【必考点解析】冀教版七年级数学下册第九章-三角形专项训练练习题(含解析)

文档属性

名称 【必考点解析】冀教版七年级数学下册第九章-三角形专项训练练习题(含解析)
格式 doc
文件大小 1.5MB
资源类型 试卷
版本资源 冀教版
科目 数学
更新时间 2022-11-29 18:27:27

图片预览

文档简介

中小学教育资源及组卷应用平台
冀教版七年级数学下册第九章 三角形专项训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相 ( http: / / www.21cnjy.com )应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。【来源:21·世纪·教育·网】
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、以下列各组线段为边,能组成三角形的是( )
A.3cm,4cm,5cm B.3cm,3cm,6cm C.5cm,10cm,4cm D.1cm,2cm,3cm
2、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.21·世纪*教育网
证法1:如图,∵∠A=70°,∠B=63°,且∠ACD=133°(量角器测量所得)又∵133°=70°+63°(计算所得)∴∠ACD=∠A+∠B(等量代换). 证法2:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).
下列说法正确的是(  )
( http: / / www.21cnjy.com / )
A.证法1用特殊到一般法证明了该定理
B.证法1只要测量够100个三角形进行验证,就能证明该定理
C.证法2还需证明其他形状的三角形,该定理的证明才完整
D.证法2用严谨的推理证明了该定理
3、如图,在ABC中,点D、E分别是AC,AB的中点,且,则( )
( http: / / www.21cnjy.com / )
A.12 B.6 C.3 D.2
4、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=( )
( http: / / www.21cnjy.com / )
A.30° B.40° C.50° D.60°
5、如图,在中,若点使得,则是的( )
( http: / / www.21cnjy.com / )
A.高 B.中线 C.角平分线 D.中垂线
6、下列所给的各组线段,能组成三角形的是:( )
A.2,11,13 B.5,12,7 C.5,5,11 D.5,12,13
7、数学课上,同学们在作中AC边上的高时,共画出下列四种图形,其中正确的是( ).
A. ( http: / / www.21cnjy.com / ) B. ( http: / / www.21cnjy.com / )
C. ( http: / / www.21cnjy.com / ) D. ( http: / / www.21cnjy.com / )
8、若三角形的两边a、b的长分别为3和4,则其第三边c的取值范围是( )
A.3<c<4 B.2≤c≤6 C.1<c<7 D.1≤c≤7
9、如图,图形中的的值是( )
( http: / / www.21cnjy.com / )
A.50 B.60 C.70 D.80
10、如图,直线l1、l2分别与△ABC的两边AB、BC相交,且l1∥l2,若∠B=35°,∠1=105°,则∠2的度数为(  )21世纪教育网版权所有
( http: / / www.21cnjy.com / )
A.45° B.50° C.40° D.60°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知a,b,c是的三条边长,化简的结果为_______.
2、如图,在△中,已知点分别为的中点,若△的面积为,则阴影部分的面积为 _________ 【来源:21cnj*y.co*m】
( http: / / www.21cnjy.com / )
3、已知的三个内角的度数之比::::,则 ______ 度, ______ 度.
4、在△ABC中,已知∠B是∠A的2倍,∠C比∠A大20°,则∠A=_____________.
5、如图,在直线l1∥l2 ( http: / / www.21cnjy.com ),把三角板的直角顶点放在直线l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=___度.【出处:21教育名师】
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,若∠BAC=50°,∠ABC=60°.求∠DAC和∠BOA的度数.21*cnjy*com
( http: / / www.21cnjy.com / )
2、在△ABC中,∠B=∠A+30°,∠C=40°,求∠A和∠B的度数.
3、如图,已知点D为△ABC的边BC延长线上一点,DF⊥AB于点F,并交AC于点E,其中∠A=∠D=40°.求∠B和∠ACD的度数.21教育网
( http: / / www.21cnjy.com / )
4、如图,在△ABC中,CE平分∠AC ( http: / / www.21cnjy.com )B交AB于点E,AD是△ABC边BC上的高,AD与CE相交于点F,且∠ACB=80°,求∠AFE的度数.
