沪教版(上海)八下 第二十三章概率初步专项测评练习题(含解析)

文档属性

名称 沪教版(上海)八下 第二十三章概率初步专项测评练习题(含解析)
格式 doc
文件大小 1.5MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-11-29 09:08:43

图片预览

文档简介

中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定 ( http: / / www.21cnjy.com )区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21教育网
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )
( http: / / www.21cnjy.com / )
A. B. C. D.1
2、下列事件中,是必然事件的是( )
A.同位角相等
B.打开电视,正在播出特别节目《战疫情》
C.经过红绿灯路口,遇到绿灯
D.长度为4,6,9的三条线段可以围成一个三角形.
3、在一个不透明的布袋中,红色、黑色、白色的 ( http: / / www.21cnjy.com )玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是( )21·cn·jy·com
A.24 B.18 C.16 D.6
4、下列说法中,正确的是( )
A.随机事件发生的概率为
B.不可能事件发生的概率为0
C.概率很小的事件不可能发生
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次
5、布袋内装有1个黑球和2个白球,这些球除颜 ( http: / / www.21cnjy.com )色外其余都相同,随机摸出一个球后不放回,再随机摸出一个球,则两次摸出的球都是白球的概率是(  )21*cnjy*com
A. B. C. D.
6、在一只暗箱里放有a个除颜色 ( http: / / www.21cnjy.com )外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%,那么可以推算a大约是(  )【来源:21·世纪·教育·网】
A.15 B.12 C.9 D.4
7、下列说法正确的是( )
A.“经过有交通信号的路口遇到红灯”是必然事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次
C.“心想事成,万事如意”描述的事件是随机事件
D.天气预报显示明天为阴天,那么明天一定不会下雨
8、把形状完全相同风景不同的两张图片全 ( http: / / www.21cnjy.com )部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )
A. B. C. D.
9、 如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是( )
( http: / / www.21cnjy.com / )
A. B. C. D.
10、乒乓球比赛以11分为1局,水平 ( http: / / www.21cnjy.com )相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )
A.甲获胜的可能性比乙大 B.乙获胜的可能性比甲大
C.甲、乙获胜的可能性一样大 D.无法判断
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在一个不透明的袋子中,装有若干个除颜色外都相同的小球,其中有8个红球和n个黑球,从袋中任意摸出一个球,若摸出黑球的概率是,则n=_____.www.21-cn-jy.com
2、一个不透明的口袋中装 ( http: / / www.21cnjy.com )有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为 _____个.【来源:21·世纪·教育·网】
3、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.
4、某农场引进一批新稻种,在播种前做了五次发芽实验,每次任取800粒稻种进行实验.实验的结果如表所示:
实验的稻种数n∕粒 800 800 800 800 800
发芽的稻种数m∕粒 763 757 761 760 758
发芽的频率 0.954 0.946 0.951 0.950 0.948
在与实验条件相同的情况下,估计种一粒这样的稻 ( http: / / www.21cnjy.com )种发芽的概率为 _____(精确到0.01);如果该农场播种了此稻种2万粒,那么能发芽的大约有 _____万粒.
5、某班共有36名同学, ( http: / / www.21cnjy.com )其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是___________.【来源:21cnj*y.co*m】
三、解答题(5小题,每小题10分,共计50分)
1、不透明的盒子中有四个形状、大小、质地完全相同的小球,标号分别为1, 2,3, 4.
(1)从盒子中随机摸出一个小球,标号是奇数的概率是 ;
(2)先从盒子中随机摸出一个 ( http: / / www.21cnjy.com )小球,放回后摇匀,再随机摸出一个小球,记两次摸出球的标号之和为m,则m可能取2~8中的任何一个整数,分析哪个整数出现的可能性最大.
