沪教版(上海)八下 第二十三章概率初步专题攻克试题(含解析)

文档属性

名称 沪教版(上海)八下 第二十三章概率初步专题攻克试题(含解析)
格式 doc
文件大小 1.5MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-11-29 08:40:31

图片预览

文档简介

中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步专题攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区 ( http: / / www.21cnjy.com )域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。【来源:21·世纪·教育·网】
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列事件为随机事件的是( )
A.四个人分成三组,恰有一组有两个人 B.购买一张福利彩票,恰好中奖
C.在一个只装有白球的盒子里摸出了红球 D.掷一次骰子,向上一面的点数小于7
2、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )21教育名师原创作品
( http: / / www.21cnjy.com / )
A. B. C. D.1
3、任意掷一枚骰子,下列事 ( http: / / www.21cnjy.com )件中:①面朝上的点数小于1;②面朝上的点数大于1;③面朝上的点数大于0,是必然事件,不可能事件,随机事件的顺序是( )21*cnjy*com
( http: / / www.21cnjy.com / )
A.①②③ B.①③② C.③②① D.③①②
4、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是( )
A. B. C. D.
5、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球( )个.
A.12 B.15 C.18 D.54
6、经过某十字路口的汽车,可能直行,也可能 ( http: / / www.21cnjy.com )向左转或向右转.如果这三种可能性大小相同,甲、乙两辆汽车经过这个十字路口时,一辆车向左转,一辆车向右转的概率是( )
A. B. C. D.
7、把形状完全相同风景不同 ( http: / / www.21cnjy.com )的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )
A. B. C. D.
8、一个不透明的口袋里有红 ( http: / / www.21cnjy.com )、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球.则随机摸出一个红球的概率为(  )
A. B. C. D.
9、抛一枚质地均匀的硬币三次,其中“至少有两次正面朝上”的概率是(  )
A. B. C. D.
10、下列事件中,属于必然事件的是(  )
A.射击运动员射击一次,命中10环
B.打开电视,正在播广告
C.投掷一枚普通的骰子,掷得的点数小于10
D.在一个只装有红球的袋中摸出白球
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个盒子中装有标号为,,,的四个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于的概率为______.
2、一只不透明的袋子中装有3个黑球、2个白球,每个球除颜色外都相同,从中任意摸出2个球,两个都是黑球的概率_______.
3、从﹣2,﹣1,1,0四个数中,随机抽取两个数相乘,积为0的概率是 _____.
4、为了解某校九年级学生每周的零花钱情况,随机抽取了该校100名九年级学生,他们每周的零花钱x(元)统计如表:
组别(元) 0≤x<30 30≤x<50 50≤x<60 x≥60
人数 16 31 33 20
根据以上结果,随机抽取该校一名学生,估计该学生每周的零花钱在60以上(包含60)的概率为_________.
5、一个袋中有形状材料均相同的白球2个、红球3个,任意摸一个球是红球的概率_____.
三、解答题(5小题,每小题10分,共计50分)
1、一个不透明的盒子里装有5个黑球,2个白球和若干个黄球.它们除颜色不同外其余都相同,从中任意摸出1个球,是白球的概率为.
(1)求盒子里有几个黄球?
(2)小张和小王将盒子中 ( http: / / www.21cnjy.com )的黑球取出4个,利用剩下的球进行摸球游戏.他们约定:先摸出1个球后不放回,再摸出1个球,若这两个球中有黄球,则小张胜,否则小王胜、你认为这个游戏公平吗?请用列表或画树状图说明理由.www.21-cn-jy.com
2、九(1)班为准备学校举办“我的梦●美丽中国梦”演讲比赛,通过预赛共评选出甲、乙、丙三名男生和A、B两名女生共5名推荐人选.
(1)若随机选一名同学参加比赛,求选中男生的概率.
(2)若随机选一名男生和一名女生组成一组选手参加比赛,用树状图(或列表法)表示所有可能出现的结果,并求恰好选中男生甲和女生A的概率.
3、在太原市创建国家文明城市的过程中,东东和南南积极参加志愿者活动,有下列三个志愿者工作岗位供他们选择:(每个工作岗位仅能让一个人工作)
①2个清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用,表示);
②1个宣传类岗位:垃圾分类知识宣传(用表示).
(1)东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为________.
(2)若东东和南南各随机从三个岗位中选取一个报名,请你利用画树状图法或列表法求出他们恰好都选择同一类岗位的概率.
4、一个不透明的布袋中装有10个黄球和20个红球,每个球除颜色外都相同.
(1)任意摸出一个球,摸到黄球和红球的概率分别是多少?
(2)现将n个蓝球放入布袋,搅匀后任意摸 ( http: / / www.21cnjy.com )出一个球,记录其颜色后放回,重复该试验.经过大量试验后,发现摸到蓝球的频率稳定于0.7附近,求n的值.
