九年级数学上册
第23章
整合与提高
苦点专训
考点3解直角三角形的应用
考点1锐角三角函数
例4某中学九年级学生在学习“直角三角形的
例1(烟台)在Rt△ABC中,∠C=90°,AB=2,
边角关系”一章时,开展了测量物体高度的实践
BC=3,则sin分的值为
活动,他们要测量学校一幢教学楼的高度.如图,
他们先在点C处测得教学楼AB的顶点A的仰
考点2解直角三角形
角为30°,然后向教学楼前进60m到达点D处,
例2如图,在△ABC中,∠ACB=90°,CD⊥AB
又测得点A的仰角为45°,请你根据这些数据,求
于点D,若AC=2√3,AB=3√2,求tan∠BCD
出这幢教学楼的高度(计算过程和结论均不取近
的值.
似值).
【归纳】本题中的两个直角三角形都只有已知角,
没有已知边,不能直接求解,故设公共边,列方程
求解
优生特训
例3如图,在Rt△ABC中,∠C=90°,点D是
1,(包头)如图,点O在△ABC内,且到三边的距
BC的中点,DELAB-于点E,1anB=)AE=7.
离相等,若∠BOC=120°,则tanA的值为
求DE的长.
(
A.√5
B.③
C.3
3
2
D②
2
B
(第1题图)》
(第2题图)
2.(济南)如图,为了测量山坡护坡石坝的坡度
(坡面的铅直高度与水平宽度的比称为坡度),
把一根长5m的竹竿AC斜靠在石坝旁,量出
竿长1m处的D点离地面的高度DE-0.6m,
又量得竿底与坝脚的距离AB=3m,则石坝
【归纳】将三角函数转化为边的比值,设出未知
的坡度为
()
数,利用勾股定理建立方程是求线段长的常用
4.3
B.3
方法
C3
D.4
3.(上海)如图,已知在△ABC中,AB=BC=5,
5.(绵阳)如图,已知在△ABC中,∠C=90°,点
tan∠ABC=3
M从点C出发沿CB方向以1cm/s的速度匀
41
速运动,到达点B停止运动,在点M的运动过
(1)求边AC的长;
程中,过点M作直线MN交AC于点N,且保
(2)设边BC的垂直平分线与边AB的交点为
持∠NMC=45°,再过点N作AC的垂线交
点D,求部的值。
AB于点F,连接MF,将△MNF关于直线
NF对称后得到△ENF,已知AC=8cm,
BC=4cm,设点M的运动时间为t(单位:s),
△ENF与△ANF重叠部分的面积为y(单
位:cm2).
(1)在点M的运动过程中,能否使得四边形
MNEF为正方形?如果能,求出相应的t
值;如果不能,请说明理由
(2)求y关于t的函数解析式及相应t的取值
范围;
(3)当y取最大值时,求sin∠NEF的值
4,(荆州)如图,某数学活动小组为测量学校旗杆
AB的高度,沿旗杆正前方2√3m处的点C出
发,沿斜面坡度i=1:√3的斜坡CD前进4m
到达点D,在点D处安置测角仪,测得旗杆顶
部A的仰角为37°,量得仪器的高DE为
1.5m.已知A,B,C,D,E在同一平面内,
AB⊥BC,AB∥DE.求旗杆AB的高度(参考
数据:sin37≈号cos37≈号tan37≈,计
算结果保留根号).
3
一一一一一一
92∴顶点坐标为(一1,2).将物线y=一2一x十平移,使其顶点落
专题一二次函数的图象与性质的综合应用
参考答案
在原点上的方法:先间右平移1个单位,再向下平移2个单位,平移后的函
1.A2.y-
(x十4)(x-1)3.解:设函数表达式为y-a(x十2)
第2课时二次函数v=(x十h》2的图象和性质
课前预习:1.相同位置平移左市右一2.上增大减小0
数表达式为y=一。x.11.解:(1)y=x2一4.x十3.
直线x--2AB-2.A(-3,0),B(-1,0.当x--1时
当堂训练:1.C2.C3.D4.B5,B6.1大0
2)存在,连接BC,交直线
2于点P,PA+PB-PC
第21章二次函数与反比例函数
7.解:(1)y=-(x+2).(2)(-2,0,(3)<-2.
