11.2图形在坐标系中的平移
课前预习
预孕新知
知识点2坐标系中图形的平移
1.在平面直角坐标系中,将点(x,y)向右或向左平移
7.(蚌埠)在平面直角坐标系中,将三角形各点的
a(a>0)个单位,可以得到对应点
或
横坐标都减去3,纵坐标保持不变,所得图形
:将点(x,y)向上或向下平移b
与原图形相比
()
(b>0)个单位,可以得到对应点
A.向右平移了3个单位
或
B.向左平移了3个单位
2.
在平面直角坐标系内,一个图形各个点的横坐
C.向上平移了3个单位
标都加上(或减去)一个正数a,那么这个图形
D.向下平移了3个单位
就
平移a个单位;如果各个
8.如图,已知三角形ABC的顶点B的坐标是(2,
1),将三角形ABC向左平移2个单位后,点B
点的纵坐标都加上或减去一个正数a,那么这
平移到点B',则点B的坐标是
()
个图形就
平移a个单位.
A.(4,1)
B.(0,1)
当堂训练
C.(-1,1)
D.(1,0)
知识点1坐标系中点的平移
1.(湘西)如图,在平面直角坐标
系中,如果将点A(一2,3)向右
M
平移3个单位,那么平移后对
应的点A'的坐标是
()
-201
(第8题图)
(第9题图)
A.(-2,-3)
B.(-2,6)
9.(合肥)在如图所示的5×5的方格纸中,图①
C.(1,3)
D.(-2,1)
中的图形N平移后如图②所示,则下列关于
2.点P(2,3)平移后变为点P,(3,一1),下列关
图形N的平移方法中,正确的是
()
于平移的说法中,正确的是
()
A.先向下平移1格,再向左平移1格
A.先向左平移1个单位,再向上平移4个单位
B.先向下平移1格,再向左平移2格
B.先向右平移1个单位,再向上平移4个单位
C.
先向下平移2格,再向左平移1格
C先向左平移1个单位,再向下平移4个单位
D.先向下平移2格,再向左平移2格
D.先向右平移1个单位,再向下平移4个单位
10.在平面直角坐标系中,已知线段AB的两个
3.(合肥)在第四象限内有一点A到x轴的距离
端点分别是A(4,一1),B(1,1).将线段AB
是2,到y轴的距离是3,则点A向左平移1个
平移后得到线段A'B',若点A的对应点A
的坐标为(一2,2),则点B的对应点B的坐
单位后的坐标是
()
标为
A.(1,-3)
B.(-1,3)
11.(池州)如图,已知点A(3,0),B(一5,3)在平面
C.(2,-2)
D.(4,-2)
直角坐标系中,将点A向左平移6个单位到达
4,(安徽)点P(a,b)先向左平移3个单位,再向
C点,将点B向下平移6个单位到达D点.
上平移2个单位得到点P(一5,一1),则a,b
(1)写出C点和D点的坐标;
的值为
()
(2)把这些点按A→B+C→D→A的顺序连
A.a=-2,b=-3B.a=-2,b=3
接起来,画出这个图形并求它的面积.
C.a=2,b=-3
D.a=2,b=3
5.将点P(m十2,2n十4)向右平移1个单位到点Q,且点
Q在y轴上,那么点P的坐标是
6.将点A(3,一4)沿着x轴负方向平移3个单
位,得到点A',再将点A'沿着y轴正方向平移
4个单位,得到点A”.写出点A',A"的坐标.
5S=DE·EF-子BD·DA-AE·EF-号BG·GF=48-4
与点A的坐标相比,损坐标依次增加1,纵坐标依次增加三(3)台阶的
参芳答案
8-18-18.
向长度为6,纵向长度为”,所以需要电毯的长度为6十少=个单位
8.解,设点C的坐标为(0,k),:点A(-5,0),点B(3,0),∴AB引=1-5
3-8,0C-1.又三角形ABC的面积-三|AB1·1OC1-号×8×
第11章
平面直角坐标系
…
利-12-3.∴k-3或-一3.即点C的坐标为03)或0,一3
11.1平面内点的坐标
(第7超图)
9.解:1)根据题意,得-2a-3=5,解得a=一4.∴4-=4-(-4)=8.即点A
《第11斯
8.解:《1)如图所示.(2)点A向下平移5个单位得到点《2,一1),再关于
第1课时
平面直角坐标系
1.解:(1)如图所
(2)过
C向
y轴作乖线,垂足分别为D,E,历
轴对称的点C的坐标为(一2,一1,(3)三角形ABC如图所示.S=
的生标为8,、@)根器题意,得点P的坐标为(-10心(解
课前预习:l.垂直公共原点2.(-,+)(--》(+,-)3.b1
以三角形ABC的面积
=四边形DO
C的积
三角形ACE的而积
三角
5×6-号×6×3-号×4×5-,×2×2=9.9.解:如图,作AE1y轴
10.解1(1)204060(2)A(2m,0)(3)向上.
