人教A版(2019)数学必修第一册 4.2 指数函数 课件(共30张PPT)

文档属性

名称 人教A版(2019)数学必修第一册 4.2 指数函数 课件(共30张PPT)
格式 pptx
文件大小 1.4MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-11-25 11:01:42

图片预览

文档简介

(共30张PPT)
指数函数(2)
1.掌握指数函数的性质并会应用,能利用指数函数的单调性比较幂的大小及解不等式.
2.通过本节内容的学习,进一步体会函数图象是研究函数的重要工具,并能运用指数函数研究一些实际问题.
本节目标
题型突破
典例深度剖析 重点多维探究
题型一 利用指数函数的单调性比较大小
[例1] 比较下列各组数的大小:
(1) 1.52.5和1.53.2;
(2) 0.6-1.2和0.6-1.5;
(3) 1.70.2和0.92.1;
(4) a1.1与a0.3(a>0且a≠1).
[例1] 比较下列各组数的大小:
(1) 1.52.5和1.53.2;
1.52.5,1.53.2可看作函数y=1.5x的两个函数值,
由于底数1.5>1,
所以函数y=1.5x在R上是增函数,
因为2.5<3.2,所以1.52.5<1.53.2.
[例1] 比较下列各组数的大小:
(2) 0.6-1.2和0.6-1.5;
0.6-1.2,0.6-1.5可看作函数y=0.6x的两个函数值,
因为函数y=0.6x在R上是减函数,
且-1.2 > -1.5,所以0.6-1.2 < 0.6-1.5.
[例1] 比较下列各组数的大小:
由指数函数性质得,
1.70.2>1.70=1,0.92.1<0.90=1,
所以1.70.2>0.92.1.
当a>1时,y=ax在R上是增函数,故a1.1>a0.3;
当0(3) 1.70.2和0.92.1;
(4) a1.1与a0.3(a>0且a≠1).
1 同底数幂比较大小时构造指数函数,根据其单调性比较.
2 指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x取相同幂指数时可观察出函数值的大小.
3 底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.
4 当底数含参数时,要按底数a>1和0比较幂的大小的方法
方法总结
跟踪训练
1.比较下列各值的大小: , , , .
先根据幂的特征,将这4个数分类:
(1)负数: ;
(2)大于1的数: , ;
(3)大于0且小于1的数: .
(2)中, < <(也可在同一平面直角坐标系中,分别作出y= ,y=2x的图象,再分别取x= ,x= ,比较对应函数值的大小,如图),
故有< < < .
题型二 利用指数函数的单调性解不等式
[例2] (1)解不等式≤2;
(2)已知(a>0,a≠1),求x的取值范围.
[例2] (1)解不等式≤2;
∵2= ,∴原不等式可以转化为≤ .
∵y= 在R上是减函数,
∴3x-1≥-1,∴x≥0,
故原不等式的解集是{x|x≥0}.
[例2]  (2)已知(a>0,a≠1),求x的取值范围.
分情况讨论
①当00,a≠1)在R上是减函数,
∴x2-3x+1>x+6,∴x2-4x-5>0,
根据相应二次函数的图象可得x<-1或x>5;
②当a>1时,函数f(x)=ax(a>0,a≠1)在R上是增函数,
∴x2-3x+1根据相应二次函数的图象可得-1综上所述,当05;当a>1时,-12.解不等式af(x)>ag(x)(a>0,a≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,若底数不确定,就需进行分类讨论,
即af(x)>ag(x)
1.利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式.
技法点拨
利用指数型函数的单调性解不等式
2.若ax+1> (a>0且a≠1),求x的取值范围.
跟踪训练
因为ax+1> ,所以ax+1>a3x-5,
当a>1时,y=ax为增函数,可得x+1>3x-5,所以x<3;
当03.
综上,当a>1时,x的取值范围为(-∞,3);
