沪教版(上海)八下 第二十三章概率初步综合测试试卷(含解析)

文档属性

名称 沪教版(上海)八下 第二十三章概率初步综合测试试卷(含解析)
格式 doc
文件大小 1.6MB
资源类型 试卷
版本资源 沪教版
科目 数学
更新时间 2022-11-29 14:21:01

图片预览

文档简介

中小学教育资源及组卷应用平台
八年级数学第二学期第二十三章概率初步综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目 ( http: / / www.21cnjy.com )指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。www-2-1-cnjy-com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、同时抛两枚质地均匀的正方体骰子,骰子的六个面上分别刻有的点数,则下列事件中是必然事件的是( )2-1-c-n-j-y
A.点数之和为奇数 B.点数之和为偶数 C.点数之和大于 D.点数之和小于
2、某班学生做“用频率估计概率”的实验时,给出的某一结果出现如图所示的统计图,则符合这一结果的实验可能是(  )【出处:21教育名师】
( http: / / www.21cnjy.com / )
A.从标有1,2,3,4,5,6 的六张卡片中任抽一张,出现偶数
B.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球
C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
D.掷一个质地均匀的正六面体骰子,向上的面点数是4
3、中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是( )21教育名师原创作品
( http: / / www.21cnjy.com / )
A. B. C. D.
4、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是( )
( http: / / www.21cnjy.com / )
A. B. C. D.
5、有两个事件,事件(1 ( http: / / www.21cnjy.com )):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是( )
A.(1)(2)都是随机事件 B.(1)(2)都是必然事件
C.(1)是必然事件,(2)是随机事件 D.(1)是随机事件,(2)是必然事件
6、下列说法正确的是( )
A.“明天有雪”是随机事件
B.“太阳从西方升起”是必然事件
C.“翻开九年数学书,恰好是第35页”是不可能事件
D.连续抛掷100次质地均匀的硬币,55次正面朝上,因此正面朝上的概率是55%
7、在一个不透明的布袋中,红 ( http: / / www.21cnjy.com )色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是( )21*cnjy*com
A.24 B.18 C.16 D.6
8、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是(  )
移植总数n 400 1500 3500 7000 9000 14000
成活数m 369 1335 3203 6335 8073 12628
成活的频率 0.923 0.890 0.915 0.905 0.897 0.902
A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率
B.可以用试验次数累计最多时的频率作为概率的估计值
C.由此估计这种幼苗在此条件下成活的概率约为0.9
D.如果在此条件下再移植这种幼苗20000株,则必定成活18000株
9、以下事件为随机事件的是( )
A.通常加热到100℃时,水沸腾
B.篮球队员在罚球线上投篮一次,未投中
C.任意画一个三角形,其内角和是360°
D.半径为2的圆的周长是
10、下列事件为必然事件的是(  )
A.抛掷一枚硬币,正面向上
B.在一个装有5只红球的袋子中摸出一个白球
C.方程x2﹣2x=0有两个不相等的实数根
D.如果|a|=|b|,那么a=b
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、袋中有五张卡片,其中红色卡片三 ( http: / / www.21cnjy.com )张,标号分别为1,2,3,绿色卡片两张,标号分别为1,2,若从五张卡片中任取两张,则两张卡片的颜色不同且标号之和小于4的概率为______.
2、下图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是________.
( http: / / www.21cnjy.com / )
3、如图,在3×3正方形网格中,A、B在格点上,在网格的其它格点上任取一点C,能使△ABC为等腰三角形的概率是_____.
( http: / / www.21cnjy.com / )
4、某班共有36名同学,其中 ( http: / / www.21cnjy.com )男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是___________.
5、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、邮票素有“国家名片”之称, ( http: / / www.21cnjy.com )方寸之间,包罗万象.为宣传2022年北京冬奥会,中国邮政发行了一套冬奥会邮票,其中有一组展现雪上运动的邮票,如图所示:【来源:21cnj*y.co*m】
( http: / / www.21cnjy.com / )
某班级举行冬奥会有奖问答活动,答对的同学可以随机抽取邮票作为奖品.