2、小王和小刘两人在玩转盘游戏 ( http: / / www.21cnjy.com )时,游戏规则:同时转动A,B两个转盘,当两转盘停止后,若指针所指两个区域的数字之和为2的倍数,则小王获胜;若指针所指两个区域的数字之积为2的倍数,则小刘获胜,如果指针落在分割线上,则视为无效,需重新转动转盘.
(1)请用列表或画树状图的方法表示所有可能的结果.
(2)这个游戏规则对双方公平吗?请说明理由.
( http: / / www.21cnjy.com / )
3、落实“双减”政策,丰富课后服务,为了发展学生兴趣特长,梁鄂中学七年级准备开设(窗花剪纸)、(书法绘画)、(中华武术)、(校园舞蹈)四门选修课程(每位学生必须且只选其中一门),甲、乙两位同学分别随机选择其中一门选修课程参加学习.用列表法或画树状图法求:
(1)甲、乙都选择(窗花剪纸)课程的概率;
(2)甲、乙选择同一门课程的概率.
4、一个纸箱内装有三张正 ( http: / / www.21cnjy.com )面分别标有数字﹣4,6,4的卡片,卡片除正面数字外其他均相同.将三张卡片搅匀后,从中随机摸出一张卡片记下数字,放回后搅匀,再从中随机摸出一张卡片并记下数字.请用列表法或画树状图法求两次取得数字的绝对值相等的概率.
5、如图,3×3的方格分为上中下 ( http: / / www.21cnjy.com )三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.
(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是    .
(2)若甲、乙均可在本层移动.
①黑色方块所构拼图是中心对称图形的概率是    .
②用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、C
【分析】
根据中心对称图形的定义,即把一 ( http: / / www.21cnjy.com )个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;2·1·c·n·j·y
【详解】
根据已知图形可得,中心对称图形是
, ( http: / / www.21cnjy.com / ), ( http: / / www.21cnjy.com / ),
共有3个,
∴抽到的图案是中心对称图形的概率是.
故选C.
【点睛】
本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.
2、D
【分析】
根据必然事件的概念即可得出答案.
【详解】
解:∵同位角不一定相等,为随机事件,
∴A选项不合题意,
∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,
∴B选项不合题意,
∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,
∴C选项不合题意,
∵4+6>9,
∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.
∴D选项符合题意,
故选:D.
【点睛】
本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.
3、A
【分析】
根据频率之和为1计算出白球的频率,然后再根据“数据总数×频率=频数”,算白球的个数即可.
【详解】
解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,
∴摸到白球的频率为1-0.15-0.45=0.40,
∴口袋中白色球的个数可能是60×0.40=24个.
故选A.
【点睛】
本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.根据频率之和为1计算出摸到白球的频率是解答本题的关键.21教育名师原创作品
4、B
【分析】
根据事件发生可能性的大小进行判断即可.
【详解】
解:A、随机事件发生的概率为0到1之间,选项错误,不符合题意;
B、不可能事件发生的概率为0,选项正确,符合题意;
C、概率很小的事件可能发生,选项错误,不符合题意;
D、投掷一枚质地均匀的硬币 100 次, 正面朝上的次数可能是 50 次,选项错误,不符合题意;
故选:B
【点睛】
本题考查随机事件与不可能事件的概率,掌握随机事件发生的概率在0到1之间,不可能事件发生的概率为0是关键.
5、B
【分析】
先画出树状图,再根据概率公式即可完成.
【详解】
所画树状图如下:
( http: / / www.21cnjy.com / )
事件所有可能的结果数有6种,两次摸出的球都是白球的可能结果数有2种,则两次摸出的球都是白球的概率是:
故选:B
【点睛】
本题考查了利用树状图或列表法求概率,会用树状图或列表法找出所有事件的可能结果及某事件发生的可能结果是关键.
6、A
【分析】
由于摸到红球的频率稳定在20%,由此可以确定摸到红球的概率为20%,而a个小球中红球只有3个,由此即可求出n.21教育名师原创作品
【详解】
∵摸到红球的频率稳定在20%,
∴摸到红球的概率为20%,
而a个小球中红球只有3个,
∴摸到红球的频率为.解得.