4.有序实数对
形BCD的面积一三角形AOB的面积=12一4一3一1=4.(3)当点P在x
当堂训统1.D2.6.7)
3 HELLO 4C
5.A6.A
轴上时,三角形ABP的面积=AOBP=4,即号X1XBP=4,解符BP
于点E,BDLy轴于点D.则AE=3,OE=4,BD=1,OD=2,∴DE=OE
2)D5.1).E(0.
第12章
一次函数
7.解:(1)如图所示
4
8,所以点P的坐标为(10,0)或(-60);当点P在y轴上时,三角形ABP的
12.1函数
面积-。B0·AP一4,即。X2XAP-4,解得AP-4,所以点P的坐标为
2×1×2-号×(1+3)×2=1
第1课时变量与函数
(0,5)成(0,-3).综上,点P的坐标为(0,5)成(0,
3)或(10,D)成《-6,0
课预习:山.不变不同允许取值唯一自变量
函数函数值
当尝训练1.A2.C3.C4.y=2020y5.(1)a(2)1a
11.2
图形在坐标系中的平移
s(3)s@,t6.B7.C8.D9.A10,是给定t的一个值,T都有唯
课前预习:l.(x+a…》(x-a…y)(y+)(x…y-b)2.向右(或向
-的值与之对应11.0=60一10,Q;
左》向上(或向下)
果后作业,1.D2.C3.质量x售价C4.(1)是(2》16210-2
F(-30.8.69.B10.D11.D12.B13.14.(3,-8)
当堂训练:1.C2.D3.C4.A5.〔-1.-2)6.解:A'(0,-4),A°(0
13)5(4)9和22(5)2-12时,14-16时〔6)12-14时5.解:(1)8
第9题图)
课后作业:1,B2.B3.D4.D5.C6,C7.B8,(1)x轴或y轴上
7.B8.B9.C10.《-5.4)11.解:1)C(-3.0)D-5.-3).
量:114.变量:N(2)常量:2.0.5,变量
〔3)常量:2.180.变量
(2)第一象限或第三象限(3》第二象限成第四象限(4)y轴上(原点除外)
21
画图如图所示.则S
0
224《3)路程s可以君
9.(3,0)或《一3,D)10.解:如图所示
H用
成是时间:的函数。
7.解:1)369123(-1)(2)当
.5
=15时
3×2+2X2+2×1+1×3)=.1.解:如图.作AE⊥x轴于点E.CF⊥x
看成是的函数
第2课时函数关系的表示方法—一列表法、解析法
轴于点F.则和=Se十S5g十SA5P=X2X10十X
.
课前预习:1,自变量函数值2.数学式子函数表达式函数解析式
:后杨信
(10十8)×5+7×8×1=59
当训:,1.D
1218
2)B0,4).
(3)C(-44)
11.解:(1)点P(3
.y=3.6x十0.24.D5.B
-2+1-3.点P的坐树
=X6X3十×6X3=18,
6.B7.b-25m+808.y--2x+49.A
10,C11.B12.C13.15
一6一0,解得m
上214.340
为(0,3).(2)点P(3m-6m十1》在x轴上.m十1-0.第得m
后作业:1.D2.B3.A4.C5.A6.(3,2)7.解:(1)A(-3,5)
课后作业:1,D2D3,A4.B5,>一2且x≠26,解:每千米耗油
∴3m一6一3×《一1)一6一一9.∴.点P的坐标为(一9.0).
〔3)点
B,(0,6).C(-14).
(2)S0=3X2-X1×2-X1×2
P(3m一6,m+1)的纵坐标比横坐标大5.∴.m十1一(3m一6)-5,解得m一1.
为60×÷100=0.12(L).加满汽油后汽车最远能行驶60÷0.12-
,.32一6=3×1一6=一3.m+1=1+1=2..点卫的坐标为〔一3,2).
×1×3-,8.解:1)如图,点B的坐标为
第12题图
500(km》,则y=60一0.12.x(0x500).7.解:〔1》海拔高度每增加1k
(4):点P(3-6,m十1)在过点A(一1.2),且与x轴平行的直线上,m十
气就下降6℃〔2)海0高为0km时.气泪是20℃.=20一6五
一4,一1),点C的标为〔0,1).〔2》如图三角
12.解:过点A作AC⊥x轴于点C,过点E作DE⊥x轴于点D,,B点的坐
1-2,解得m-1.3m-6-3×1一6--3.点P的坐标为〔-3,2).