( http: / / www.21cnjy.com / )
5、如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、A
【解析】
【分析】
三角形的任意两条之和大于第 ( http: / / www.21cnjy.com )三边,任意两边之差小于第三边,根据原理再分别计算每组线段当中较短的两条线段之和,再与最长的线段进行比较,若和大于最长的线段的长度,则三条线段能构成三角形,否则,不能构成三角形,从而可得答案.
【详解】
解: 所以以3cm,4cm,5cm为边能构成三角形,故A符合题意;
所以以3cm,3cm,6cm为边不能构成三角形,故B不符合题意;
所以以5cm,10cm,4cm为边不能构成三角形,故C不符合题意;
所以以1cm,2cm,3cm为边不能构成三角形,故D不符合题意;
故选A
【点睛】
本题考查的是三角形的三边之间的关系,掌握“利用三角形三边之间的关系判定三条线段能否组成三角形”是解本题的关键.
2、D
【解析】
【分析】
利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.
【详解】
解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,
证法2才是用严谨的推理证明了该定理,
故A不符合题意,C不符合题意,D符合题意,
证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;
故选D
【点睛】
本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.
3、C
【解析】
【分析】
由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=S△ABC=6,然后利用S△BDE=S△ABD求解.www-2-1-cnjy-com
【详解】
解:∵点D为AC的中点,
∴S△ABD=S△ABC=×12=6,
∵点E为AB的中点,
∴S△BDE=S△ABD=×6=3.
故选:C.
【点睛】
本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键. 三角形的中线把三角形分成面积相同的两部分.
4、A
【解析】
【分析】
根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.
【详解】
∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
∵∠PCM是△BCP的外角,
∴∠P=∠PCM ∠CBP=50° 20°=30°,
故选:A.
【点睛】
本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.
5、B
【解析】
【分析】
根据三角形的中线定义即可作答.
【详解】
解:∵BD=DC,
∴AD是△ABC的中线,
故选:B.
【点睛】
本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
6、D
【解析】
【分析】
根据三角形三边关系定理,判断选择即可.
【详解】
∵2+11=13,
∴A不符合题意;
∵5+7=12,
∴B不符合题意;
∵5+5=10<11,
∴C不符合题意;
∵5+12=17>13,
∴D符合题意;
故选D.
【点睛】
本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
7、A
【解析】
【分析】
满足两个条件:①经过点B;②垂直AC,由此即可判断.
【详解】
解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,
故选:A.
【点睛】
本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
8、C
【解析】
【分析】
根据三角形的两边之和大于第三边,两边之差小于第三边,即可求解.
【详解】
解:∵三角形的两边a、b的长分别为3和4,
∴其第三边c的取值范围是 ,
即 .
故选:C
【点睛】
本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.
9、B
【解析】
【分析】
根据三角形外角的性质:三角形一个外角的度数等于与其不相邻的两个内角的度数和进行求解即可.
【详解】
解:由题意得:
∴,
∴,
故选B.
【点睛】
本题主要考查了三角形外角的性质,解一元一次方程,熟知三角形外角的性质是解题的关键.
10、C
【解析】
【分析】
根据三角形内角和定理球场∠3的度数,利用平行线的性质求出答案.
【详解】
解:∵∠B=35°,∠1=105°,
∴∠3=180-∠1-∠B=,
∵l1∥l2,
∴∠2=∠3=,
故选:C.
( http: / / www.21cnjy.com / ).
【点睛】
此题考查三角形内角和定理,两直线平行内错角相等的性质,熟记三角形内角和等于180度及平行线的性质并熟练解决问题是解题的关键.【版权所有:21教育】
二、填空题
1、2b
【解析】
【分析】
由题意根据三角形三边关系得到a+b-c>0,b-a-c<0,再去绝对值,合并同类项即可求解.
【详解】
解:∵a,b,c是的三条边长,
∴a+b-c>0,a-b-c<0,
∴|a+b-c|+|a-b-c|
=a+b-c-a+b+c
=2b.
故答案为:2b.
