中小学教育资源及组卷应用平台
冀教版七年级数学下册第十一章 因式分解综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区 ( http: / / www.21cnjy.com )域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21教育网
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列从左到右的变形属于因式分解的是( )
A.x2+2x+1=x(x+2)+1 B.﹣7ab2c3=﹣abc 7bc2
C.m(m+3)=m2+3m D.2x2﹣5x=x(2x﹣5)
2、下列各式从左到右的变形中,是因式分解的为( )
A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1
C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)
3、对于一个图形,通过两种不同的方 ( http: / / www.21cnjy.com )法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是( )
( http: / / www.21cnjy.com / )
A.a(m+n)+b(m+n)=(a+b)(m+n)
B.m(a+b)+n(a+b)=(a+b)(m+n)
C.am+bm+an+bn=(a+b)(m+n)
D.ab+mn+am+bn=(a+b)(m+n)
4、下列各式从左到右进行因式分解正确的是( )
A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2
C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)
5、下列运算错误的是( )
A. B. C. D.(a≠0)
6、已知x2+x﹣6=(x+a)(x+b),则( )
A.ab=6 B.ab=﹣6 C.a+b=6 D.a+b=﹣6
7、把多项式分解因式,下列结果正确的是( )
A. B.
C. D.
8、把多项式a2﹣9a分解因式,结果正确的是( )
A.a(a+3)(a﹣3) B.a(a﹣9)
C.(a﹣3)2 D.(a+3)(a﹣3)
9、下列多项式不能用公式法因式分解的是( )
A.a2+4a+4 B.a2﹣a+1 C.﹣a2﹣9 D.a2﹣1
10、若、、为一个三角形的三边长,则式子的值( )
A.一定为正数 B.一定为负数 C.可能是正数,也可能是负数 D.可能为0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:9a﹣=______________.
2、当x=4,a+b=-3时,代数式:ax+bx的值为________.
3、因式分解:________.
4、因式分解:=___________.
5、已知ab=2,=,则多项式a3b+2a2b2+ab3的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、若一个正整数a可以表示为a=(b+ ( http: / / www.21cnjy.com )1)(b-2),其中b为大于2的正整数,则称a为“十字数”,b为a的“十字点”.例如28=(6+1)×(6-2)=7×4.21cnjy.com
(1)“十字点”为7的“十字数”为 ;130的“十字点”为 ;
(2)若b是a的“十字点”,且a能被(b-1)整除,其中b为大于2的正整数,求a.
2、分解因式:.
3、分解因式:.
4、如果的三边长满足等式,试判断此的形状并写出你的判断依据.
5、我们知道,任意一个正整数c都可以进行这样的分解:c=a×b(.b是正整数,且a≤b),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称a×b是c的最优分解并规定:M(c)=,例如9可以分解成1×9,3×3,因为9-1>3-3,所以3×3是9的最优分解,所以M(9)==12·1·c·n·j·y
(1)求M(8);M(24);M[(c+1)2]的值;
(2)如果一个两位正整数d(d=10x+y ( http: / / www.21cnjy.com ),x,y都是自然数,且1≤x≤y≤9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值.【来源:21·世纪·教育·网】
-参考答案-
一、单选题
1、D
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.由定义判断即可.
【详解】
解:A.x2+2x+1=(x+1)2,故A不符合题意;
B.-7ab2c3是单项式,不存在因式分解,故B不符合题意;
C.m(m+3)=m2+3m是单项式乘多项式,故C不符合题意;
D.2x2-5x=x(2x-5)是因式分解,故D符合题意;
故选:D.
【点睛】
本题考查因式分解的意义,熟练掌握因式分解的定义,能够根据所给形式判断是否符合因式分解的变形是解题的关键.21·世纪*教育网
2、C
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A错误,不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;
C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;
D、等号左右两边式子不相等,故D错误,不符合题意;
故选C
【点睛】
本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.
3、D
【解析】
【分析】
由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可
【详解】
解:如图②,S长方形ABCD=(a+b)(m+n),
( http: / / www.21cnjy.com / )
A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;
B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;
C.S长方形ABCD=S长方 ( http: / / www.21cnjy.com )形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;21·cn·jy·com
D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;
故选:D.
【点睛】
本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.
4、B
【解析】
【分析】
因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可21*cnjy*com
【详解】
解:A. 4a2﹣4a+1=,故该选项不符合题意;
B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;
C. x2+y2(x+y)2,故该选项不符合题意;
D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;
故选B
【点睛】
本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.
5、A
【解析】
【分析】
根据积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,即可判断.
【详解】
解:A. ,故该选项错误,符合题意;
B. ,故该选项正确,不符合题意;
C. ,故该选项正确,不符合题意;
D. (a≠0),故该选项正确,不符合题意,
故选A.
【点睛】
本题主要考查积的乘方法则,同底数幂的乘除法法则,提取公因式分解因式,熟练掌握运算法则是解题的关键.
6、B
【解析】
【分析】
先利用十字相乘法去掉括号,再根据等式的性质得a+b=1,ab=﹣6.
【详解】
解:∵x2+x﹣6=(x+a)(x+b),
∴x2+x﹣6=x2+(a+b)x+ab,
∴a+b=1,ab=﹣6;
故选:B.
【点睛】
本题考查了十字相乘法分解因式,掌握运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,这是解题关键.【来源:21cnj*y.co*m】
7、D
【解析】
【分析】
利用公式即可得答案.
【详解】
解:
故选:D.
【点睛】
此题考查了十字相乘法进行因式分解,解题的关键是掌握公式.
8、B
【解析】
【分析】
用提公因式法,提取公因式即可求解.