(1)在抢答环节中,若答对一题,可从4枚邮票中任意抽取1枚作为奖品,则恰好抽到“冬季两项”的概率是___________;
(2)在抢答环节中,若答 ( http: / / www.21cnjy.com )对两题,可从4枚邮票中任意抽取2枚作为奖品,请用列表或画树状图的方法,求恰好抽到“高山滑雪”和“自由式滑雪”的概率.
2、国庆期间,某电影院上映了《长津湖》 ( http: / / www.21cnjy.com )《我和我父辈》《五个扑水的少年》三部电影.甲、乙两同学从中选取一部电影观看.求甲、乙两同学选取同一部电影的概率.
3、一个口袋中有10个黑 ( http: / / www.21cnjy.com )球和若干个白球,从口袋中随机摸出一球,记下其颜色后再把它放回口袋中摇匀,重复上述过程,共试验100次,其中75次摸到白球,估计袋中共有多少球?
4、小亮和小丽进行摸球试验 ( http: / / www.21cnjy.com ).他们在一个不透明的空布袋内,放入两个红球,一个白球共3个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.21·cn·jy·com
(1)小亮随机摸球1次,求摸出红球的概率;
(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是红球的概率.
5、有四张大小、质地都相同的不 ( http: / / www.21cnjy.com )透明卡片,上面分别标有数字1,2,3,4(背面完全相同),现将标有数字的一面朝下,洗匀后从中任意抽取一张,记下数字后放回洗匀,然后再从中任意抽取一张,请用画树状图或列表的方法,求两次抽取的卡片上的数字和等于5的概率.
-参考答案-
一、单选题
1、D
【分析】
根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可
【详解】
解:A、两次骰子的点数之和可能是奇数也可能是偶数,不是必然事件,不符合题意;
B、两次骰子的点数之和可能是奇数也可能是偶数,不是必然事件,不符合题意;
C、∵骰子的最大点数是12,∴两次点数之和不可能大于13,不是必然事件,不符合题意;
D、∵骰子的最大点数是12,∴两次点数之和小于13,是必然事件,符合题意;
故选D.
【点睛】
本题主要考查了必然事件的定义,熟知定义是解题的关键.
2、B
【分析】
由图象可知,该实验的概率趋近于0.3-0.4之间,依次判断选项所对应实验的概率即可.
【详解】
A.从标有1,2,3,4,5,6 的六张卡片中任抽一张,出现偶数,概率为,选项与题意不符,故错误.【版权所有:21教育】
B.从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球,概率为,选项与题意符合,故正确.
C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃,选项与题意不符,故错误.
D.掷一个质地均匀的正六面体骰子,向上的面点数是4,概率为,选项与题意不符,故错误.
故选:B
【点睛】
本题考察了用频率估计概率,当实验次数足 ( http: / / www.21cnjy.com )够多时,出现结果的频率可以看作是该结果出现的概率,本题通过图象可以估计出概率的范围,再依次判断各选项即可.
3、C
【分析】
用“---”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案.
【详解】
解:观察“馬”移动一次能够到达的所有位置,即用“●”标记的有8处,
位于“---”(图中虚线)的上方的有2处,
所以“馬”随机移动一次,到达的位置在“---”上方的概率是,
故选:C.
【点睛】
本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
4、B
【分析】
由题意,只要求出阴影部分与矩形的面积比即可.
【详解】
解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,
由几何概型公式得到最终停在阴影方砖上的概率为:;
故选:B.
【点睛】
本题将概率的求解设置于黑白方砖中, ( http: / / www.21cnjy.com )考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.
5、D
【分析】
必然事件: 在一定条件下,一定会发生 ( http: / / www.21cnjy.com )的事件,叫做必然事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件;根据概念判断即可.
