中小学教育资源及组卷应用平台
冀教版七年级数学下册第九章 三角形重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相 ( http: / / www.21cnjy.com )应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。2·1·c·n·j·y
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、以下列长度的各组线段为边,能组成三角形的是( )
A.,, B.,,
C.,, D.,,
2、下列各图中,有△ABC的高的是( )
A. B.
C. D.
3、如图,在中,,,将沿直线翻折,点落在点的位置,则的度数是( )
( http: / / www.21cnjy.com / )
A.30° B.45° C.60° D.75°
4、在△ABC中,∠A=50°,∠B、∠C的平分线交于O点,则∠BOC等于( )
A.65° B.80° C.115° D.50°
5、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为( )
( http: / / www.21cnjy.com / )
A.8 B.7 C.6 D.5
6、若三角形的两边a、b的长分别为3和4,则其第三边c的取值范围是( )
A.3<c<4 B.2≤c≤6 C.1<c<7 D.1≤c≤7
7、人字梯中间一般会设计一“拉杆”,这样做的道理是( )
( http: / / www.21cnjy.com / )
A.两点之间线段最短 B.三角形的稳定性
C.两点确定一条直线 D.垂线段最短
8、如图,已知,,,则的度数为( )
( http: / / www.21cnjy.com / )
A.155° B.125° C.135° D.145°
9、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
10、两个直角三角板如图 ( http: / / www.21cnjy.com )摆放,其中∠BAC=∠EDF=90°,∠F=45°,∠B=60°,AC与DE交于点M.若BC∥EF,则∠DMC的大小为( )21·世纪*教育网
( http: / / www.21cnjy.com / )
A.100° B.105° C.115° D.120°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知BE、CD分别是 △ABC的内角平分线,BE和CD相交于点O,且∠A=40°,则∠DOE=____________
( http: / / www.21cnjy.com / )
2、已知ABC中,AB=5,AC=7,BC=a,则a的取值范围是 ___.
3、如图:中,,,于D,CE平分,于F,则______°.
( http: / / www.21cnjy.com / )
4、ABC的三边长为a、b、c,且a、b满足a2﹣4a+4+=0,则c的取值范围是______.
5、△ABC中,已知∠C=90°,∠B=55°,则∠A=_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图是A、B、C三岛的平面图,C岛 ( http: / / www.21cnjy.com )在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向.从C岛看A、B岛的视角∠ACB为多少?21*cnjy*com
( http: / / www.21cnjy.com / )
2、将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起,其中∠A=60°,∠D=45°.
(1)如图1,若∠BOD=65°,则∠AOC=______ ;∠AOC=120°,则∠BOD=____ ;
(2)如图2,若∠AOC=150°,则∠BOD=_____ ;
(3)猜想∠BOD与∠AOC的数量关系,并结合图1说明理由;
(4)如图3三角尺AOB不动 ( http: / / www.21cnjy.com ),将三角尺COD的OD边与OA边重合,然后绕点O按顺时针以1秒钟15°的速度旋转,当时间t(其中0<t≤6,单位:秒)为何值时,这两块三角尺各有一条边互相垂直,直接写出t的值.
( http: / / www.21cnjy.com / )
3、如图1,我们把一副两个三角板 ( http: / / www.21cnjy.com )如图摆放在一起,其中OA,OD在一条直线上,∠B=45°,∠C=30°,固定三角板ODC,将三角板OAB绕点O按顺时针方向旋转,记旋转角∠AOA'=α(0<α<180°).
( http: / / www.21cnjy.com / )
(1)在旋转过程中,当α为 度时,A'B'OC,当α为 度时,A'B'⊥CD;
(2)如图2,将图1中的△OAB以点O为旋转中心旋转到△OA'B'的位置,求当α为多少度时,OB'平分∠COD;
拓展应用:
(3)当90°<α<120°时,连接A'D,利用图3探究∠B'A'D+∠B'OC+∠A'DC值的大小变化情况,并说明理由.