3)10km.8.解:(1)表中反映了提出概念所用的时间和对概念的接受的
12.解:由题意知:3m-21-13-m.3m-2-±(3
m.当3m-2
形DEF即为所求.连接AD,CF,则线段AC在平
标为(5,0》..OB=5.A(3,2),E(4.1).AC=2,ED=1.六S4题w
过程中扫过的面积=S=十S==X
S4m-Stm=·0B:AC-·0BED=X5X2-X
力两个变量之的关系,其中提出概念所用的时间是自变量,对概念的接受
能力几因:层
5×1一2.5.即三角形A0E的面印为2.5
(3)由表格可知,当提出概念所用的时间为13mim时,学
第2课时
坐标平面内的图形
2×2+×2×2=4.
9.解:(1)由题意.得|2
的接受能力最
{4)当想出多用的时间在13即以内时,学生的接
第11章
果前预习:《1)坐标轴〔3)对称轴(4》愿点
a-|3a十6.∴.2-a-3a十6或2-a--(3a十6).解得a--1或a--4
整合与提高
出念所用的时间摇
i通时.学生的接受能力北路
当常体,1.B2.C3.D
4.
解:如图所示,小海龟经
考点专训1.A2.(3,
-2)
3.D
4.C5.m>26.
7.A8.解(1)
(5)由表格可
如图所示A(-3,1D,B(0.2).C-1,4).(2)S-0a-子×4×1-2
左平移5个单位,再向下平移4个单位或先向下平移4个单位,再向左平移
第3课时函数关系的表示方法一图象法
个单位
课前预习:1.横坐标纵坐标2.列表
描点连线
专题一巧用坐标求图形的面积
当堂训练:1.B2.C3.C4.C
.C6.D7.C8.-3-1
1.解.1)S=3b>0).
(2)如图.
1.B2.63.解,:C点的坐标为(一4,4)三角形ABC的边AB上的高
过的路线图形像
一·面小道
6.1
8.A.
为4.又由题知AB=6,∴S=X6X4=12.4.解:(1)八点C在
建立平面直角坐标系如图所示,体有馆的坐
第三象限,且x-3,y-3,点C的坐标为(一3,-3.又易知AB-6
S一子×6×3一9。(2)由题意可知AB一6.点C在第四象限
《第8题图)
第9题图)
:1.C
3.B
4.
5.C
6.解:(1)由纵坐标看出,地离
.解:(1)如图所示
(2)如,过点B作BE⊥AD于点E,过点C作CF
课后作业
km:由
明走到菜地用了15min
(2)
六>0y<0,又“=3,x=3,Sw=分×6×y=9,y
1D于点F.则SH味D
十SB
+S6am=X3X6
坐标可看
坐标看出,菜
3,∴y=-3.点C的坐标为(3.-3).5.3.56.解:如
km,由横坐标看出
地到玉
用
标为(一4,3),艺术楼的坐标为《一3,1》,教学楼的坐标为〔1,D》,《2)如图
图.作长方形CDEF,则Se=S一S
号×(6+8)×3+号×2×8-38,10.(505,-505)11.(10.0)
4》由第
条平行段的坐标可看出·小明给玉米地到草用
18
5)由坐标看出,玉米地小明2k由横坐标看出,小明从玉米地走同器
新示
S-SA=CD·DE-AD·CD-AE
优生特训:1.D2.C3.(5.3》4.0105.16.解:点A(2x一8
用了25min.所以平均速度为:2÷25=0.08(kam/min).7.解:(1),'P(.x,y)在
课后作业:l.C2,B3,A4,A5.(3,5)
6,1或137.(4,3)〔-8
1)8(2,3)或(一6,3)9.解:如图所示.
该图形像宝塔
BE-BFCF-6X7-X3X6-X4X4-×
2x-80
第-一象限内,>0,y>0,x十y=8,y=8-,S=0A·y=号X
2一x)在第三象限,,{
解得22×7=18,7.解:作出并连接各点如图.把四边形ABCD补
10×8-
x),即S=
5x十40.x的取值范是0(2)图象知图,
成长方形MNP,连接MA.则PB=3,MB=3.MD=4.DN=5,则PC=MN
1的坐标是(一2,一1)
方于、k:衣t
DN+MD=5+4=9.NC=MB+BP=6,'长方形MNCP,三角形MAB.三角
松.因形的面积为,×1×1+号×4×2+×2×1=+4+1=号
形MAD,三角形DNC,三角形BPC的面积分别为54,,215,,四
10.解:如图,作长方形DEFG,则Sr一5mm一S=0一S三
边形ABCD的面积为54-是-2-15-
=22.
图所示C(2)D(3,2E(4,)F(5.)(2)B,C,D.E,F
八年级数学·HK·上册·125