【详解】
解:事件(1):购买1张福利彩票,中奖,是随机事件,
事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6,是必然事件,
故选D
【点睛】
本题考查的是随机事件与必然事件的含义,掌握“利用概念判断随机事件与必然事件”是解本题的关键.
6、A
【分析】
直接利用随机事件的定义以及概率的意义分别分析得出答案.
【详解】
解:A、“明天有雪”是随机事件,该选项正确,符合题意;
B、“太阳从西方升起”是不可能事件,原说法错误,该选项不符合题意;
C、“翻开九年数学书,恰好是第35页” 是随机事件,原说法错误,该选项不符合题意;
D、连续抛掷100次质地均匀的硬币,55次正面朝上,因此正面朝上的概率是55%,说法错误,该选项不符合题意;
故选:A.
【点睛】
本题主要考查了概率的意义以及随机事件,正确把握定义是解题关键.
7、A
【分析】
根据频率之和为1计算出白球的频率,然后再根据“数据总数×频率=频数”,算白球的个数即可.
【详解】
解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,
∴摸到白球的频率为1-0.15-0.45=0.40,
∴口袋中白色球的个数可能是60×0.40=24个.
故选A.
【点睛】
本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.根据频率之和为1计算出摸到白球的频率是解答本题的关键.
8、D
【分析】
根据频率估计概率逐项判断即可得.
【详解】
解:A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;
B.可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;
C.由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;
D.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;
故选:D.
【点睛】
本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键.
9、B
【分析】
根据事件发生的可能性大小判断相应事件的类型即可.
【详解】
解:A.通常加热到100℃时,水沸腾是必然事件;
B.篮球队员在罚球线上投篮一次,未投中是随机事件;
C.任意画一个三角形,其内角和是360°是不可能事件;
D.半径为2的圆的周长是是必然事件;
故选:B.
【点睛】
考查了随机事件,解决本题需要正确理解必然 ( http: / / www.21cnjy.com )事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.21世纪教育网版权所有
10、C
【分析】
根据必然事件的定义:在一定条件下,一定会发生的事件,叫做必然事件,进行逐一判断即可
【详解】
解:A、抛掷一枚硬币,可能正面向上,也有可能反面向上,不是必然事件,不符合题意;
B、在一个装有5只红球的袋子中摸出一个白球是不可能发生的,不是必然事件,不符合题意;
C、∵,∴方程x2﹣2x=0有两个不相等的实数根,是必然事件,符合题意;
D、如果|a|=|b|,那么a=b或a=-b,不是必然事件,不符合题意;
故选C.
【点睛】
本题主要考查了必然事件的定义,熟知定义是解题的关键.
二、填空题
1、
【分析】
从五张卡片中任取两张的所有可能情况,用列举法求得有10种情况,其中两张卡片的颜色不同且标号之和小于4的有3种情况,从而求得所求事件的概率.21cnjy.com
【详解】
从五张卡片中任取两张的所有可能情况有如下10种:
红1红2,红1红3,红1绿1,红1绿2,红2红3,
红2绿1,红2绿2,红3绿1,红3绿2,绿1绿2.
其中两张卡片的颜色不同且标号之和小于4的有3种情况:
红1绿1,红1绿2,红2绿1.
故所求的概率为P=;
故答案为:.
【点睛】
本题考查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,应用列举法来解题是这一部分的最主要思想,属于基础题.2·1·c·n·j·y
2、
【分析】
直接根据几何概率求解即可.
【详解】
解:图中共有9个小正方形,其中阴影部分共有5个小正方形,
∴从图中随机取一点,这点在阴影部分的概率是,
故答案为:.
【点睛】
本题考查几何概率求解,理解并掌握几何概率是解题关键.
3、
【分析】
分三种情况:①点A为顶点;②点B为顶点;③点C为顶点;得到能使△ABC为等腰三角形的点C的个数,再根据概率公式计算即可求解.
【详解】
如图,∵AB=,
∴①若AB=AC,符合要求的有3个点;
②若AB=BC,符合要求的有2个点;
③若AC=BC,不存在这样格点.
