沪教版(上海)八下 第二十三章概率初步定向训练试题(含解析)

文档属性

名称 沪教版(上海)八下 第二十三章概率初步定向训练试题(含解析)
格式 doc
文件大小 1.3MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-11-28 16:36:57

图片预览

文档简介

中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目 ( http: / / www.21cnjy.com )指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。www.21-cn-jy.com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在一个不透明的袋中装有7个只有颜色不同的球,其中3个白球、4个黑球,从袋中任意摸出一个球,是黑球的概率为(  )21教育名师原创作品
A. B. C. D.
2、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是(  )
A. B. C. D.
3、有两把不同的锁和三把钥匙,其 ( http: / / www.21cnjy.com )中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙去开任意的一把锁,一次打开锁的概率为( )
A. B. C. D.
4、下列事件中,属于必然事件的是(  )
A.13人中至少有2个人生日在同月
B.任意掷一枚质地均匀的硬币,落地后正面朝上
C.从一副扑克牌中随机抽取一张,抽到的是红桃A
D.以长度分别是3cm,4cm,6cm的线段为三角形三边,能构成一个直角三角形
5、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为( )
A. B. C. D.
6、下列事件是随机事件的是( )
A.2021年全年有402天
B.4年后数学课代表会考上清华大学
C.刚出生的婴儿体重50公斤
D.袋中只有10个红球,任意摸出一个球是红球
7、下列词语所描述的事件,属于必然事件的是( )
A.守株待兔 B.水中捞月 C.水滴石穿 D.缘木求鱼
8、乒乓球比赛以11分为1局,水平相当的甲、 ( http: / / www.21cnjy.com )乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )
A.甲获胜的可能性比乙大 B.乙获胜的可能性比甲大
C.甲、乙获胜的可能性一样大 D.无法判断
9、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?
下面分别是甲、乙两名同学的答案:
游戏次数 100 200 400 1000
频率 0.32 0.34 0.325 0.332
甲:掷一枚质地均匀的骰子,向上的点数与4相差1;
乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”(  )
A.甲正确,乙错误 B.甲错误,乙正确
C.甲、乙均正确 D.甲、乙均错误
10、为了深化落实“双减”工作,促 ( http: / / www.21cnjy.com )进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在20以内的素数中,随机抽取其中的一个素数,则所抽取的素数是偶数的可能性大小是______.
2、从分别写有数字、、、、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是___________.
3、在一个不透明的布袋中,有黄 ( http: / / www.21cnjy.com )色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.21教育网
4、在一个不透明的布袋中,黄色、红 ( http: / / www.21cnjy.com )色的乒乓球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中红色球的个数很可能是___个.
5、某水果公司以2.2元/千克的成本价购进10000kg苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如表:
抽取的苹果总质量 100 200 300 400 500 1000
损坏苹果质量 10.60 19.42 30.63 39.24 49.54 101.10
苹果损坏的频率 0.106 0.097 0.102 0.098 0.099 0.101
①估计这批苹果损坏的概率为________(精确到0.1);
②据此,若公司希望这批苹果能获得利润23000元,则销售时(去掉损坏的苹果)售价应定为________元/千克.【来源:21cnj*y.co*m】
三、解答题(5小题,每小题10分,共计50分)
1、每年的4月23日为“世界读书日”,某学校 ( http: / / www.21cnjy.com )为了培养学生的阅读习惯,计划开展以“书香润泽心灵,阅读丰富人生”为主题的读书节活动,在“形象大使”选拔活动中,A,B,C,D,E这5位同学表现最为优秀,学校现打算从5位同学中任选2人作为学校本次读书节活动的“形象大使”,请你用列表或画树状图的方法,求恰好选中A和C的概率.21*cnjy*com
2、在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.
(1)从中随机摸出一个小球,上面的数字不小于2的概率为   .
(2)从中随机摸出一球不放回,再随机摸出一球,请用列表或画树状图的方法,求两次摸出小球上的数字和恰好是奇数的概率.
3、口袋里有除颜色外其它都相同的6个红球和4个白球.
(1)先从袋子里取出m()个白球,再从袋子里随机摸出一个球,将“摸出红球”记为事件A.
①如果事件A是必然事件,请直接写出m的值.
②如果事件A是随机事件,请直接写出m的值.
(2)先从袋子中取出m个白球,再放入m个一样的红球并摇匀,摸出一个球是红球的可能性大小是,求m的值.2-1-c-n-j-y
4、经过某十字路口的汽车,它可能继续直行,也 ( http: / / www.21cnjy.com )可能向左转或向右转,这三种可能性大小相同,现在两辆汽车经过这个十字路口.请用“树形图”或“列表法”求这两辆汽车都向左转的概率.
5、不透明的袋中有3个大小相同的小球,其中2个为白色,1个为红色,请用画树状图(或列表)的方法,求一次摸出两个球“都是白球”的概率.
-参考答案-
一、单选题
1、C
【分析】
从中任意摸出1个球共有3+4=7种结果,其中摸出的球是黑球的有4种结果,直接根据概率公式求解即可.
【详解】
解:∵装有7个只有颜色不同的球,其中4个黑球,
∴从布袋中随机摸出一个球,摸出的球是黑球的概率=.
故选:C.
【点睛】
本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
2、B
【分析】
用黑色的小球个数除以球的总个数即可解题.
【详解】
解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,
故摸出的小球是黑色的概率是:
故选:B.
【点睛】
本题考查概率公式,解题关键是掌握随机事件发生的概率.
3、B
【分析】
根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.
【详解】
解:列表得:
锁1 锁2
钥匙1 (锁1,钥匙1) (锁2,钥匙1)
钥匙2 (锁1,钥匙2) (锁2,钥匙2)
钥匙3 (锁1,钥匙3) (锁2,钥匙3)
由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,
则P(一次打开锁).
故选:B.
【点睛】
本题考查列表法与树状图法求概率,注意掌握概率=所求情况数与总情况数之比是解题的关键.
4、A
【分析】
根据确定事件和随机事件的定义 ( http: / / www.21cnjy.com )来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.
【详解】
解:A. 13人中至少有2个人生日在同月,是必然事件,故该选项符合题意;
B. 任意掷一枚质地均匀的硬币,落地后正面朝上,是随机事件,故该选项不符合题意;
C. 从一副扑克牌中随机抽取一张,抽到的是红桃A,是随机事件,故该选项不符合题意;
D. 因为,则以长度分别是3cm,4cm,6cm的线段为三角形三边,能构成一个直角三角形,是不可能事件,故该选项不符合题意;
故选A
【点睛】
本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键.
5、C
【分析】
用绿灯亮的时间除以三种灯亮总时间即可解答.
【详解】
