∴顶点坐标为(一1,2).将物线y=一2一x十平移,使其顶点落
专题一二次函数的图象与性质的综合应用
参考答案
在原点上的方法:先间右平移1个单位,再向下平移2个单位,平移后的函
1.A2.y-
(x十4)(x-1)3.解:设函数表达式为y-a(x十2)
第2课时二次函数v=(x十h》2的图象和性质
课前预习:1.相同位置平移左市右一2.上增大减小0
数表达式为y=一。x.11.解:(1)y=x2一4.x十3.
直线x--2AB-2.A(-3,0),B(-1,0.当x--1时
当堂训练:1.C2.C3.D4.B5,B6.1大0
2)存在,连接BC,交直线
2于点P,PA+PB-PC
第21章二次函数与反比例函数
7.解:(1)y=-(x+2).(2)(-2,0,(3)<-2.
8.解:(1)图略。
PBBC.此时△PAB的周长最小A(,O)
数
解对称输=-出-2A10B3.0.S=2宁AB
课前预习:l.y-ar十bx十(2.全体实数实际何图品2r
21.1
的对称性,得C(3,0)·又易知B(0.3).设直线BC对应的函
”一次
〔2)由图象可知函数y=一x产的开口向上,对称轴为直线x=0,顶点坐标
数表达式为v=最x十,将B.C的坐标代入,得¥=一x十3,
(00=2,即7×20C=2.∴C=2,∴C(0,2)或(0.-2).∴6=2.当6
当x=2时,v=1,.点P的坐标为《2,1),AB=1+3=
当赏训练l.C2,B3,B4.-25,R>06,C7,y=6
为(0,0):函数y=了(x十3)的开口向上,对称轴为直线x=一3,顶点坐标
/,BC=3+3=32,△PAB周长的最小值=AB+PA
PB=AB
2时.A1.0.a=子.六y=号2-号+2同理,当6=-2时a
-PC+PB=AB+BC
8,〔24-2x)y=一2x+24.x7≤x<129,解:因为一条直角边长为
为(一3,0):函数=名(:x一3)的开口向上,对称轴为直线x=3,顶点坐标
V10+3
,y=-号2+x-2.5.D6.C7.D8x<-1或x>4
二次西数表达式的确定
9.解.(1)A(1.4).B(一3.一12).C(一1.0).D(3.0).《2)不等式-x2
xm,则另一条直角边长为(10一x)cm,所以S=x(10-x),即S
为(3,0).9.C10.y=(x+2)211.2
课前习:1,(1)y=
y=a《x十h)2+ky=a(x-x)
2x十3<0的解集是x<一1或x>3,不等式一x2+2x十3>4.x的解集是
-x2+5.x(0
课后作业:l.D2.D3.B4.<05.3大06.y=-(x-2)
-bx+e y=x-2x-3
-3x<1.10.解:《1)v=一x2+2.x+3,(2)C《0,3》.D(1,4).(3》话
5-80。(3)当y-16时.3.2x2-16,解得x-±5,其中-√5不合题意舍
7.解:(1)h=一2,二次函数的表达式为y=一7(x十2).(2)将抛物线
当训练:1.D2A3C4.y=3(x+2y-15y=--5
点P的坐标为(m,n)(m>0,>0).56m=X1X3=,S6时=
去,所以当=16时.=E
6.解:设这个二次函数的表达式为y一4x十br十c(a≠0),依题意,得
y-
(x十2)向右平移3个单位得到y=一(x-1)的图
4n=2,:5=4S6aE,,2m=4×号,解得n=3..一m2十2m十3=3,
课后作业:1.B2.C3.B4.D5,36,解:y=(80-x)(60-x)=x2
a一b十r=0,
a=2,
8.(1)由顶点坐标(一1,0)可知函数表达式为y-(x+1).又函数图象
解得b=3,“这个二次函数的表达式为y=2x2十3r十1,
解得m=0(不符合愿意,合去),m=2“点P的坐标为(2,3)。11.解:(1)将
140x+4800(00.(2)当r=2,
经过点A(-2,-子)-之-a(-2+1)2,解得a--之.“这个二次
十D
7.C8.19,解:1)设此抛物线的表达式为y=a(x+3)2-3,把(0,0)代
A(-1,0,B3,0)代入y=a.r2+2x+,得{8
0n解得{a-1
x=3.14时,S=7×3.14×4+8×2=22.28≈22.3(m2.8.解:(1)y
蹈数的表达式为y一一(x十1)片.(2)当x一2时y一
-×2+1)=
人得a-子此抛物线的表达式为y-(x十3)一3。(2)对称轴
物线的解析式为y一一x+2.x十3.设直线AC的解析式为
1.0.C03》代人·得m=3-=3..直线AC的解析式为y=3x+3
-+60.(2)2=(200+x)(-+60)=-+40.x+12000.