【点睛】
本题考查的是三角形的三边关系以及去绝对值和整式加减运算,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.
2、1
【解析】
【分析】
根据三角形的中线把三角形分成两个面积相等的三角形解答.
【详解】
解:∵点E是AD的中点,
∴S△ABE=S△ABD,S△ACE=S△ADC,
∴S△ABE+S△ACE=S△ABC=×4=2cm2,
∴S△BCE=S△ABC=×4=2cm2,
∵点F是CE的中点,
∴S△BEF=S△BCE=×2=1cm2.
故答案为:1.
【点睛】
本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.
3、 60 100
【解析】
【分析】
设一份为,则三个内角的度数分别为,,,再利用内角和定理列方程,再解方程可得答案.
【详解】
解:设一份为,则三个内角的度数分别为,,.
则,
解得.
所以,,即,.
故答案为:
【点睛】
本题考查的是三角形的内角和定理的应用,利用三角形的内角和定理构建方程是解本题的关键.
4、40°##40度
【解析】
【分析】
根据已知得出∠B=2∠A,∠C=∠A+20°,代入∠A+∠B+∠C=180°得出方程∠A+2∠A+∠A+20°=180°,求出即可.21教育名师原创作品
【详解】
解:∵∠B是∠A的2倍,∠C比∠A大20°,
∴∠B=2∠A,∠C=∠A+20°,
∵∠A+∠B+∠C=180°,
∴∠A+2∠A+∠A+20°=180°,
∴∠A=40°,
故答案为:40°.
【点睛】
本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.
5、65
【解析】
【分析】
根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.
【详解】
解:∵∠3是△ABC的外角,∠1=∠ABC=35°,
( http: / / www.21cnjy.com / )
∴∠3=∠C+∠ABC=30°+35°=65°,
∵直线l1∥l2,
∴∠2=∠3=65°,
故答案为:65.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和 ( http: / / www.21cnjy.com )判定是解题的关键,即①同位角相等 两直线平行,②内错角相等 两直线平行,③同旁内角互补 两直线平行.2·1·c·n·j·y
三、解答题
1、∠DAC=20°,∠BOA=125°
【解析】
【分析】
先求出∠C=70°,因为AD是高,所 ( http: / / www.21cnjy.com )以∠ADC=90°,又因为∠C=70°,所以∠DAC度数可求;因为∠BAC=50°,∠C=70°,所以∠BAO=25°,∠ABC=60°,BF是∠ABC的角平分线,则∠ABO=30°,故∠BOA的度数可求.2-1-c-n-j-y
【详解】
解:∵∠BAC=50°,∠ABC=60°
∴∠C=180°-∠BAC-∠ABC=70°
∵AD⊥BC
∴∠ADC=90°
∵∠C=70°
∴∠DAC=180° 90° 70°=20°;
∵∠BAC=50°,∠C=70°
∴∠BAO=25°,∠ABC=60°
∵BF是∠ABC的角平分线
∴∠ABO=30°
∴∠BOA=180° ∠BAO ∠ABO=180° 25° 30°=125°.
【点睛】
本题考查了同学们利用角平分线的性质解决问题的能力,有利于培养同学们的发散思维能力.
2、,
【解析】
【分析】
利用已知结合三角形内角和定理即可求解.
【详解】
解:∵,
∴.
∵,
∴,
∴,
∴.
【点睛】
本题考查三角形内角和定理,正确得出是解题关键.
3、∠B=50°;∠ACD=90°.
【解析】
【分析】
由DF⊥AB,在Rt△BDF中可求得∠B;再由∠ACD=∠A+∠B可求得结论.
【详解】
解:∵DF⊥AB,
∴∠BFD=90°,
∴∠B+∠D=90°,
∵∠D=40°,
∴∠B=90°-∠D=90°-40°=50°;
∴∠ACD=∠A+∠B=40°+50°=90°.
【点睛】
本题主要考查了三角形内角和定理及外角的性质,掌握三角形内角和为180°是解题的关键.
4、∠AFE=50°.
【解析】
【分析】
根据CE平分∠ACB,∠ACB=80°,得出∠ECB=,根据高线性质得出∠ADC=90°,根据三角形内角和得出∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,利用对顶角性质得出∠AFE=∠DFC=50°即可.21cnjy.com
【详解】
解:∵CE平分∠ACB,∠ACB=80°,
∴∠ECB=,
∵AD是△ABC边BC上的高,AD⊥BC,
∴∠ADC=90°,
∴∠DFC=180°-∠ADC-∠ECB=180°-90°-40°=50°,
∴∠AFE=∠DFC=50°.
【点睛】
本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,垂线性质,三角形内角和,对顶角性质是解题关键.21·cn·jy·com
5、见解析
【解析】
【分析】
连接,,再根据三角形的三边关系即可得出结论.
【详解】
连接,,
( http: / / www.21cnjy.com / )
,,

当且仅当CD过圆心O时,取“=”号,

【点睛】
本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)