5、不透明的口袋里装有红、黄、蓝三种颜色的小球(除颜色不同外,其它都一样),其中红球2个,蓝球1个,现在从中任意摸出一个红球的概率为.
(1)求袋中黄球的个数;
(2)第一次摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法求两次摸出的都是红球的概率.
-参考答案-
一、单选题
1、B
【分析】
根据事件发生的可能性大小判断.
【详解】
解:A、四个人分成三组,恰有一组有两个人,是必然事件,不合题意;
B、购买一张福利彩票,恰好中奖,是随机事件,符合题意;
C、在一个只装有白球的盒子里摸出了红球,是不可能事件,不合题意;
D、掷一次骰子,向上一面的点数小于7,是必然事件,不合题意;
故选:B.
【点睛】
本题考查的是必然事件、不可能事件、随机事件 ( http: / / www.21cnjy.com )的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.21·cn·jy·com
2、C
【分析】
根据中心对称图形的定义,即把一个图形 ( http: / / www.21cnjy.com )绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;
【详解】
根据已知图形可得,中心对称图形是
, ( http: / / www.21cnjy.com / ), ( http: / / www.21cnjy.com / ),
共有3个,
∴抽到的图案是中心对称图形的概率是.
故选C.
【点睛】
本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.
3、D
【分析】
必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是某次试验中可能发生也可能不发生的事件;面朝上可能结果为点数;根据要求判断,进而得出结论.
【详解】
解:①中面朝上的点数小于是一定不会发生的,故为不可能事件;
②中面朝上的点数大于是有可能发生有可能不发生的,故为随机事件;
③中面朝上的点数大于是一定会发生的,故为必然事件.
依据要求进行排序为③①②
故选D.
【点睛】
本题考察了事件.解题的关键在于区分各种事件的概念.
4、C
【分析】
用3的倍数的个数除以数的总数即为所求的概率.
【详解】
解:∵1到10的数字中是3的倍数的有3,6,9共3个,
∴卡片上的数字是3的倍数的概率是.
故选:C.
【点睛】
本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.
5、A
【分析】
根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可.
【详解】
解:设有红色球x个,
根据题意得:,
解得:x=12,
经检验,x=12是分式方程的解且符合题意.
故选:
【点睛】
本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数.
6、C
【分析】
可以采用列表法或树状图求解:可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.2-1-c-n-j-y
【详解】
画“树形图”如图所示:
( http: / / www.21cnjy.com / )
∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,
∴一辆向右转,一辆向左转的概率为;
故选C.
【点睛】
此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解
7、B
【分析】
设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率.
【详解】
解:设四张小图片分别用A,a,B,b表示,画树状图得:
( http: / / www.21cnjy.com / )
由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,
∴摸取两张小图片恰好合成一张完整图片的概率为:,
故选:B.
【点睛】
题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键.
8、D
【分析】
在一个不透明的口袋里有红、黄、 ( http: / / www.21cnjy.com )蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.21*cnjy*com
【详解】
解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,
红球有:个,
则随机摸出一个红球的概率是:.
故选:D.
【点睛】
本题主要考查了概率公式的应用,解题的关键是掌握:概率所求情况数与总情况数之比.
9、B
【分析】
根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可.
【详解】
解:随机掷一枚质地均匀的硬币三次,
( http: / / www.21cnjy.com / )
根据树状图可知至少有两次正面朝上的事件次数为:4,
总的情况为8次,
故至少有两次正面朝上的事件概率是:.
故选:B.
【点睛】
本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图.
10、C
【分析】
根据事件发生的可能性大小判断即可.
【详解】
解:A、射击运动员射击一次,命中10环,是随机事件;
B、打开电视,正在播广告,是随机事件;
C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;
D、在一个只装有红球的袋中摸出白球,是不可能事件;
故选:C.
【点睛】
本题考查的是必然事件、不可能事件、 ( http: / / www.21cnjy.com )随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.21世纪教育网版权所有
二、填空题
1、
【分析】
根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.
【详解】
解:根据题意画图如下:
( http: / / www.21cnjy.com / )
共有12种等可能的情况数,其中摸出的小球标号之和大于5的有4种,
则摸出的小球标号之和大于5的概率为.
故答案为:.
【点睛】
本题考查的是用列表法或树状图法求概率.列 ( http: / / www.21cnjy.com )表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21教育网
2、
【分析】
利用树状图法列出所有的等可能性的结果数,然后找到摸到两个黑球的结果数,最后根据概率公式求解即可.
【详解】
解:列树状图如下所示:
( http: / / www.21cnjy.com / )
由树状图可知,一共有20种等可能性的结果数,其中摸到两个黑球的结果数有6种,
∴P摸到两个都是黑球,
故答案为:.
【点睛】
本题主要考查了用树状图或列表法求解概率,解题的关键在于能够熟练掌握树状图法或列表法求解概率.
3、
【分析】
画树状图,共有12种等可能的结果,积为0的结果有6种,再由概率公式求解即可.
【详解】
解:画树状图如下:
( http: / / www.21cnjy.com / )
共有12种等可能的结果,积为0的结果有6种,
∴积为0的概率为,
故答案为:.
【点睛】
此题考查的是用树状图法求概率.画树状图 ( http: / / www.21cnjy.com )法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21cnjy.com
4、
【分析】
根据题意先计算出样本中学生每周的零花钱在60以上(包含60)的频率,然后根据利用频率估计概率求解即可.21·世纪*教育网
【详解】
解:该学生每周的零花钱在60以上(包含60)的概率为:
.
故答案为:.
【点睛】
本题考查利用频率估计概率 ( http: / / www.21cnjy.com ):大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
5、
【分析】
袋中有五个小球,3个红球,2个白球,利用概率公式直接求解即可求得答案.
【详解】
解:袋中有五个小球,3个红球,2个白球,形状材料均相同,
从中任意摸一个球,摸出红球的概率为,
故答案是:.
【点睛】
本题考查概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).2·1·c·n·j·y
三、解答题
1、
(1)布袋里有1个黄球
(2)公平,表格见解析
【分析】
(1)设布袋里黄球有x个,根据“白球的概率为”可得关于x的分式方程,解之可得答案;
(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.
(1)
解:设布袋里黄球有x个,
根据题意,得:,
解得:x=1,
经检验:x=1是原分式方程的解,
所以布袋里有1个黄球;
(2)
解:公平;
列表如下:
白 白 黑 黄
白 (白,白) (白,黑) (白,黄)
白 (白,白) (白,黑) (白,黄)
黑 (黑,白) (黑,白) (黑,黄)
黄 (黄,白) (黄,白) (黄,黑)
由表知,共有12种等可能结果,其中两个球中有黄球的有6种情况,两个球中没有黄球的有6种情况,
∴P(小张胜)=P(小王胜)= ,
∴这个游戏公平.
【点睛】
本题考查的是游戏公平性的 ( http: / / www.21cnjy.com )判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.www-2-1-cnjy-com
2、(1);(2)
【分析】
(1)根据简单概率公式计算即可;
(2)画树状图求概率即可
【详解】
解:(1)共有5人,男生有3人,则随机选一名同学参加比赛,选中男生的概率=;
(2)画树状图为:
共有6种等可能的结果数,其中选中男生甲和女生A的结果数为1,
所以恰好选中男生甲和女生A的概率=.
【点睛】
本题考查了简单概率公式求概率,树状图法求概率,掌握求概率的方法是解题的关键.
3、(1);(2)
【分析】
(1)利用概率公式,即可求解;
(2)根据题意画出树状图,得到共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,再利用概率公式,即可求解【出处:21教育名师】
【详解】
解:东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为.
(2)根据题意画图如下:
( http: / / www.21cnjy.com / )
共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,则他们恰好都选择同一类岗位的概率是
【点睛】
本题主要考查了利用画树状图法或列 ( http: / / www.21cnjy.com )表法求概率,熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键.
4、(1),;(2)70
【分析】
(1)直接根据概率公式进行计算即可;
(2)根据频率估计概率,再根据概率公式求解即可
【详解】
解:(1)任意摸出一个球,摸到黄球的概率为=,摸到红球的概率为=;
(2)根据题意,得=0.7,
解得n=70,
经检验n=70是分式方程的解.
【点睛】
本题考查了概率公式求概率,已知概率求数量,频率估计概率,掌握概率公式是解题的关键.概率=所求情况数与总情况数之比.【来源:21cnj*y.co*m】
5、(1)袋中黄球的个数为1个;(2)
【分析】
(1)袋中黄球的个数为x个,根据概率公式得到,然后利用比例性质求出x即可;
(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的都是红球的结果数,然后根据概率公式计算即可.;【版权所有:21教育】
【详解】
解:(1)设袋中黄球的个数为x个,
根据题意得,
解得x=1,
经检验,x=1是方程的根,
所以袋中黄球的个数为1个;
(2)画树状图为:
共有12种等可能的结果数,其中两次摸出的都是红球的结果数为2,
所以两次摸出的都是红球的概率.
【点睛】
本题主要考查了概率公式的应用,树状图求概率,分式方程的计算,准确计算是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)