中小学教育资源及组卷应用平台
冀教版七年级数学下册第九章 三角形同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指 ( http: / / www.21cnjy.com )定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。www.21-cn-jy.com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、以下各组线段长为边,能组成三角形的是( )
A.,, B.,, C.,, D.,,
2、三个等边三角形的摆放位置如图所示,若,则的度数为
( http: / / www.21cnjy.com / )
A. B. C. D.
3、如图,已知,,,则的度数为( )
( http: / / www.21cnjy.com / )
A.155° B.125° C.135° D.145°
4、数学课上,同学们在作中AC边上的高时,共画出下列四种图形,其中正确的是( ).
A. ( http: / / www.21cnjy.com / ) B. ( http: / / www.21cnjy.com / )
C. ( http: / / www.21cnjy.com / ) D. ( http: / / www.21cnjy.com / )
5、下列四个图形中,线段BE是△ABC的高的是( )
A. ( http: / / www.21cnjy.com / ) B. ( http: / / www.21cnjy.com / )
C. ( http: / / www.21cnjy.com / ) D. ( http: / / www.21cnjy.com / )
6、下列长度的三条线段能组成三角形的是( )
A.3,6,9 B.5,6,8 C.1,2,4 D.5,6,15
7、如图,和相交于点O,则下列结论不正确的是( )
( http: / / www.21cnjy.com / )
A. B. C. D.
8、下列长度的三条线段能组成三角形的是( )
A.1,6,6 B.2,3,5 C.3,4,8 D.5,6,11
9、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )
( http: / / www.21cnjy.com / )
A. B.
C. D.
10、如图, ( )
( http: / / www.21cnjy.com / )
A.180° B.360° C.270° D.300°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,______.
( http: / / www.21cnjy.com / )
2、如图:中,,,于D,CE平分,于F,则______°.
( http: / / www.21cnjy.com / )
3、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于 _______
( http: / / www.21cnjy.com / )
4、一个三角形的三个内角之比为1:2:3,这个三角形最小的内角的度数是 _____.
5、已知a,b,c是的三边长,满足,c为奇数,则______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在中,为的高,为的角平分线,交于点G,,,求的大小.
( http: / / www.21cnjy.com / )
2、如图:已知AB∥CD,BD平分∠ABC,AC平分∠BCD,求∠BOC的度数.
∵AB∥CD(已知),
∴∠ABC+ =180°( ).
∵BD平分∠ABC,AC平分∠BCD,(已知),
∴∠DBC=∠ABC,∠ACB=∠BCD(角平分线的意义).
∴∠DBC+∠ACB=( )(等式性质),
即∠DBC+∠ACB= °.
∵∠DBC+∠ACB+∠BOC=180°( ),
∴∠BOC= °(等式性质).
( http: / / www.21cnjy.com / )
3、根据题意画出图形,并填注理由
证明:三角形的内角和等于180°.
已知:△ABC
求证:∴∠A+∠B+∠C=180°
证明:作BC的延长线CD,过点C作射线CE BA.
∵CE BA(辅助线)
∴∠B=∠ECD( )
∠A=∠ACE( )
∵∠BCA+∠ACE+∠ECD=180°( )
∴∠A+∠B+∠ACB=180°( )
( http: / / www.21cnjy.com / )
4、如图,∠B=45°,∠A+15°=∠1,∠ACD=60°.求证:AB∥CD.
( http: / / www.21cnjy.com / )
5、如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.
【详解】
解:根据三角形的三边关系,知
A、1+2<4,不能组成三角形,故不符合题意;
B、4+6>8,能组成三角形,故符合题意;
C、5+6<12,不能够组成三角形,故不符合题意;
D、3+3=6,不能组成三角形,故不符合题意.
故选:B.
【点睛】
此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
2、A
【解析】
【分析】
利用三个平角的和减去中间三角形的内角和,再减去三个的角即可.
【详解】
解:,,
,
,
,
,
故选:.
【点睛】
本题主要考查了三角形的内角和定理,灵活运用三角形内角和定理成为解答本题的关键.
3、B
【解析】
【分析】
根据三角形外角的性质得出,再求即可.
【详解】
解:∵,
∴,
∵,
∴,
∴;
故选:B.
【点睛】
本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.
4、A
【解析】
【分析】
满足两个条件:①经过点B;②垂直AC,由此即可判断.