故选A.
【点睛】
此题考查利用频率估计概率,解题关键在于利用摸到红球的频率稳定在20%.
7、C
【详解】
解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;
B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;
C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;
D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;
故选:C
【点睛】
本题考查的是对随机事件和必然 ( http: / / www.21cnjy.com )事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.
8、B
【分析】
设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率.
【详解】
解:设四张小图片分别用A,a,B,b表示,画树状图得:
( http: / / www.21cnjy.com / )
由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,
∴摸取两张小图片恰好合成一张完整图片的概率为:,
故选:B.
【点睛】
题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键.
9、B
【分析】
由题意,只要求出阴影部分与矩形的面积比即可.
【详解】
解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,
由几何概型公式得到最终停在阴影方砖上的概率为:;
故选:B.
【点睛】
本题将概率的求解设置于黑白方砖中,考查 ( http: / / www.21cnjy.com )学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.21*cnjy*com
10、A
【分析】
根据事件发生的可能性即可判断.
【详解】
∵甲已经得了8分,乙只得了2分,甲、乙两人水平相当
∴甲获胜的可能性比乙大
故选A.
【点睛】
此题主要考查事件发生的可能性,解题的关键是根据题意进行判断.
二、填空题
1、
【分析】
根据概率公式计算即可
【详解】
共有个球,其中黑色球个
从中任意摸出一球,摸出黑色球的概率是.
解得
经检验,是原方程的解
故答案为:
【点睛】
本题考查了简单概率公式的计算,熟悉概率公式是解题的关键.概率=所求情况数与总情况数之比.
2、
【分析】
先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.
【详解】
解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,
设口袋中大约有x个白球,则=,
解得x=20,
经检验x=20是原方程的解,
估计口袋中白球的个数约为20个.
故答案为:20.
【点睛】
本题考查了用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.
3、##
【分析】
用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.
【详解】
解:根据题意,可能出现的情况有:
红球;红球;红球;黑球;黑球;
则恰好是红球的概率是,
故答案为:.
【点睛】
本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键.
4、0.95 1.9
【分析】
(1)根据表格,可以观察出几组数据频率均在0.95附近,故可知发芽的概率为:0.95;
(2)已知水稻发芽的概率为0.95,所以发芽数即为:总数×发芽率.
【详解】
解:由图可知,(1)测试的数据发芽频率均在0.95附近,故概率为:0.95;
(2)由(1)可知,水稻发芽的概率为0.95,故发芽数约为:2×0.95=1.9(万).
故答案为:(1)0.95;(2)1.9.
【点睛】
本题主要是从表格中提取所需数据,再利用概率进行计算,掌握概率的基础应用是解题的关键.
5、c>a>b
【分析】
根据概率公式分别求出各事件的概率,故可求解.
【详解】
依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,www-2-1-cnjy-com
∵>>
∴a,b,c的大小关系是c>a>b
故答案为:c>a>b.
【点睛】
本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
三、解答题
1、(1);(2)出现5的可能性最大.
【分析】
(1)利用列举法求解即可;
(2)先列表找到所有的等可能性的结果数,然后找到每个整数出现的结果数,由此求解即可.
【详解】
解:(1)从四个小球中随 ( http: / / www.21cnjy.com )机摸出一个球摸出的小球的编号可以为1、2、3、4一共四种等可能性的结果数,其中摸到标号为奇数的有:摸到标号为1的和摸到标号为2的一共两种,
∴从盒子中随机摸出一个小球,标号是奇数的概率是;
(2)列表如下:
第一次
1 2 3 4
第二次 1 2 3 4 5
2 3 4 5 6
3 4 5 6 7
4 5 6 7 8
由表格可知一共有16种等可能性的 ( http: / / www.21cnjy.com )结果数,其中两次标号之和为2的有1种,两次标号之和为3的有2种,两次标号之和为4的有3种,两次标号之和为5的有4种,两次标号之和为6的有3种,两次标号之和为7的有2种,两次标号之和为8的有1种,2-1-c-n-j-y
∴出现5的可能性最大.