8.解:(1)图略。
PBBC.此时△PAB的周长最小A(,O)
数
解对称输=-出-2A10B3.0.S=2宁AB
课前预习:l.y-ar十bx十(2.全体实数实际何图品2r
21.1
的对称性,得C(3,0)·又易知B(0.3).设直线BC对应的函
”一次
〔2)由图象可知函数y=一x产的开口向上,对称轴为直线x=0,顶点坐标
数表达式为v=最x十,将B.C的坐标代入,得¥=一x十3,
(00=2,即7×20C=2.∴C=2,∴C(0,2)或(0.-2).∴6=2.当6
当x=2时,v=1,.点P的坐标为《2,1),AB=1+3=
当赏训练l.C2,B3,B4.-25,R>06,C7,y=6
为(0,0):函数y=了(x十3)的开口向上,对称轴为直线x=一3,顶点坐标
/,BC=3+3=32,△PAB周长的最小值=AB+PA
PB=AB
2时.A1.0.a=子.六y=号2-号+2同理,当6=-2时a
-PC+PB=AB+BC
8,〔24-2x)y=一2x+24.x7≤x<129,解:因为一条直角边长为
为(一3,0):函数=名(:x一3)的开口向上,对称轴为直线x=3,顶点坐标
V10+3
,y=-号2+x-2.5.D6.C7.D8x<-1或x>4
二次西数表达式的确定
9.解.(1)A(1.4).B(一3.一12).C(一1.0).D(3.0).《2)不等式-x2
xm,则另一条直角边长为(10一x)cm,所以S=x(10-x),即S
为(3,0).9.C10.y=(x+2)211.2
课前习:1,(1)y=
y=a《x十h)2+ky=a(x-x)
2x十3<0的解集是x<一1或x>3,不等式一x2+2x十3>4.x的解集是
-x2+5.x(0课后作业:l.D2.D3.B4.<05.3大06.y=-(x-2)
-bx+e y=x-2x-3
-3x<1.10.解:《1)v=一x2+2.x+3,(2)C《0,3》.D(1,4).(3》话
5-80。(3)当y-16时.3.2x2-16,解得x-±5,其中-√5不合题意舍
7.解:(1)h=一2,二次函数的表达式为y=一7(x十2).(2)将抛物线
当训练:1.D2A3C4.y=3(x+2y-15y=--5
点P的坐标为(m,n)(m>0,>0).56m=X1X3=,S6时=
去,所以当=16时.=E
6.解:设这个二次函数的表达式为y一4x十br十c(a≠0),依题意,得
y-
(x十2)向右平移3个单位得到y=一(x-1)的图
4n=2,:5=4S6aE,,2m=4×号,解得n=3..一m2十2m十3=3,
课后作业:1.B2.C3.B4.D5,36,解:y=(80-x)(60-x)=x2
a一b十r=0,
a=2,
8.(1)由顶点坐标(一1,0)可知函数表达式为y-(x+1).又函数图象
解得b=3,“这个二次函数的表达式为y=2x2十3r十1,
解得m=0(不符合愿意,合去),m=2“点P的坐标为(2,3)。11.解:(1)将
140x+4800(00.(2)当r=2,
经过点A(-2,-子)-之-a(-2+1)2,解得a--之.“这个二次
十D
7.C8.19,解:1)设此抛物线的表达式为y=a(x+3)2-3,把(0,0)代
A(-1,0,B3,0)代入y=a.r2+2x+,得{8
0n解得{a-1
x=3.14时,S=7×3.14×4+8×2=22.28≈22.3(m2.8.解:(1)y
蹈数的表达式为y一一(x十1)片.(2)当x一2时y一
-×2+1)=
人得a-子此抛物线的表达式为y-(x十3)一3。(2)对称轴
物线的解析式为y一一x+2.x十3.设直线AC的解析式为
1.0.C03》代人·得m=3-=3..直线AC的解析式为y=3x+3
-+60.(2)2=(200+x)(-+60)=-+40.x+12000.
[2}"=
x+2x+3=一《x一12+4.:面占力
≠一2,.点B〔2,一2》不在这个函致的图象上.(3)根据题意设平移
为x=一3,.B点的坐标为(-6,0).“S6w=7×6×3=9.
21.2
二次函数的图象和性质
的坐标为(1,4).作点B关于y轴的对称点B,连接
二次函数y=ar的图象和性质
后的表达式为y=-(x十1十)2.把B(2,一2)代人,得-2=-(2
果后作业:1,D2.C3.y=(x-2)4.解::抛物线y=a+br-3
交y轴于点
0
下
1十),解得k=一1或一5,所以抛物线向右平移1个单位或平移5个单
一6一3=0.