当0题型三 指数型函数单调性的综合应用
[探究问题]
1.试结合图象,分析y=2-x,y=2|x|,y=的单调性,并写出相应单调区间.
减区间
减区间
增区间
减区间
2.结合探究1,分析函数y=2|x|与函数y=|x|的单调性是否一致?
提示:
y=2|x|的单调性与y=|x|的单调性一致.
[探究问题]
3.函数y= (a>0,且a≠1)的单调性与y=-x2的单调性存在怎样的关系?
提示:分两类:
(1)当a>1时,函数y= 的单调性与y=-x2的单调性一致;
(2)当0[探究问题]
[例3] 判断f(x)= 的单调性,并求其值域.
令u=
函数u(x)的单调性
函数y= 的单调性
函数f(x)的单调性
同增异减
思路点拨
[例3] 判断f(x)= 的单调性,并求其值域.
令u=x2-2x,则原函数变为y= .
∵u=x2-2x=(x-1)2-1在(-∞,1]上递减,在[1,+∞)上递增,
又∵y= 在(-∞,+∞)上递减,
∴y= 在(-∞,1]上递增,在[1,+∞)上递减.
∵u=x2-2x=(x-1)2-1≥-1,∴y= ,u∈[-1,+∞),
∴0< ≤ =3,
∴原函数的值域为(0,3].
多维探究
变式 把本例的函数改为“f(x)=,求其单调区间.
函数y= 的定义域是R.
令u=-x2+2x,则y=2u.
当x∈(-∞,1]时,函数u=-x2+2x为增函数,函数y=2u是增函数,
所以函数y=在(-∞,1]上是增函数.
当x∈[1,+∞)时,函数u=-x2+2x为减函数,函数y=2u是增函数,
所以函数y=在[1,+∞)上是减函数.
综上,函数y=的单调减区间是[1,+∞),单调增区间是(-∞,1].
1 关于指数型函数y=af x a>0,且a≠1 的单调性由两点决定,一是底数a>1还是0 2 求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y=f u ,u=φ x ,通过考查f u 和φ x 的单调性,求出y=f φ x 的单调性.
函数y=af x a>0,a≠1 的单调性的处理技巧
技法点拨
随堂检测
1.思考辨析
(1)y=21-x是R上的增函数.(  )
(2)若0.1a>0.1b,则a>b.(  )
(3)a,b均大于0且不等于1,若ax=bx,则x=0.(  )
(4)由于y=ax(a>0且a≠1)既非奇函数,也非偶函数,所以指数函数与其他函数也组不成具有奇偶性的函数.(  )
×
×
×
×
2.若2x+1<1,则x的取值范围是(  )
A.(-1,1) B.(-1,+∞)
C.(0,1)∪(1,+∞) D.(-∞,-1)
∵2x+1<1=20,且y=2x是增函数,
∴x+1<0,
∴x<-1.
D
3.下列判断正确的是(  )
A.1.72.5>1.73 B.0.82<0.83
C.π2< D.0.90.3>0.90.5
∵y=0.9x在定义域上是减函数,0.3<0.5,
∴0.90.3>0.90.5.
D
4.已知函数f(x)=ax(a>0且a≠1)的图象经过点.
(1)比较f(2)与f(b2+2)的大小;
(2)求函数g(x)= (x≥0)的值域.
(1)由已知得a2=,解得a=,因为f(x)= 在R上递减,2≤b2+2,所以f(2)≥f(b2+2).
(2)因为x≥0,所以x2-2x≥-1,所以≤3,
即函数g(x)= (x≥0)的值域为(0,3].
(1)比较形如am与an的大小
可运用指数函数y=ax的单调性.
(2)比较形如am与bn的大小
一般找一个“中间值c”,若am若am>c且c>bn,则am>bn.
1.比较两个指数式值的大小的主要方法
本课小结
(1)形如ax>ay的不等式
可借助y=ax的单调性求解.如果a的值不确定,需分01两种情况进行讨论.
(2)形如ax>b的不等式
注意将b化为以a为底的指数幂的形式,再借助y=ax的单调性求解.
(3)形如ax>bx的不等式
可借助图象求解.
2.解简单指数不等式问题的注意点
本课小结
本课小结
3.(1)研究y=af(x)型单调区间
要注意a>1还是0当a>1时,y=af(x)与f(x)单调性相同.
当0(2)研究y=f(ax)型单调区间
要注意ax属于f(u)的增区间还是减区间.
通过本节课,你学会了什么?