4、如图,在直角三角形ABC中,∠BAC=9 ( http: / / www.21cnjy.com )0°,AD是BC边上的高,CE是AB边上的中线,AB=12cm,BC=20cm,AC=16cm,求:
(1)AD的长;
(2)△BCE的面积.
( http: / / www.21cnjy.com / )
5、如图,在△ABC中,AD平分∠B ( http: / / www.21cnjy.com )AC,P为线段AD上一点,PE⊥AD交BC的延长线于点E,若∠B=35°,∠ACB=75°,求∠E的度数.21cnjy.com
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据三角形三条边的关系计算即可.
【详解】
解:A. ∵2+4=6,∴,,不能组成三角形;
B. ∵2+5<9,∴,,不能组成三角形;
C. ∵7+8>10,∴,,能组成三角形;
D. ∵6+6<13,∴,,不能组成三角形;
故选C.
【点睛】
本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.
2、B
【解析】
【分析】
利用三角形的高的定义可得答案.
【详解】
解:∵选项B是过顶点C作的AB边上的高,
∴有△ABC的高的是选项B,
故选:B.
【点睛】
此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.
3、C
【解析】
【分析】
设交于点,是射线上的一点,设,根据三角形的外角的性质可得,进而根据平角的定义即可求得,即可求得.
【详解】
如图,设交于点,是射线上的一点,
( http: / / www.21cnjy.com / )
折叠,
设
即
故选C
【点睛】
本题考查了折叠的性质,三角形的外角的性质,掌握三角形外角的性质是解题的关键.
4、C
【解析】
【分析】
根据题意画出图形,求出∠ABC+∠ACB =130°,根据角平分线的定义得到∠CBD=∠ABC,∠ECB=∠ACB,再根据三角形内角和定理和角的代换即可求解.
【详解】
解:如图,∵∠A=50°,
∴∠ABC+∠ACB=180°-∠A=130°,
∵BD、CE分别是∠ABC、∠ACB的平分线,
∴∠CBD=∠ABC,∠ECB=∠ACB,
∴∠BOC=180°-∠CBD-∠ECB=180°-(∠CBD+∠ECB)=180°- (∠ABC+∠ACB)=180°- ×130°=115°.
( http: / / www.21cnjy.com / )
故选:C
【点睛】
本题考查了三角形内角和定理,角平分线的定义,熟知三角形内角和定理,并能根据角平分线的定义进行角的代换是解题关键.
5、C
【解析】
【分析】
根据三角形的中线将三角形的面积分成相等的两部分即可求解.
【详解】
解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,
∴△ABC的面积=3×2=6.
故选:C.
【点睛】
考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.
6、C
【解析】
【分析】
根据三角形的两边之和大于第三边,两边之差小于第三边,即可求解.
【详解】
解:∵三角形的两边a、b的长分别为3和4,
∴其第三边c的取值范围是 ,
即 .
故选:C
【点睛】
本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.【出处:21教育名师】
7、B
【解析】
【分析】
首先要考虑梯子中间设置“拉杆”的原因,是为了让梯子更加稳固,而更加稳固的原因是“拉杆”与梯子两边形成了三角形.21世纪教育网版权所有
【详解】
人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加梯子的稳定性.
故选:B.
【点睛】
本题考查三角形的稳定性,善于从生活中发现数学原理是解决本题的关键.
8、B
【解析】
【分析】
根据三角形外角的性质得出,再求即可.
【详解】
解:∵,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.
9、A
【解析】
【分析】
根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
【详解】
解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,
∴
即
故选A
【点睛】
本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
10、B
【解析】
【分析】
首先根据直角三角形两锐角互余可算出∠C ( http: / / www.21cnjy.com )和∠E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.www.21-cn-jy.com
【详解】
解:在△ABC和△DEF中,
∠BAC=∠EDF=90°,∠F=45°,∠B=60°,
∴∠C=90°-∠B=30°,
∠E=90°-∠F=45°,
∵BC∥EF,
∴∠MDC=∠E=45°,
在△CMD中,∠CMD=180°-∠C-∠MDC=105°.
故选:B.
【点睛】
本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.