经过点(-1.0.(3,0六{9a十6280.解得{82.
5,解:(1)由题
的
长最小,易得直线DB的解析式为y
.1
191
当资训裤,.C2B8C1.令1号941
气产
12即54
,,=2
意可设二次函数的表达式为y=a(x十1)十4.将B(2,一5)代入,得a=
0时=3,·占M的坐标为《0.3
01495,B6,C7.-<080,0)直
C(3,0),设函数表达式为y=a(x-3)2,将A(0,2)代人,得a=.函
1.·该雨数的表达式为
(2》0.3).(-3.0》.(1.0)
12.解:(1)A(-1,0),B(2.3).:抛物线的顶点在y轴
(3》设函数图象与x轴的交点坐标为M,N(M在N的左侧),由(2)知,
上可设抛物线的表达式为y
,把A,B两点坐标代人可得物线的
数表达式为y=号《x-3).
表达式为y一.x
(2)△ABM为直角三角形,理由如下:由(1)抛物线的表
线x=0(或y轴》009.解,(1)二次雨数y=三x
的因象是一条抛物线
次西数y
2有,交点坐标为(0,0)
a(十)十的园象和性质
0,'.A(2,4)
2
达式为y=x2-1可知M点的坐标为(0,-1),∴AM-2.AB=√3+3
%
2,直线x=一h(一h,k)
上增
×(2+5)9-÷×2X4-×5×
/8=32,BM=√2+L3-(-1)=25.Af+AB=2+18=20
y随君
小当
增大
5一15.6.解:(1)由抛物线的对称性可知,顶点的横
Bf,△ABM为直角三角形.
(5)图象是轴对称图形·对称轴是
当堂训练:l.A2.C3.C4.-5.C6.C7,>8.解:(1)开口
坐标为一1,∴设抛物线对应的函数表达式为y=
21.4二次函数的应用
课后作业:1.B2.C3.D4.25.-2y轴增大藏小
向上,顶点坐标为
,对称轴为直线
2,西数有最小值,最小值
a(x+1)-4,将A(1.0)代入,得a=1,y=(x十1
第1课叶图形面积的最值问题
.解:(1)设函数表达式为y=a.x2,把点(1,-3)代人,得
4.即y=+2x-3.(2)设P(m,n),S=10,
i5.5:
4ac-b
3,所以雨数
量
的增大而增大时,x>一2
Aa
2,自变量
式为y
,函数有最大值.当x=0时,函数
0.y=
课前预习:山.最低最商一品最小最大
AB=4,×4m=10,n=5.y的最小值是-4,n=-5舍去.
二次函数取值田
代入
解得
课后作业11.C2.B3.C4.(-2,4)5.(1)6.号x-17.(1,2)
当n一5时,m2十2m一3一5,解得1一一4.m一2..点P的坐标为(一4.5)
当常训练:1.B2.A3.C4.1445,26.解:(1)S=-号x2十30
(2)抛物线的表达式为
代广
(3》当x0时,v销的增太面增大8.解.设直线1
28.解:(1)设函数表达式为y=(x-),把(0,3)代人,得=3
或(2,5.7.解:(1)由题意,得n=3,一罗=2∴加=一4.∴该函数的表
(2)S=-】x十30.x=-(x-30)*十450,且a=-】<0..当x
表达式为¥一x十b.将A(3.0》.B(0,6)分别代人.求得v一一2x十6,设P点
达式为y=x2-4x十3,(2)设点P的坐标为(x,y),由题意,得BC
即
风筝的面积最大
坐标为(m,n),由S6w-3,得号×3·n=3,六=2,将P点坐标代人
解得h=土2.h>0.心h=2.函数表达式为y=主《x一2).(2)m<1
1
h-30
|y=号×分BC·0A,即|y|=三0A=2.又:y=x-4x+3
=一2x+6.得2=一2m十6,,m=2,,,P(2.2).将P〔2,2)代入y=4x
∴m一1.则BC-16-2x得y
16-2x)
2x+16x
得a=号二次雨数的表达式为y=号,9,D
解由a+2十-+6十12.得
(x-2)-1的最小值为-1,y=2,.x2-4x十3=2,解得1=2十5,
=4时,矩形ACD的面积有最大值.∴.AB一4m,
x+124xk)-2=x十6十10-ax-).又当x=k
=2-√5.∴点P的坐标是(2十5,2》或2-,2.