解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,
所以绿灯的概率是:.
故选C.
【点睛】
本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.
6、B
【分析】
随机事件是指在一定的条件下可能发生也可能不发生的事件,据此逐项判断即可.
【详解】
解:A、2021年全年有402天,是不可能事件,不符合题意;
B、4年后数学课代表会考上清华大学,是随机事件,符合题意;
C、刚出生的婴儿体重50公斤,是不可能事件,不符合题意;
D、袋中只有10个红球,任意摸出一个球是红球,是必然事件,不符合题意,
故选:B.
【点睛】
本题考查随机事件,理解随机事件的概念是解答的关键.
7、C
【分析】
根据必然事件就是一定发生的事件逐项判断即可.
【详解】
A.守株待兔是随机事件,故该选项不符合题意;
B.水中捞月是不可能事件,故该选项不符合题意;
C.水滴石穿是必然事件,故该选项符合题意;
D.缘木求鱼是不可能事件,故该选项不符合题意.
故选:C.
【点睛】
本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.
8、A
【分析】
根据事件发生的可能性即可判断.
【详解】
∵甲已经得了8分,乙只得了2分,甲、乙两人水平相当
∴甲获胜的可能性比乙大
故选A.
【点睛】
此题主要考查事件发生的可能性,解题的关键是根据题意进行判断.
9、C
【分析】
由表可知该种结果出现的概率约为,对甲乙两人所描述的游戏进行判断即可.
【详解】
由表可知该种结果出现的概率约为
∵掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6
∴向上的点数与4相差1有3、5
∴掷一枚质地均匀的骰子,向上的点数与4相差1的概率为
∴甲的答案正确
又∵“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为
∴乙的答案正确
综上所述甲、乙答案均正确.
故选C.
【点睛】
本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率.
10、C
【分析】
根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率.
【详解】
解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得:
业 睡 机 读 体
业 (业,睡) (业,机) (业,读) (业,体)
睡 (睡,业) (睡,机) (睡,读) (睡,体)
机 (机,业) (机,睡) (机,读) (机,体)
读 (读,业) (读,睡) (读,机) (读,体)
体 (体,业) (体,睡) (体,机) (体,读)
根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种,
∴ 抽到“作业”和“手机”的概率为:,
故选:C.
【点睛】
题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键.
二、填空题
1、
【分析】
先确定素数有2,3,5,7,11,13,17,19有8个,是偶数的只有一个2,根据定义计算即可.
【详解】
∵20以内的素数有2,3,5,7,11,13,17,19有8个,是偶数的只有一个2,
∴所抽取的素数是偶数的可能性大小是,
故答案为:.
【点睛】
本题考查了素数即除了1和它自身外,不能被其他自然数整除的数,可能性大小的计算,熟练掌握可能性大小的计算是解题的关键.21·世纪*教育网
2、
【分析】
让绝对值小于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率.
【详解】
解:∵数的总个数有9个,绝对值小于2的数有 1,0,1共3个,
∴任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是=,
故答案为:.
【点睛】
本题考查概率的求法;得到绝对值小于2的数的个数是解决本题的易错点.
3、12
【分析】
根据频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率:1-40%=60%,再乘以总球数即可解题.www-2-1-cnjy-com
【详解】
解:由题意知摸到黄色球的频率稳定在40%,
所以摸到白色球的概率:1-40%=60%,
因为不透明的布袋中,有黄色、白色的玻璃球共有20个,
所以布袋中白色球的个数为20×60%=12(个),
故答案为:12.
【点睛】
本题考查利用频率估计概率,是基础考点,掌握相关知识是解题关键.
4、4
【分析】
设出黄球的个数,根据黄球的频率求出黄球的个数即可解答.
【详解】
设黄球的个数为x,
∵共有黄色、红色的乒乓球10个,黄球的频率稳定在60%,
∴,
解得:,
∴布袋中红色球的个数很可能是(个).
故答案为:4.
【点睛】
本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据黄球的频率得到相应的等量关系,列出方程.21世纪教育网版权所有
5、
【分析】
①根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.1左右,由此可估计苹果的损坏概率为0.1;21*cnjy*com
②根据概率计算出完好苹果的质量为10000×0.9=9000千克,设每千克苹果的销售价为x元,然后根据“售价=成本+利润”列方程解答.【出处:21教育名师】
【详解】
解:①根据表中的损坏的频率,当实验次数的增多时,苹果损坏的频率越来越稳定在0.1左右, 所以苹果的损坏概率为0.1. 【版权所有:21教育】
②根据估计的概率可以知道,在10000千克苹果中完好苹果的质量为10000×0.9=9000千克.
设每千克苹果的销售价为x元,
则应有9000x=2.2×10000+23000,
解得x=5.
答:出售苹果时每千克大约定价为5元可获利润23000元.
故答案为:0.1,5.
【点睛】
本题考查了利用频率估计概率,用到的知识点为:频率=所求情况数与总情况数之比,理解销售额等于成本加上利润是解决(2)的关键.21cnjy.com
三、解答题
1、
【分析】
画树状图展示所有等可能的结果数,找出恰好选中甲和乙的结果数,然后根据概率公式求解.
【详解】
解:画树状图为:
( http: / / www.21cnjy.com / )
共有20种等可能的结果数,其中恰好选中A和C的结果数有2种,
所以恰好选中甲和乙的概率是.
【点睛】
本题考查了列表法与树状图法 ( http: / / www.21cnjy.com ):利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
2、(1);(2)
【分析】
(1)列表确定出所有等可能的情况数,找出小球上写的数字不小于2的情况数,即可求出所求概率;
(2)列表确定出所有等可能的情况数,找出两次摸出小球上的数字和恰好是奇数的情况数,即可求出所求概率.【来源:21·世纪·教育·网】
【详解】
解:(1)从中随机摸出一个小球,小球上写的数字所有等可能情况有:1,2,3,4,共4种,
其中数字不小于2的情况有:2,3,4,共3种,
则P(小球上写的数字不小于2)=;
故答案为:;
(2)根据题意列表得:
1 2 3 4
1 ﹣﹣﹣ (1,2) (1,3) (1,4)
2 (2,1) ﹣﹣﹣ (2,3) (2,4)
3 (3,1) (3,2) ﹣﹣﹣ (3,4)
4 (4,1) (4,2) (4,3) ﹣﹣﹣
所有等可能的数有12种,两次摸出小球上的数字和恰好是奇数的情况有8种,
则P(两次摸出小球上的数字和恰好是奇数)==.
故答案为:
【点睛】
本题考查了概率公式,学会利用列表法与树状图法求随机事件的概率是解本题的关键.
3、(1)①4;②1或2或3;(2)
【分析】
(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,即可求解;
② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,可得此时有白球 1个或2个或3个,即可求解;21·cn·jy·com
(2)根据题意得:所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为. 再根据概率公式,即可求解.
【详解】
解:(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,
∴ ;
② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,
∴此时有白球 1个或2个或3个,
即m的值为1或2或3;
(2)所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为.根据题意得:2·1·c·n·j·y

