中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应 ( http: / / www.21cnjy.com )的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。www.21-cn-jy.com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、书架上有本小说、本散文,从中随机抽取本恰好是小说的概率是( )
A. B. C. D.
2、任意掷一枚骰子,下列事件中:①面朝上的点 ( http: / / www.21cnjy.com )数小于1;②面朝上的点数大于1;③面朝上的点数大于0,是必然事件,不可能事件,随机事件的顺序是( )2·1·c·n·j·y
( http: / / www.21cnjy.com / )
A.①②③ B.①③② C.③②① D.③①②
3、下列事件中,属于必然事件的是( )
A.13人中至少有2个人生日在同月
B.任意掷一枚质地均匀的硬币,落地后正面朝上
C.从一副扑克牌中随机抽取一张,抽到的是红桃A
D.以长度分别是3cm,4cm,6cm的线段为三角形三边,能构成一个直角三角形
4、为了深化落实“双减”工 ( http: / / www.21cnjy.com )作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为( )21cnjy.com
A. B. C. D.
5、下列事件是必然事件的是( )
A.同圆中,圆周角等于圆心角的一半
B.投掷一枚均匀的硬币100次,正面朝上的次数为50次
C.参加社会实践活动的367个同学中至少有两个同学的生日是同一天
D.把一粒种子种在花盆中,一定会发芽
6、下列说法不正确的是( )
A.不可能事件发生的概率是0
B.概率很小的事件不可能发生
C.必然事件发生的概率是1
D.随机事件发生的概率介于0和1之间
7、下列说法正确的是( ).
A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件
B.“打开电视机,正在播放乒乓球比赛”是必然事件
C.“面积相等的两个三角形全等”是不可能事件
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次
8、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )21·世纪*教育网
A. B. C. D.
9、明明和强强是九年级学生,在本周的体育课 ( http: / / www.21cnjy.com )体能检测中,检测项目有跳远,坐位体前屈和握力三项.检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是( ).
A. B. C. D.
10、关于“明天是晴天的概率为90%”,下列说法正确的是( ).
A.明天一定是晴天 B.明天一定不是晴天
C.明天90%的地方是晴天 D.明天是晴天的可能性很大
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、袋中有五张卡片,其中红色卡片 ( http: / / www.21cnjy.com )三张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的颜色不同且标号之和小于4的概率为______.
2、粉笔盒中有10支白色粉笔盒若干支彩色粉笔,每支粉笔除颜色外均相同,从中随机拿一支粉笔,拿到白色的概率为,则其中彩色粉笔的数量为________支.【来源:21·世纪·教育·网】
3、口袋中有4个黑球、2个白球,这些球 ( http: / / www.21cnjy.com )的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1球,摸出黑球的概率为_______.www-2-1-cnjy-com
4、一个不透明的盒子中装有6个红球,3个黄球和1个绿球,这些球除了颜色外无差别,从中随机摸出一个小球,则摸到的是红球的概率为___.【来源:21cnj*y.co*m】
5、一个不透明的袋子装有除颜色外其余 ( http: / / www.21cnjy.com )均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_________.
三、解答题(5小题,每小题10分,共计50分)
1、一个不透明的口袋中有三个完全相同的小球 ( http: / / www.21cnjy.com ),把它们分别标号为1,2,3.甲从口袋中随机摸取一个小球,记下标号m,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n,组成一个数对(m,n).【出处:21教育名师】
(1)用列表法或画树状图法,写出(m,n)所有可能出现的结果;
(2)甲、乙两人玩游戏,规则如下:按上述要 ( http: / / www.21cnjy.com )求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢.你认为这个游戏规则公平吗?请说明理由.
2、某生物制剂公司以箱养 ( http: / / www.21cnjy.com )的方式培育一批新品种菌苗,每箱有40株菌苗.若某箱菌苗失活率大于10%,则需对该箱菌苗喷洒营养剂.某日工作人员随机抽检20箱菌苗,结果如表:21教育名师原创作品
箱数 6 2 5 4 2 4
每箱中失活菌苗株数 0 1 2 3 5 6
(1)抽检的20箱平均每箱有多少株失活菌苗
(2)该日在这批新品种菌苗中随机抽取一箱,记事件A为:该箱需要喷洒营养剂.请估计事件A的概率.
3、某校开展“经典诵读”比赛 ( http: / / www.21cnjy.com )活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A、B、C依次表示这三个诵读材料),将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小华和小敏参加诵读比赛,比赛时小华先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小敏从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.21*cnjy*com
(1)小华诵读《弟子规》的概率是 .
(2)请用列表法或画树状图法求小华和小敏诵读两个不同材料的概率.
4、我市举行了某学科实验操作考试 ( http: / / www.21cnjy.com ),有A,B,C,D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王、小张、小厉都参加了本次考试.
(1)小厉参加实验D考试的概率是______;
(2)用列表或画树状图的方法求小王、小张抽到同一个实验的概率.