[2}"=
x+2x+3=一《x一12+4.:面占力
≠一2,.点B〔2,一2》不在这个函致的图象上.(3)根据题意设平移
为x=一3,.B点的坐标为(-6,0).“S6w=7×6×3=9.
21.2
二次函数的图象和性质
的坐标为(1,4).作点B关于y轴的对称点B,连接
二次函数y=ar的图象和性质
后的表达式为y=-(x十1十)2.把B(2,一2)代人,得-2=-(2
果后作业:1,D2.C3.y=(x-2)4.解::抛物线y=a+br-3
交y轴于点
0
下
1十),解得k=一1或一5,所以抛物线向右平移1个单位或平移5个单
一6一3=0.
经过点(-1.0.(3,0六{9a十6280.解得{82.
5,解:(1)由题
的
长最小,易得直线DB的解析式为y
.1
191
当资训裤,.C2B8C1.令1号941
气产
12即54
,,=2
意可设二次函数的表达式为y=a(x十1)十4.将B(2,一5)代入,得a=
0时=3,·占M的坐标为《0.3
01495,B6,C7.-<080,0)直
C(3,0),设函数表达式为y=a(x-3)2,将A(0,2)代人,得a=.函
1.·该雨数的表达式为
(2》0.3).(-3.0》.(1.0)
12.解:(1)A(-1,0),B(2.3).:抛物线的顶点在y轴
(3》设函数图象与x轴的交点坐标为M,N(M在N的左侧),由(2)知,
上可设抛物线的表达式为y
,把A,B两点坐标代人可得物线的
数表达式为y=号《x-3).
表达式为y一.x
(2)△ABM为直角三角形,理由如下:由(1)抛物线的表
线x=0(或y轴》009.解,(1)二次雨数y=三x
的因象是一条抛物线
次西数y
2有,交点坐标为(0,0)
a(十)十的园象和性质
0,'.A(2,4)
2
达式为y=x2-1可知M点的坐标为(0,-1),∴AM-2.AB=√3+3
%
2,直线x=一h(一h,k)
上增
×(2+5)9-÷×2X4-×5×
/8=32,BM=√2+L3-(-1)=25.Af+AB=2+18=20
y随君
小当
增大
5一15.6.解:(1)由抛物线的对称性可知,顶点的横
Bf,△ABM为直角三角形.
(5)图象是轴对称图形·对称轴是
当堂训练:l.A2.C3.C4.-5.C6.C7,>8.解:(1)开口
坐标为一1,∴设抛物线对应的函数表达式为y=
21.4二次函数的应用
课后作业:1.B2.C3.D4.25.-2y轴增大藏小
向上,顶点坐标为
,对称轴为直线
2,西数有最小值,最小值
a(x+1)-4,将A(1.0)代入,得a=1,y=(x十1
第1课叶图形面积的最值问题
.解:(1)设函数表达式为y=a.x2,把点(1,-3)代人,得
4.即y=+2x-3.(2)设P(m,n),S=10,
i5.5:
4ac-b
3,所以雨数
量
的增大而增大时,x>一2
Aa
2,自变量
式为y
,函数有最大值.当x=0时,函数
0.y=
课前预习:山.最低最商一品最小最大
AB=4,×4m=10,n=5.y的最小值是-4,n=-5舍去.
二次函数取值田
代入
解得
课后作业11.C2.B3.C4.(-2,4)5.(1)6.号x-17.(1,2)
当n一5时,m2十2m一3一5,解得1一一4.m一2..点P的坐标为(一4.5)
当常训练:1.B2.A3.C4.1445,26.解:(1)S=-号x2十30
(2)抛物线的表达式为
代广
(3》当x0时,v销的增太面增大8.解.设直线1
28.解:(1)设函数表达式为y=(x-),把(0,3)代人,得=3
或(2,5.7.解:(1)由题意,得n=3,一罗=2∴加=一4.∴该函数的表
(2)S=-】x十30.x=-(x-30)*十450,且a=-】<0..当x
表达式为¥一x十b.将A(3.0》.B(0,6)分别代人.求得v一一2x十6,设P点
达式为y=x2-4x十3,(2)设点P的坐标为(x,y),由题意,得BC
即
风筝的面积最大
坐标为(m,n),由S6w-3,得号×3·n=3,六=2,将P点坐标代人
解得h=土2.h>0.心h=2.函数表达式为y=主《x一2).(2)m<1
1
h-30
|y=号×分BC·0A,即|y|=三0A=2.又:y=x-4x+3
=一2x+6.得2=一2m十6,,m=2,,,P(2.2).将P〔2,2)代入y=4x
∴m一1.则BC-16-2x得y
16-2x)
2x+16x
得a=号二次雨数的表达式为y=号,9,D
解由a+2十-+6十12.得
(x-2)-1的最小值为-1,y=2,.x2-4x十3=2,解得1=2十5,
=4时,矩形ACD的面积有最大值.∴.AB一4m,
x+124xk)-2=x十6十10-ax-).又当x=k
=2-√5.∴点P的坐标是(2十5,2》或2-,2.