【点睛】
本题主要考查了列举法求解概率,树状图法或列举法求解概率,解题的关键在于能够熟练掌握相关知识进行求解.21*cnjy*com
2、(1)见解析;(2)不公平,理由见解析
【分析】
(1)根据列表法求得所有可能结果;
(2)根据列表分别求得小王和小刘获胜的概率进而可得结论
【详解】
(1)列表如下
1 2 3
1 和为2,积为1 和为3,积为2 和为4,积为3
2 和为3,积为2 和为4,积为4 和为5,积为6
(2)不公平,理由如下,根据列表可知,共有6种等可能情形,其中和为2的倍数有3种情形,小王获胜的概率为;【版权所有:21教育】
积为2的倍数有4种情形,小刘获胜的概率为
两者概率不一致,故不公平
【点睛】
本题考查了概率的应用,列表法求概率是解题的关键.
3、(1) ;(2)
【分析】
(1)由题意先用列表法得出所有等可能的结果数,进而用甲、乙都选择(窗花剪纸)课程的情况数除以所有等可能的结果数即可;
(2)由题意直接用甲、乙选择同一门课程的情况数除以所有等可能的结果数即可.
【详解】
解:(1)由题意列表,
A B C D
A A,A A,B A,C A,D
B B,A B,B B,C B,D
C C,A C,B C,C C,D
D D,A D,B D,C D,D
由图表可知共有16种等可能的情况数,其中甲、乙都选择(窗花剪纸)课程的情况数为1种,
所以甲、乙都选择(窗花剪纸)课程的概率为.
(2)由(1)图表可知共有16种等可能的情况数,其中甲、乙选择同一门课程的情况数为4种,
所以甲、乙选择同一门课程的概率为.
【点睛】
本题考查列表法和画树状图法求概率,正确列表和画出树状图是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.21cnjy.com
4、画树状图见解析,P两次取得数字的绝对值相等
【分析】
先列出树状图得到所有的等可能性的结果数,然后找到两次取得数字的绝对值相等的结果数,最后根据概率公式求解即可.21·世纪*教育网
【详解】
解:列树状图如下所示:
( http: / / www.21cnjy.com / )
由树状图可知一共有9种等可能性的结果数,
∵,,,
∴当两次摸到相同的数字,或者摸到一个4,一个-4,那么两次摸到的数的绝对值就相等,
∴由树状图可知两次取得数字的绝对值相等的结果数有5种,
∴P两次取得数字的绝对值相等.
【点睛】
本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握列表法或树状图法求解概率.
5、(1);(2)①;②.
【分析】
(1)直接由概率公式求解即可;
(2)①黑色方块所构拼图中是中心对称图形有两种情形,由概率公式求解即可;
②画树状图,再由概率公式求解即可.
【详解】
解:(1)若乙固定在E处,黑色方块甲,可在方格A、B、C中移动,且当在A、B处时,黑色方块构成的拼图是轴对称图形【出处:21教育名师】
所以移动甲后黑色方块构成的拼图是轴对称图形的概率是;
(2)①甲、乙在本层移动,一共有 种情况,其中黑色方块所构拼图中是中心对称图形有两种情形:a、甲在B处,乙在F处;b、甲在C处,乙在E处,
所以黑色方块所构拼图是中心对称图形的概率是;
②画树状图如图:
( http: / / www.21cnjy.com / )
由树状图可知,共有9个等可能的结果,黑色方块所构拼图是轴对称图形的结果有5个,
∴黑色方块所构拼图是轴对称图形的概率=.
【点睛】
本题考查了列表法与树状图法、轴对称图形、中心对称图形等知识;熟练掌握轴对称图形、中心对称图形,正确画出树状图是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)