二次函数y=ar十br十e的图象和性质
21.3
BC=8m.(2)作EH⊥CD,垂足为H.△CDE是等边
时,为=17,即k十6k+10=17,解得=1,k=一7(舍去),故k的值为1.
二次函数与
元二次方程
数y=x
及的图象和性质
(2)由最=1.得=x2+6.x+10-a(x-1)2=(1-4)x2+(2a+6).x+10-4.
课的预习:山.相同位置平移上下
课前预习:实数
没有
角形,∴CH=DH=2.EH=3CH=2.Se=×
一2.320.2
当堂训练:1.C2.B3.B4.B5.D6.(0,3)7.解:(1)y=x2-1.
函数的图象的对称轴为-一2--1.解得-一1六
2空训练:1.B乙.B
A4.25
5.C
6.解:设y
4×23=4W3.又x=
名=4y的最大值=32.:整个金
-x1+2x+1..2x2+4x+11
面出地物
2.x
4.T
的图象如图
(2)y--7x2-1.(3)y--x2-1.8.69.y-x+210.-34
第4课时二次函数y=ax2十bx十c的因象和性质
由图象知
或
0.2时
属框的面积为(4√3十32)m
向下平移5个单位
,〔2)向上平移8个单位
A011x=1
似解为
0.2
课后作业:1.解:(1)
抛物线经过点B(6,0)
C〔一2,0》,设地物线的解折式为y一4(x一6》(x
6
067.能.1).点
(一1,m)在函数y=一x2十2m的图象上,.m-一一1)十2m,解得m-
小
-2.=a(+2))+如
课后作业:1.A2.D3.D4.B5.C6.x<1或>3
2).将A(0.6)代人得-12a=6,解得a=-
-18.a>1且a≠59.210.(4,5)或(-2,5)
二次函数的表达式为y=一x2十2.(2)当y-0时,一x十2-0,解得
当堂训练:1.D2.A3.解:(1》将(3,0)代人函
11,(1)证明:当y=0时,2(x-1)(x-m一3)=0,解得x1=1,x
十3.当
“抛物线的解析式为y=一了(x一6)(x+2)=
x=士2,,二次函数y=一x+2的图象与x轴的交点坐标为(2,0)或
数表达式,得9+36+3=0,解得b=一4.《2)由
州十3=1,即m=一2时,方程有两个相等的实数根:当m十3≠1.即州≠一
一,反.0》.当工=0时y=2,一次数
一x+2的图象与v抽的交
1)知雨数表
式是y=x一4.x十3
时,方程有两个不相等的实数根.所以,不论加为何值,该函数的图象与x轴
+2x+6(2)如图过点P作PMLOB于。
坐标为(0,2).8.解:《1)图象如图所示
-3
总有公其点.《2)解:当x一0时,y一2十6,即该函数的图象与y油交点的
点M,交AB于点N,作AGLPM于点G.设直线AB的解析式为y-kx+
6.D7.D
从为2十5,当2十60,
3时.的图象与V釉的交点
(2)开口均向下,对歌轴均为v抽:¥=一
9.y-(x+1)2-号左1下
工抽的上万。
12,《1)止明:△
6k十21
:将点A0,6),BC60)代人,得{6
66=0,解得6直线AB的解
b=6.
的顶点坐标是0,0),y=一x十2的顶点
果后作业:1.A2.C3.A4.C5.B6.A
12>0,无论为何值,方程总有两个不相等的实数根
(2)解:
析式为y=-x十6.设点P(,-+2+6),其中0<<6,则点N(t
12>0,.物线与
坐标是(0,2),y=一于x一2的顶点坐标是
7.58.=<为9.-810.解:(1)把(1,0)和(0,)代人y=
轴有两个交点.设物线与x轴的交点的横坐标分别为x:·:
一风图
-+6).PN-PM-MN--号2+2+6-(-1+6)--号+3x.
(3)从图象可以看出,这几个图家
+6+c=0.
S-Sw+Sm=PN·AG+号PN·BM=PN·(AG+
7x+x十c,得
解得
9.解,过点M作ME⊥x轴
=,
=子.心猫物线的函数表达式
于点E,交抛物线y=x+1于点P,此时△PMF的周长最小.,F(0,
0,又十-5-1-1-k,即1--3(5-)+9<0,解得<号
BM0=PN0B=×(-+3)×6=-+=-
为y=--+.(2)y=--x+
《x+1》+2,
则k的最大整数值为2
3)2+.当=3.即点P的坐标为(3,号)时,△PAB的面积有最大
九年级数学·HK·上册·121