二次函数y=ar十br十e的图象和性质
21.3
BC=8m.(2)作EH⊥CD,垂足为H.△CDE是等边
时,为=17,即k十6k+10=17,解得=1,k=一7(舍去),故k的值为1.
二次函数与
元二次方程
数y=x
及的图象和性质
(2)由最=1.得=x2+6.x+10-a(x-1)2=(1-4)x2+(2a+6).x+10-4.
课的预习:山.相同位置平移上下
课前预习:实数
没有
角形,∴CH=DH=2.EH=3CH=2.Se=×
一2.320.2
当堂训练:1.C2.B3.B4.B5.D6.(0,3)7.解:(1)y=x2-1.
函数的图象的对称轴为-一2--1.解得-一1六
2空训练:1.B乙.B
A4.25
5.C
6.解:设y
4×23=4W3.又x=
名=4y的最大值=32.:整个金
-x1+2x+1..2x2+4x+11
面出地物
2.x
4.T
的图象如图
(2)y--7x2-1.(3)y--x2-1.8.69.y-x+210.-34
第4课时二次函数y=ax2十bx十c的因象和性质
由图象知
或
0.2时
属框的面积为(4√3十32)m
向下平移5个单位
,〔2)向上平移8个单位
A011x=1
似解为
0.2
课后作业:1.解:(1)
抛物线经过点B(6,0)
C〔一2,0》,设地物线的解折式为y一4(x一6》(x
6
067.能.1).点
(一1,m)在函数y=一x2十2m的图象上,.m-一一1)十2m,解得m-
小
-2.=a(+2))+如
课后作业:1.A2.D3.D4.B5.C6.x<1或>3
2).将A(0.6)代人得-12a=6,解得a=-
-18.a>1且a≠59.210.(4,5)或(-2,5)
二次函数的表达式为y=一x2十2.(2)当y-0时,一x十2-0,解得
当堂训练:1.D2.A3.解:(1》将(3,0)代人函
11,(1)证明:当y=0时,2(x-1)(x-m一3)=0,解得x1=1,x
十3.当
“抛物线的解析式为y=一了(x一6)(x+2)=
x=士2,,二次函数y=一x+2的图象与x轴的交点坐标为(2,0)或
数表达式,得9+36+3=0,解得b=一4.《2)由
州十3=1,即m=一2时,方程有两个相等的实数根:当m十3≠1.即州≠一
一,反.0》.当工=0时y=2,一次数
一x+2的图象与v抽的交
1)知雨数表
式是y=x一4.x十3
时,方程有两个不相等的实数根.所以,不论加为何值,该函数的图象与x轴
+2x+6(2)如图过点P作PMLOB于。
坐标为(0,2).8.解:《1)图象如图所示
-3
总有公其点.《2)解:当x一0时,y一2十6,即该函数的图象与y油交点的
点M,交AB于点N,作AGLPM于点G.设直线AB的解析式为y-kx+
6.D7.D
从为2十5,当2十60,
3时.的图象与V釉的交点
(2)开口均向下,对歌轴均为v抽:¥=一
9.y-(x+1)2-号左1下
工抽的上万。
12,《1)止明:△
6k十21
:将点A0,6),BC60)代人,得{6
66=0,解得6直线AB的解
b=6.
的顶点坐标是0,0),y=一x十2的顶点
果后作业:1.A2.C3.A4.C5.B6.A
12>0,无论为何值,方程总有两个不相等的实数根
(2)解:
析式为y=-x十6.设点P(,-+2+6),其中0<<6,则点N(t
12>0,.物线与
坐标是(0,2),y=一于x一2的顶点坐标是
7.58.=<为9.-810.解:(1)把(1,0)和(0,)代人y=
轴有两个交点.设物线与x轴的交点的横坐标分别为x:·:
一风图
-+6).PN-PM-MN--号2+2+6-(-1+6)--号+3x.
(3)从图象可以看出,这几个图家
+6+c=0.
S-Sw+Sm=PN·AG+号PN·BM=PN·(AG+
7x+x十c,得
解得
9.解,过点M作ME⊥x轴
=,
=子.心猫物线的函数表达式
于点E,交抛物线y=x+1于点P,此时△PMF的周长最小.,F(0,
0,又十-5-1-1-k,即1--3(5-)+9<0,解得<号
BM0=PN0B=×(-+3)×6=-+=-
为y=--+.(2)y=--x+
《x+1》+2,
则k的最大整数值为2
3)2+.当=3.即点P的坐标为(3,号)时,△PAB的面积有最大
九年级数学·HK·上册·121九年级数学上册
第21章
整合与提高
考点专训
(3)直线y=一2x十4m经过点B吗?请说明理由.