∴这样的C点有5个.
∴能使△ABC为等腰三角形的概率是.
故答案为:.
( http: / / www.21cnjy.com / )
【点睛】
此题考查等腰三角形的判定和概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
4、c>a>b
【分析】
根据概率公式分别求出各事件的概率,故可求解.
【详解】
依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,
∵>>
∴a,b,c的大小关系是c>a>b
故答案为:c>a>b.
【点睛】
本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.
5、
【分析】
抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于5的概率.21教育网
【详解】
解:∵抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,
∴从中任意抽取一张,抽出的牌点数小于5的概率是: .
故答案为:.
【点睛】
此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.
三、解答题
1、(1);(2)见解析,
【分析】
(1)利用简单概率公式计算即可;
(2)利用画树状图或列表法,计算.
【详解】
(1)∵事件一共有4种等可能性,抽到“冬季两项”这个事件只有1种可能性,
∴恰好抽到“冬季两项”的概率是,
故答案为:;
(2)解:直接使用图中的序号代表四枚邮票.
方法一:由题意画出树状图
( http: / / www.21cnjy.com / )
由树状图可知,所有可能出现的结 ( http: / / www.21cnjy.com )果共有12种,即①②,①③,①④,②①,②③,②④,③①,③②,③④,④①,④②,④③,并且它们出现的可能性相等. 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即②④或④②.www.21-cn-jy.com
∴.
方法二:由题意列表
第二枚第一枚 ① ② ③ ④
① ①② ①③ ①④
② ②① ②③ ②④
③ ③① ③② ③④
④ ④① ④② ④③
由表可知,所有可能出现的结果共有12种,即① ( http: / / www.21cnjy.com )②,①③,①④,②①,②③,②④,③①,③②,③④,④①,④②,④③,并且它们出现的可能性相等. 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即②④或④②.21*cnjy*com
∴ .
【点睛】
本题考查了简单概率计算,画树状图或列表法计算概率,熟练画树状图或列表是解题的关键.
2、
【分析】
通过画树状图可知:共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,再由概率公式求解即可.21·世纪*教育网
【详解】
解:把《长津湖》《我和我父辈》《五个扑水的少年》三部电影分别记为A、B、C,
画树状图如下:
( http: / / www.21cnjy.com / )
共有9种等可能的结果,甲、乙两同学选取同一部电影的结果有3种,
∴甲、乙两同学选取同一部电影的概率为.
【点睛】
本题考查了树状图法求概率,正确画出树状图是解题的关键,用到的知识点为:概率 =所求情况数与总情况数之比.
3、40
【分析】
根据频率稳定性定理,用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,进而得出得到白球的概率,即可得出等式求出即可.
【详解】
解:设小球共有x个,根据题意可得:
解得:x=40.
经检验x=40,为方程的解且符合题意,
答:袋中共有40个球
【点睛】
此题主要考查了分式方程的应用和利用频率估计概率,得出求白球的频率公式是解题关键.
4、(1);(2)
【分析】
(1)根据概率公式计算即可;
(2)通过树状图法求概率即可;
【详解】
(1)∵有2个红球,1个白球,
∴摸出红球的概率;
(2)由题可得,
( http: / / www.21cnjy.com / )
∴两次摸出的球中一个是白球、一个是红球的概率.
【点睛】
本题主要考查了概率公式应用和列表法求概率,准确计算是解题的关键.
5、
【分析】
根据题意列出图表得出所有等可能的情况数,找出两次数字和为5的情况数,然后根据概率公式即可得出答案.
【详解】
解:根据题意画图如下:
( http: / / www.21cnjy.com / )
共有16种的可能的情况数,其中两次数字和为5的有4种,
则两次数字和为5的概率实数.
【点睛】
此题考查的是用列表法或树 ( http: / / www.21cnjy.com )状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.【来源:21·世纪·教育·网】
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)