5、一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.
(1)求摸出一个球是白球的概率.
(2)第一次摸出1个球,记下颜色,放回摇匀,再摸出1个球,求两次摸出颜色相同的球的概率(用树状图或列表来表示分析过程).
-参考答案-
一、单选题
1、D
【分析】
概率=所求情况数与总情况数之比,再分析可得:总的情况数有5种,而随机抽取刚好是小说的情况数有3种,利用概率公式可得答案.
【详解】
解:书架上有本小说、本散文,共有本书,
从中随机抽取本恰好是小说的概率是;
故选:D.
【点睛】
本题考查的是简单随机事件的概率,掌握“概率公式求解简单随机事件的概率”是解本题的关键.
2、D
【分析】
必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是某次试验中可能发生也可能不发生的事件;面朝上可能结果为点数;根据要求判断,进而得出结论.
【详解】
解:①中面朝上的点数小于是一定不会发生的,故为不可能事件;
②中面朝上的点数大于是有可能发生有可能不发生的,故为随机事件;
③中面朝上的点数大于是一定会发生的,故为必然事件.
依据要求进行排序为③①②
故选D.
【点睛】
本题考察了事件.解题的关键在于区分各种事件的概念.
3、A
【分析】
根据确定事件和随机事件的定 ( http: / / www.21cnjy.com )义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.
【详解】
解:A. 13人中至少有2个人生日在同月,是必然事件,故该选项符合题意;
B. 任意掷一枚质地均匀的硬币,落地后正面朝上,是随机事件,故该选项不符合题意;
C. 从一副扑克牌中随机抽取一张,抽到的是红桃A,是随机事件,故该选项不符合题意;
D. 因为,则以长度分别是3cm,4cm,6cm的线段为三角形三边,能构成一个直角三角形,是不可能事件,故该选项不符合题意;
故选A
【点睛】
本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键.
4、C
【分析】
根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率.
【详解】
解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得:
业 睡 机 读 体
业 (业,睡) (业,机) (业,读) (业,体)
睡 (睡,业) (睡,机) (睡,读) (睡,体)
机 (机,业) (机,睡) (机,读) (机,体)
读 (读,业) (读,睡) (读,机) (读,体)
体 (体,业) (体,睡) (体,机) (体,读)
根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种,
∴ 抽到“作业”和“手机”的概率为:,
故选:C.
【点睛】
题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键.
5、C
【分析】
直接利用随机事件以及不可能事件、必然事件的定义分析即可得答案.
【详解】
A、同圆中,圆周角等于圆心角的一半,是随机事件,不符合题意;
B、投掷一枚均匀的硬币100次,正面朝上的次数为50次,是随机事件,不符合题意;
C、参加社会实践活动的367个同学中至少有两个同学的生日是同一天,是必然事件,符合题意;
D、把一粒种子种在花盆中,一定会发芽,是随机事件,不符合题意.
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、 ( http: / / www.21cnjy.com )随机事件的概念,必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.21世纪教育网版权所有
6、B
【分析】
根据概率的意义分别判断后即可确定正确的选项.
【详解】
解:A. 不可能事件发生的概率是0,故该选项正确,不符合题意;
B. 概率很小的事件也可能发生,故该选项不正确,符合题意;
C. 必然事件发生的概率是1,故该选项正确,不符合题意;
D. 随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;
故选B
【点睛】
本题考查概率的意义,理解概率的意 ( http: / / www.21cnjy.com )义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.
7、A
【分析】
根据必然事件、不可能事件、随机事件的概念可区别各类事件.
【详解】
解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;
B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;
C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;
D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;
故选:A.
【点睛】
本题考查了必然事件,解决本题需要 ( http: / / www.21cnjy.com )正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.21*cnjy*com
8、B
【分析】
由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.
【详解】
解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,
∴从袋中任意摸出一个球,摸出的球是红球的概率是:.
故选:B.
【点睛】
此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.
9、B
【分析】
根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率.
【详解】
解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下:
跳 坐 握
跳 (跳,跳) (跳,坐) (跳,握)
坐 (坐,跳) (坐,坐) (坐,握)
握 (握,跳) (握,坐) (握,握)
由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,
则两人抽到跳远的概率为:,
故选:B.
【点睛】
题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键.
10、D
【分析】
根据概率的定义:概率表示事件发生可能性的大小,据此判断即可得.
【详解】
解:明天是晴天的概率为90%,说明明天是晴天的可能性很大,
故选:D.
【点睛】
题目主要考查概率的定义及对其的理解,深刻理解概率表示事件发生可能性的大小是解题关键.
二、填空题
1、
【分析】
从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标号之和小于4的有3种情况,从而求得所求事件的概率.
【详解】
从五张卡片中任取两张的所有可能情况有如下10种:
红1红2,红1红3,红1绿1,红1绿2,红2红3,
红2绿1,红2绿2,红3绿1,红3绿2,绿1绿2.