4
考点1函数表达式的确定
3-
例1已知二次函数的图象经过点(1,0),顶点坐
标是(-2,号),求这个二次函数的表达式
【归纳】此类题通常是给出交点的坐标,根据交点
坐标确定反比例函数和一定函数的表达式;或者
给出两个函数的图象,结合图象确定函数的表达
【归纳】已知二次函数图象的顶点坐标求函数表
式:或者是确定两个函数图象的交点坐标.在解
达式时,应选用顶点式,即先设二次函数的表达
题时,要注意反比例函数和一次函数的一般形
式为y=a(x十h)十k,再求待定系数a.
式,通过设一般形式,利用待定系数法确定函数
考点2函数图象的综合应用
表达式,如果求两函数的交点坐标,那么要联立
例2小强从如图所示的二次函数y=a.x2十bx十
两个函数的表达式,得到方程组,通过解方程组
c的图象中,观察得出了下面五条信息:①a<0:
求得交点的坐标,
②c>1;③b>0;④a+b+c>0;⑤a-b+c>0.你
考点4二次函数的实际应用
认为其中正确信息的个数为
()
例4如图,在矩形ABCD中,AB=6cm,BC=
8cm,点P从点A开始沿AB以1cm/s的速度
向点B移动,点Q从点B开始沿BC以2cm/s
的速度向点C移动,且P,Q中有一点到达终点就
停止移动.若点P,Q分别从点A,B同时出发,设
A.2
D.5
移动时间为ts(t>0),△DPQ的面积为Scm2,
求S关于t的函数关系式,并求出S的最小值.
考点3反比例函数
例3如图,直线y=x十m与双曲线y=相交
于A(2,1),B两点.
(1)求m及及的值;
y=x十m,
【归纳】此题如果直接去求△DPQ的面积,不太好
(2)不解关于x,y的方程组
直接写出
求,但是用矩形面积减去三个直角三角形的面
x
积,就容易多了.在求最值时,要注意自变量在实
点B的坐标;
际问题中的取值范围。
35
优生特孤
6.(上海)如图,在平面直角坐标系xOy中,正比
1.(鄂州)已知二次函数y=(x十
例函数y一专x的图象经过点A,点A的纵坐
m)2一n的图象如图所示,则一次
函数y=mx十n与反比例函数
标为4,反比例函数y=”的图象也经过点A,
y=m”的图象可能是
第一象限内的点B在这个反比例函数的图象
上,过点B作BC∥x轴,交y轴于点C,且
杂杀米
AC=AB.求:
(1)这个反比例函数的表达式:
(2)直线AB的表达式
2.(遂宁)已知二次函数y=a.x2十b.x十c(a≠0)
的图象如图所示,则下列结论同时成立的是
(
[abc>>0,
abc<0,
A.
B.
b2-4ac<0
2a+b>0
abc>0,
abc<0,
D.
a+6+c<0
1b-4ac>0
7.(随州)如图,某足球运动员站在点O处练习射
门,将足球从离地面0.5m的点A处正对球
(第2题图)
(第3题图)
门踢出(点A在y轴上),足球的飞行高度y
3.(齐齐哈尔)抛物线l1:y1=mx2一4mx+2n一1
(单位:m)与飞行时间t(单位:s)之间满足函
与平行于x轴的直线交于A,B两点,且A点
数关系y=at2+5t+c,已知足球飞行0.8s
的坐标为(一1,2),请结合图象分析以下结论:
时,离地面的高度为3.5m.
①对称轴为直线x=2;②抛物线与y轴的交点
(1)当足球飞行的时间是多少时,足球离地面
坐标为0,-1):③m>号:④若抛物线:
最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行
ax2(a≠0)与线段AB恰有一个公共点,则a的
时间t(单位:s)之间具有函数关系x=10t,
取值范围是号已知球门的高度为2.44m,如果该运动员
正对球门射门时,离球门的水平距离为
2>0的解作为函数l1的自变量的取值时,对
28m,他能否将球直接射入球门?
应的函数值均为正数.其中正确结论的个数为
m来
A.2
B.3
C.4
D.5个
4.(福建)如图,直线y=x十m与
双曲线y=呈相交于A,B两
点,BC∥x轴,AC∥y轴,则
△ABC面积的最小值为
5.已知二次函数y=一2x+bx十c的图象经过
A(2,0),B(0,一6)两点,则这个二次函数的表
达式为
36