二、填空题
1、110°##110度
【解析】
【分析】
根据∠A=40°求出∠ABC+∠ACB=14 ( http: / / www.21cnjy.com )0°,根据角平分线的定义求出∠EBC+∠BCD=70°,进而求出∠BOC=110°,最后根据对顶角相等即可求解.2-1-c-n-j-y
【详解】
解:如图,∵∠A=40°,
∴∠ABC+∠ACB=180°-∠A=140°,
∵BE、CD分别是 △ABC的内角平分线,
∴∠EBC=∠ABC,∠BCD==∠ACB,
∴∠EBC+∠BCD=∠ABC+∠ACB=(∠ABC+∠ACB)=70°,
∴∠BOC=180°-(∠EBC+∠BCD)=110°,
∴∠DOE=∠BOC=110°.
( http: / / www.21cnjy.com / )
故答案为:110°
【点睛】
本题考查了三角形内角和定理,角平分线的定义,对顶角相等等知识,熟知相关知识,运用整体思想求出∠EBC+∠BCD=70°是解题关键.21教育网
2、2<a<12
【解析】
【分析】
直接利用三角形三边关系得出a的取值范围.
【详解】
解:∵△ABC中,AB=5,AC=7,BC=a,
∴7﹣5<a<7+5,
即2<a<12.
故答案为:2<a<12.
【点睛】
本题考查了三角形的三边关系,做题的关键是掌握三角形中任意两边之和大于第三边,两边之差小于第三边.
3、80
4、2<c<6
【解析】
【分析】
根据非负数的性质得到,,再根据三角形三边的关系得.
【详解】
解:,
∴,
,,
所以,
故答案为:
【点睛】
本题主要考查了三角形的三边关系,以及非负数的性质,解题的关键是求出,的值,熟练掌握三角形的三边关系.【来源:21cnj*y.co*m】
5、35°
【解析】
【分析】
根据三角形的内角和定理列式计算即可得解.
【详解】
∵∠C=90°,∠B=55°,
∴∠A=180°-∠B-∠C=180°-55°-90°=35°.
故答案为:35°.
【点睛】
本题考查了三角形的内角和定理,是基础题,熟记定理并准确计算是解题的关键.
三、解答题
1、90°
【解析】
【分析】
根据题意在图中标注方向角,得到有关角的度数,根据三角形内角和定理和平行线的性质解答即可.
【详解】
解:由题意得,∠DAB=80°,
∵DA∥EB,
∴∠EBA=180°﹣∠DAB=100°,又∠EBC=40°,
∴∠ABC=∠EBA﹣∠EBC=60°,
∵∠DAB=80°,∠DAC=50°,
∴∠CAB=30°,
∴∠ACB=180°﹣∠CAB﹣∠ABC=90°.
【点睛】
本题主要考查了平行线的性质和三角形内角和定理,准确计算是解题的关键.
2、(1)115°,60°;(2) ( http: / / www.21cnjy.com )30°;(3)∠AOC+∠DOB=180°,理由见解析;(4)时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.www-2-1-cnjy-com
【解析】
【分析】
(1)由于是两直角三角形板重叠,根据∠AOC=∠AOB+∠COD-∠BOD可分别计算出∠AOC、∠BOD的度数;
(2)根据∠BOD=360°-∠AOC-∠AOB-∠COD计算可得;
(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知两角互补;
(4)分别利用OD⊥AB、CD⊥OB、CD⊥AB、OC⊥AB分别求出即可.
【详解】
解:(1)若∠BOD=65°,
∵∠AOB=∠COD=90°,
∴∠AOC=∠AOB+∠COD-∠BOD=90°+90°-65°=115°,
若∠AOC=120°,
则∠BOD=∠AOB+∠COD-∠AOC=90°+90°-120°=60°;
故答案为:115°;60°;
(2)如图2,若∠AOC=150°,
则∠BOD=360°-∠AOC-∠AOB-∠COD
=360°-150°-90°-90°
=30°;
故答案为:30°;
(3)∠AOC与∠BOD互补.理由如下:
∵∠AOB=∠COD=90°,
∴∠AOD+∠BOD+∠BOD+∠BOC=180°.
