________个.
变式1.(2022·保定市初二期中)如图,在平面直角坐标系中,点的坐标为,在轴上确定点,使为等腰三角形,则符合条件的点有( )
A.2个 B.3个 C.4个 D.5个
例2.(2022·福建·厦门八年级期末)在平面直角坐标系中,点A(10,0)、B(0,3),以AB为边在第一象限作等腰直角△ABC,则点C的坐标为_______.
变式2.(2022·黑龙江密山·八年级期末)如图,直线MN与x轴、y轴分别相交于B、A两点,. (1)求A,B两点的坐标;(2)若点O到AB的距离为,求线段AB的长;(3)在(2)的条件下,x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形,若存在请直接写出满足条件的点P的坐标.
例3.(2022·北京·八年级期中)Rt△ABC中,∠BAC=90°,AB=AC=2,以AC为一边.在△ABC外部作等腰直角三角形ACD,则线段BD的长为____.
变式3.(2021·浙江余杭·八年级期中)如图,已知在中,,,,若动点P从点B开始,按的路径运动,且速度为每秒2个单位长度,设出发的时间为t秒. (1)出发2秒后,求CP的长.(2)出发几秒钟后,CP恰好平分的周长.(3)当t为何值时,为等腰三角形?
例4.(2022·江西宜春·八年级期末)规定:在直角三角形中,如果直角边是斜边的一半,那么它所对的锐角为30°.等腰三角形ABC中,于点D,若,则底角的度数为______.
变式4.(2022·重庆市八年级期中)如图1,一副直角三角板△ABC和△DEF,∠BAC=∠EDF=90°,∠B=45°,∠F=30°,点B、D、C、F在同一直线上,点A在DE上.如图2,△ABC固定不动,将△EDF绕点D逆时针旋转α(0°<α<135°)得△E′DF',当直线E′F′与直线AC、BC所围成的三角形为等腰三角形时,α的大小为___.
高频考点2:直角三角形中的分类讨论:
【解题技巧】
1.无图需分类讨论——经典运用:已知边长度无法确定是直角边还是斜边时要分类讨论。
2.“两定一动”直角三角形存在性问题:(常见于与坐标系综合出题,后续会专题进行讲解)
即:如图:已知,两点是定点,找一点构成
方法:两线一圆
具体图解:①当时,过点作的垂线,点在该垂线上(除外)
②当时,过点作的垂线,点在该垂线上(除外)
③当时,以为直径作圆,点在该圆上(,除外)
例1.(2022·江西九江·八年级期末)已知在平面直角坐标系中A(﹣2,0)、B(2,0)、C(0,2).点P在x轴上运动,当点P与点A、B、C三点中任意两点构成直角三角形时,点P的坐标为________.
变式1.(2022·江苏兴化·八年级期中)在Rt△ABC中,∠BAC=90°,点D、E在边BC所在的直线上,且AB=DB,AC=EC,则∠DAE的度数为________.
变式2.(2022 海州区校级一模)如图,在△ABC中,AB=BC=6,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为 .
例2.(2022·浙江·八年级专题练习)如图,,点A是延长线上的一点,,动点P从点A出发沿以的速度移动,动点Q从点O出发沿以的速度移动,如果点同时出发,用表示移动的时间,当_____s时,是等腰三角形;当___s时,是直角三角形.
变式3.(2022·河北承德·八年级期末)如图,,,动点P从点B出发,以每秒1个单位长度的速度沿射线运动,嘉琪在研究过程中发现,随着点Р运动,形状在发生变化,设点P的运动时间为t秒.
(1)当是直角三角形时,t的值为_________;
(2)当是钝角三角形时,t满足的条件是____________.
变式4.(2022·浙江·诸暨市八年级期中)如图∠MAN=60°,若△ABC的顶点 B在射线AM上,且AB=6,动点C从点A出发,以每秒1个单位沿射线AN运动,当运动时间 t是_______秒时,△ABC是直角三角形.
例3.(2022·河南·郑州三模)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点P是边AC上一动点,把△ABP沿直线BP折叠,使得点A落在图中点A′处,当△AA′C是直角三角形时,则线段CP的长是_________.
变式5.(2022·上海普陀·八年级期末)在Rt△ABC中,∠C=90°,AC=6,点D为边BC上一点,将△ACD沿直线AD翻折得到△AED,点C的对应点为点E,联结BE,如果△BDE是以BD为直角边的等腰直角三角形,那么BC的长等于______.
例4.(2022 饶平县校级期中)定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.
变式6.(2022·广东广州·八年级阶段练习)在中,若过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.例如:如图,在中,,,若过顶点的一条直线交于点,且,则直线是的关于点的二分割线.如图,已知,同时满足:①为最小角;②存在关于点的二分割线,则的度数为______.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)