∴.
【点睛】
本题主要考查了必然事件和随机 ( http: / / www.21cnjy.com )事件定义,求概率,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,概率公式是解题的关键.
4、
【分析】
先画出树状图,然后找到所有的等可能性的结果数,再找到两辆汽车都向左转的结果数,最后根据概率公式求解即可.
【详解】
解:画树状图如下所示:
( http: / / www.21cnjy.com / )
由树状图可知,一共有9种等可能性的结果数,其中两辆汽车都向左转的结果数为1,
∴P这两辆汽车都向左转的概率.
【点睛】
本题主要考查了用树状图法或列表法求解概率,解题的关键在于能够正确画出树状图.
5、
【分析】
根据题意用列表法列出所有等可能的情况,找出两个球“都是白球”的情况,然后根据概率公式求解即可.
【详解】
解:由题意可得,所有等可能的情况如下:
      白色1 白色2 红色
白色1 (白色2,白色1) (红色,白色1)
白色2 (白色1,白色2) (红色,白色2)
红色 (白色1,红色) (白色2,红色)
由表格可知,共有6种等可能的情况,其中两个球“都是白球”的有2种情况,
∴一次摸出两个球“都是白球”的概率=.
【点睛】
本题考查的是用列表法或画树状图法求概率 ( http: / / www.21cnjy.com ).解题的关键是熟练掌握列表法或画树状图法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)