其中两张卡片的颜色不同且标号之和小于4的有3种情况:
红1绿1,红1绿2,红2绿1.
故所求的概率为P=;
故答案为:.
【点睛】
本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.
2、15
【分析】
设彩色笔的数量为x支,然后根据概率公式列出方程求解即可.
【详解】
解:设彩色笔的数量为x支,
由题意得:,
解得,
经检验是原方程的解,
∴彩色笔为15支,
故答案为:15.
【点睛】
本题主要考查了概率公式和分式方程,解题的关键在于能够熟练掌握概率公式列出方程进行求解.
3、
【分析】
直接利用概率公式求解即可求得答案.
【详解】
解:∵一个不透明的袋子中只装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别,
∴随机从袋中摸出1个球,则摸出黑球的概率是:.
故答案为:.
【点睛】
本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.
4、
【分析】
将红球的个数除以球的总个数即可得.
【详解】
解:根据题意,摸到的不是红球的概率为,
答案为:.
【点睛】
本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
5、8
【分析】
首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可.
【详解】
解:∵大量重复试验后,发现摸出红球的频率稳定在0.2附近,
∴摸出红球的概率为0.2,
由题意,,
解得:,
经检验,是原方程的解,且符合题意,
三、解答题
1、(1)见解析;(2)这个游戏不公平,理由见解析
【分析】
(1)根据题意画出树状图进行求解即可;
(2)根据(1)所画树状图,先得到所有的 ( http: / / www.21cnjy.com )等可能性的结果数,然后分别得到小球标号之和为奇数和偶数的结果数,最后分别求出甲乙两人赢的概率即可得到答案.【版权所有:21教育】
【详解】
解:(1)列树状图如下所示:
( http: / / www.21cnjy.com / )
由树状图可知(m,n)所有可能出现 ( http: / / www.21cnjy.com )的结果为:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3);
(2)由(1)得一共有9种等可能性 ( http: / / www.21cnjy.com )的结果数,其中小球上标号之和为奇数的结果数有(1,2),(2,1),(2,3),(3,2),4种等可能性的结果数,其中小球上标号之和为偶数的结果数有(1,1),(1,3),(2,2),(3,1),(3,3),5种等可能性的结果数,
∴甲赢的概率为,乙赢的概率为,
∴这个游戏不公平.
【点睛】
本题主要考查了画树状图和游戏的公平性,解题的关键在于能够熟练掌握画树状图的方法.
2、(1)抽检的20箱平均每箱有2.9株失活菌苗;(2)事件A的概率为
【分析】
(1)根据题意及表格可直接进行求解;
(2)由题意知当每箱中失活菌苗株数为40×10%=4株的时候需喷洒营养剂,然后根据表格及概率公式可直接进行求解.
【详解】
解:(1)由表格得:
(株);
答:抽检的20箱平均每箱有2.9株失活菌苗;
(2)由题意得:40×10%=4株,
∴当每箱中失活菌苗株数为4株时,则需喷洒营养剂,
∴,
即事件A的概率为.
【点睛】
本题主要考查概率,熟练掌握概率的求解是解题的关键.
3、(1);(2)
【分析】
(1)直接根据概率公式求解;
(2)利用列表法展示所有9种等可能性结果,再找出小华和小敏诵读两个不同材料的结果数,然后根据概率公式求解.2-1-c-n-j-y
【详解】
解:(1)小华诵读《弟子规》的概率=;
故答案为:;
(2)列表得:
小华小敏 A B C
A (A,A) (A,B) (A,C)
B (B,A) (B,B) (B,C)
C (C,A) (C,B) (C,C)
由表格可知,共有9种等可能性结果,其中小华和小敏诵读两个不同材料的结果有6种,
∴P(小华和小敏诵读两个不同材料)=
【点睛】
本题考查了列表法与树状图法:利用列表 ( http: / / www.21cnjy.com )法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.21教育网
4、
(1)
(2)
【分析】
(1)根据概率公式即可得;
(2)列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.
(1)
解:小厉参加实验考试的概率是,
故答案为:;
(2)
解:列表如下:
所有等可能的情况有16种,其中两位同学抽到同一实验的情况有,,,,4种情况,
所以小王、小张抽到同一个实验的概率为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率所求情况数与总情况数之比.21·cn·jy·com
5、(1);(2)
【分析】
(1)根据概率公式列式计算即可得解;
(2)画出树状图或列出图表,然后根据概率公式列式计算即可得解.
【详解】
解(1)摸出一个球的所有可能结果总数,摸到是白球的可能结果数,
摸出一个球是白球的概率为.
(2)画树状图如下:
( http: / / www.21cnjy.com / )
由树状图知,一共有9种情况,两次摸出颜色相同的球有5种,
所以两次摸出颜色相同的球的概率.
【点睛】
本题考查的是用列表法或树状图法求概率,解题的关键是掌握公式:概率所求情况数与总情况数之比
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)