【详解】
解:a2﹣9a=a(a﹣9).
故选:B.
【点睛】
本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.【出处:21教育名师】
9、C
【解析】
【分析】
直接利用完全平方公式以及平方差公式分别分解因式,进而得出答案.
【详解】
解:A中,故此选项不合题意;
B中,故此选项不合题意;
C中无法分解因式,故此选项符合题意;
D中,故此选项不合题意;
故选:C.
【点睛】
本题考查了利用乘法公式进行因式分解.解题的关键在于对完全平方公式和平方差公式的灵活运用.
10、B
【解析】
【分析】
先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.
【详解】
解:原式=(a-c+b)(a-c-b),
∵两边之和大于第三边,两边之差小于第三边,
∴a-c+b>0,a-c-b<0,
∵两数相乘,异号得负,
∴代数式的值小于0.
故选:B.
【点睛】
本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意两边之和>第三边,任意两边之差<第三边.【版权所有:21教育】
二、填空题
1、a(3+a)(3﹣a)
【解析】
【分析】
先提取公因式a,再对余下的多项式利用平方差公式继续分解.
【详解】
解:9a﹣,
=a (9﹣),
=a(3+a)(3﹣a).
【点睛】
本题考查了因式分解,熟练掌握先提后选用公式的解题思路是解题的关键.
2、-12
【解析】
【分析】
本题可先代入x的值得4(a+b),再把a+b=-3整体代入求值即可.
【详解】
解:∵x=4,a+b=-3
∴ax+bx
故答案为:-12
【点睛】
本题主要考查了因式分解的应用,整理出已知条件的形式是解题的关键,注意整体代换的思想.
3、m(m+1)(m﹣1).
【解析】
【分析】
原式提取m,再利用平方差公式分解即可.
【详解】
解:原式=m(m2﹣12)
=m(m+1)(m﹣1).
故答案为:m(m+1)(m﹣1).
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
4、
【解析】
【分析】
先提公因式,再利用完全平方公式分解即可.
【详解】
解:
=
=
故答案为:
【点睛】
本题考查了提公因式法和公式法分解因式,解题的关键是掌握完全平方公式.
5、18
【解析】
【分析】
已知第二个等式左边通分并利用同分母分式的加 ( http: / / www.21cnjy.com )法法则计算,把ab=2代入求出a+b的值,原式提取公因式,再利用完全平方公式分解后代入计算即可求出值.www.21-cn-jy.com
【详解】
解:∵ab=2,,
∴,即a+b=3,
则原式=ab(a2+2ab+b2)
=ab(a+b)2
=2×32
=2×9
=18.
故答案为:18.
【点睛】
本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
三、解答题
1、解:原式=5x(x2﹣4xy+4y2)=5x(x﹣2y)
【点睛】
本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.也考查了整式的混合运算.www-2-1-cnjy-com
2.(1)40,12
(2)4
【解析】
【分析】
(1)根据定义解答即可;
(2)根据b是a的十字点, ( http: / / www.21cnjy.com )写出a的表达式,因为a能被(b-1)整除,所以对表达式进行变形,得到(b-1)能整除2,求出b的值,进而得到a的值.2-1-c-n-j-y
(1)
十字点为7的十字数a=(7+1)(7﹣2)=8×5=40,
∵130=(12+1)(12﹣2)=13×10,
∴130的十字点为12.
故答案为:40,12;
(2)
∵b是a的十字点,
∴a=(b+1)(b﹣2)(b>2且为正整数),
∴a=(b﹣1+2)(b﹣1﹣1)=(b﹣1)2+(b﹣1)﹣2,
∵a能被(b﹣1)整除,
∴(b﹣1)能整除2,
∴b﹣1=1或b﹣1=2,
∵b>2,
∴b=3,
∴a=(3+1)(3﹣2)=4.
【点睛】
本题考查了因式分解的应用,有一定的技巧性,解题的关键是看懂定义,根据题中的条件进行变形.
2、
【解析】
【分析】
先提取公因式y,再根据平方差公式进行二次分解即可求得答案.
【详解】
解:
故答案为:.
【点睛】
本题考查了提公因式法,公式法分解因式,解题的关键是注意分解要彻底.
3、.
【解析】
【分析】
先将因式进行分组为,再综合利用提公因式法和平方差公式分解因式即可得.
【详解】
解:原式
.
【点睛】
本题考查了因式分解,熟练掌握因式分解的方法是解题关键.
4、是等边三角形,理由见解析
【解析】
【分析】
利用因式分解得出三边长的关系,即可判断三角形形状.
【详解】
解:是等边三角形
证明:∵,
∴.
∴,
即,
∴,
∴,即,
∴是等边三角形.
【点睛】
本题考查了因式分解的应用,解题关键是熟练进行因式分解,得出三角形的三边关系.
5、(1);;1;(2);
【解析】
【分析】
(1)根据c=a×b中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称a×b是c的最优分解,因此M(8)==,M(24)==,M[(c+1)2]= ;21世纪教育网版权所有
(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1≤x≤y≤9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)==,M(33)=,所以所有“吉祥数”中M(d)的最大值为.
【详解】
解:(1)由题意得,
M(8)==;
M(24)==;
M[(c+1)2]=;
(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d',
则d+d'=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,
∵x,y都是自然数,且1≤x≤y≤9,
∴满足条件的“吉祥数”有15、24、33
∴M(15)=,M(24)==,M(33)=,
∵>>,
∴所有“吉祥数”中M(d)的最大值为.
【点睛】
本题考查了分解因式的应用,根据示例进行分解因式是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)