∵∠AOD+∠BOD+∠BOC=∠AOC,
∴∠AOC+∠BOD=180°,
即∠AOC与∠BOD互补;
(4)分四种情况讨论:
当OD⊥AB时,∠AOD=90°-∠A=30°,t=30°15°=2(秒);
当CD⊥OB时,∠AOD=∠D=45°,t=45°15°=3(秒);
当CD⊥AB时,∠AOD=180°-60°-45°=75°,t=75°15°=5(秒);
当OD⊥OA时,∠AOD=90°,t=90°15°=6(秒);
综上,时间t为2秒或3秒或5秒或6秒时,这两块三角尺各有一条边互相垂直.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了互补、互余的定义,垂直的定义 ( http: / / www.21cnjy.com )以及三角形内角和定理等知识的综合运用,解决本题的关键是掌握:如果两个角的和等于180°(平角),就说这两个角互为补角,其中一个角是另一个角的补角.
3、(1)30,90;(2)105°;(3)不变,理由见解析
【解析】
【分析】
(1)根据题意作出图形,根据所给的条件求解即可;
(2)由旋转的性质可得∠AOB=∠A'OB'=45°,由角的数量关系可求解;
(3)由α可分别表示∠B'A'D,∠B'OC,∠A'DC再求和即可.
【详解】
解:(1)当A'B'∥OC时,
( http: / / www.21cnjy.com / )
∴∠A′OC+∠A′=180°,
∵∠A′=90°,
∴∠A′OC=90°,
∴∠AOA′=180°﹣90°﹣60°=30°,即α=30°;
当A'B'⊥CD时,
( http: / / www.21cnjy.com / )
则OA′∥CD,
∴∠AOA′=∠ODC=90°,即α=90°;
故答案为:30;90.
(2)∵△OAB以O为中心顺时针旋转得到△OA′B′,
∴∠AOB=∠A'OB'=45°,
∵∠COD=60°,OB′平分∠COD,
∴∠DOB'=30°,
∴∠AOA'=180°﹣∠DOB′﹣∠A'OB′=180°﹣30°﹣45°=105°,
即当α为105°时,OB'平分∠COD;
(3)不变,理由如下:
∵∠AOA′=α,
∴∠B′OD=180°﹣45°﹣α=135°﹣α,
∴∠B′OC=60°﹣(135°﹣α)=α﹣75°,
设∠A′DC=β,
∴∠A′DO=90°﹣β,
∴∠B′OD+∠A′DO=∠B'A'D+∠B′,即135°﹣α+90°﹣β=∠B'A'D+45°,
解得∠B'A'D=180°﹣α﹣β,
∴∠B'A'D+∠B'OC+∠A'DC=180°﹣α﹣β+α﹣75°+β=105°.
【点睛】
本题考查了三角板的角度计算,角平分线的定义,旋转的性质,三角形的内角和与外角的性质,平行线的性质,根据题意作出图形是解题的关键.【版权所有:21教育】
4、(1);(2)48.
【解析】
【分析】
(1)利用面积法得到AD BC=AB AC,然后把AB=12cm,BC=20cm,AC=16cm代入可求出AD的长;
(2)由于三角形的中线将三角形分成面积相等的两部分,所以S△BCE=S△ABC.
【详解】
解:(1)∵∠BAC=90°,AD是BC边上的高,
∴AD BC=AB AC,
∴AD==(cm);
(2)∵CE是AB边上的中线,
∴S△BCE=S△ABC=××12×16=48(cm2).
【点睛】
本题考查三角形中线的性质,涉及等积法,是重要考点,掌握相关知识是解题关键.
5、
【解析】
【分析】
根据三角形内角和的性质求得的度数,再根据角平分线求得的度数,利用三角形外角性质求得的度数,从而求得的度数.21*cnjy*com
【详解】
解:∵,,
∴,
∵AD平分∠BAC,
∴,
∴,
∵PE⊥AD,
∴,
∴.
【点睛】
此题考查了三角形内角和的性质,三角形外角的性质以及角平分线的性质,解题的关键是灵活利用相关性质进行求解.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)