高一期末复习之不等式知识点总结

文档属性

名称 高一期末复习之不等式知识点总结
格式 zip
文件大小 145.2KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2013-12-12 17:01:27

图片预览

文档简介

二、不等式
1. 不等式的性质:
(1)同向不等式可以相加;异向不等式可以相减:若,则(若,则),但异向不等式不可以相加;同向不等式不可以相减;
(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若,则(若,则);
(3)左右同正不等式:两边可以同时乘方或开方:若,则或;
(4)若,,则;若,,则。
如(1)对于实数中,给出下列命题:
①;②;③;④;⑤;⑥;⑦; ⑧,则。其中正确的命题是______(答:②③⑥⑦⑧)
(2)已知,,则的取值范围是______(答:)
(3)已知,且则的取值范围是______ (答:)
2. 不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;
(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;
(8)图象法。其中比较法(作差、作商)是最基本的方法。
如设,,,试比较的大小(答:)
3. 一元一次不等式的解法:通过去分母、去括号、移项、合并同类项等步骤化为的形式,若,则;若,则;若,则当时,;当时,。如已知关于的不等式的解集为,则关于的不等式的解集为_______(答:)
4. 一元二次不等式的解集(联系图象)。尤其当和时的解集你会正确表示吗?设,是方程的两实根,且,则其解集如下表:
或 或
R
R R
如解关于的不等式:。(答:当时,;当时,或;当时,;当时,;当时,)
5. 对于方程有实数解的问题。首先要讨论最高次项系数是否为0,其次若,则一定有。对于多项式方程、不等式、函数的最高次项中含有参数时,你是否注意到同样的情形?如:(1)对一切恒成立,则的取值范围是_______(答:);(2)关于的方程有解的条件是什么?(答:,其中为的值域)
6. 一元二次方程根的分布理论。方程在上有两根、在上有两根、在和上各有一根的充要条件分别是什么?
(、、)。根的分布理论成立的前提是开区间,若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,再令和检查端点的情况.
如在区间上至少存在一个实数,使,求实数的取值范围。 (答:)
7. 二次方程、二次不等式、二次函数间的联系你了解了吗?二次方程的两个根即为二次不等式的解集的端点值,也是二次函数的图象与轴的交点的横坐标。如(1)不等式的解集是,则=__________(答:);(2)若关于的不等式的解集为,其中,则关于的不等式的解集为________(答:);(3)不等式对恒成立,则实数的取值范围是_______(答:)。
8. 简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现的符号变化规律,写出不等式的解集。
如:(1)解不等式。 (答:)
(2)不等式的解集是____(答:)
(3)设函数、的定义域都是R,且的解集为,的解集为,则不等式的解集为______(答:)
(4)要使满足关于的不等式(解集非空)的每一个的值至少满足不等式中的一个,则实数的取值范围是.(答:)
9. 分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。
如:(1)解不等式 (答:)
(2)关于的不等式的解集为,求关于的不等式的解集
(答:)
10. 绝对值不等式的解法:
(1)分段讨论(最后结果应取各段的并集):如解不等式(答:)
(2)利用绝对值的定义;
(3)数形结合;如解不等式(答:)
(4)两边平方:如若不等式对任意恒成立,则实数的取值范围。(答:)
11. 含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集. (见4中例题)
12. 含绝对值不等式的性质:
同号或有;
异号或有.
如设,实数满足,求证:
13. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。
如:(1)下列命题中正确的是
A.的最小值是2 B.的最小值是2
C.的最大值是D.的最小值是
(2)若,则的最小值是______(答:)
(3)正数满足,则的最小值为______(答:)
14. 常用不等式有:(1)(当且仅当时,取等号),根据目标不等式左右的结构选用;(2),(当且仅当时,取等号);(3)若,则(糖水的浓度问题)。如果正数、满足,则的取值范围是 _________(答:)
15. 证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。
常用的放缩技巧有:
如(1)已知,求证: ;
(2) 已知,求证:;
(3)已知,且,求证:;
(4)若,求证:;
(5)已知,求证:;
16. 不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)
(1)恒成立问题
若不等式在区间上恒成立,则等价于在区间上
若不等式在区间上恒成立,则等价于在区间上
如(1)不等式对一切实数恒成立,求实数的取值范围
(2)若不等式对满足的所有都成立,则的取值范围
(3)若不等式对的所有实数都成立,求的取值范围.
(2)能成立问题
若在区间上存在实数使不等式成立,则等价于在区间上;
若在区间上存在实数使不等式成立,则等价于在区间上的.如
已知不等式在实数集上的解集不是空集,求实数的取值范围____
(3)恰成立问题
若不等式在区间上恰成立, 则等价于不等式的解集为;
若不等式在区间上恰成立, 则等价于不等式的解集为.
同课章节目录