【详解】
解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,
故选:A.
【点睛】
本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
5、D
【解析】
【分析】
根据三角形高的画法知,过点作边上的高,垂足为,其中线段是的高,再结合图形进行判断.
【详解】
解:线段是的高的图是选项.
故选:D.
【点睛】
本题主要考查了三角形的高,解题的关键是掌握三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.21cnjy.com
6、B
【解析】
【分析】
根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行解答即可得.
【详解】
解:根据三角形的三边关系,得
A、3+6=9,不能组成三角形,选项说法错误,不符合题意;
B、6+5=11>8,能组成三角形,选项说法正确,符合题意;
C、1+2=3<4,不能够组成三角形,选项说法错误,不符合题意;
D、5+6=11<15,不能够组成三角形,选项说法错误,不符合题意;
故选B.
【点睛】
本题考查了构成三角形的条件,解题的关键是掌握三角形的三边关系.
7、B
【解析】
【分析】
根据两直线相交对顶角相等、三角形角的外角性质即可确定答案.
【详解】
解:选项A、∵∠1与∠2互为对顶角,∴∠1=∠2,故选项A不符合题意;
选项B、∵∠1=∠B+∠C,∴∠1>∠B,故选项B符合题意;
选项C、∵∠2=∠D+∠A,∴∠2>∠D,故选项C不符合题意;
选项D、∵,,∴,故选项D不符合题意;
故选:B.
【点睛】
本题主要考查了对顶角的性质、平行线的性质和三角形内角和、外角的性质,能熟记对顶角的性质是解此题的关键.21世纪教育网版权所有
8、A
【解析】
【分析】
根据构成三角形的条件逐项分析判 ( http: / / www.21cnjy.com )断即可.三角形的任意两边之和大于第三边,任意两边之差小于第三边,根据原理分别计算两条较短边的和与最长边比较,再逐一分析即可.21·cn·jy·com
【详解】
解:A. 1+6>6,能组成三角形,故该选项正确,符合题意;
B. 2+3=5,不能组成三角形,故该选项不正确,不符合题意;
C. 3+4<8,不能组成三角形,故该选项不正确,不符合题意;
D. 5+6=11,不能组成三角形,故该选项不正确,不符合题意;
故选A
【点睛】
本题考查了判断构成三角形的条件,解题的关键是掌握构成三角形的条件.
9、B
【解析】
【分析】
根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.
【详解】
解:由三角形内角和知∠BAC=180°-∠2-∠1,
∵AE为∠BAC的平分线,
∴∠BAE=∠BAC=(180°-∠2-∠1).
∵AD为BC边上的高,
∴∠ADC=90°=∠DAB+∠ABD.
又∵∠ABD=180°-∠2,
∴∠DAB=90°-(180°-∠2)=∠2-90°,
∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).
故选:B
【点睛】
本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.【来源:21·世纪·教育·网】
10、A
【解析】
【分析】
利用三角形外角定理及三角形内角和公式求解即可.
【详解】
解:
( http: / / www.21cnjy.com / )
∵∠7=∠4+∠2,∠6=∠1+∠3,
∴∠6+∠7=∠1+∠2+∠3+∠4,
∵∠5+∠6+∠7=180°,
∴∠1+∠2+∠3+∠4+∠5=180°.
故选:A.
【点睛】
本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.21·世纪*教育网
二、填空题
1、180度##
【解析】
【分析】
如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.
【详解】
解:如图,连接 记的交点为
( http: / / www.21cnjy.com / )
故答案为:
【点睛】
本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.
2、80
3、15
【解析】
【分析】
连接DF,根据AE=ED,BD=3DC,可得 ,, ,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.2·1·c·n·j·y
【详解】
解:如图,连接DF,
( http: / / www.21cnjy.com / )
∵AE=ED,
∴ ,,
∵BD=3DC,
∴ ,
设△AEF的面积为x,△BDE的面积为y,则,,,,
∵△ABC的面积等于35,
∴ ,
解得: .
故答案为:15
【点睛】
本题主要考查了与三角形中线有关的面积问题,根据题意得到 ,, ,是解题的关键.
4、30°##30度
【解析】
【分析】
设三角形的三个内角分别为x,2x,3x,再根据三角形内角和定理求出x的值,进而可得出结论.
【详解】
解:∵三角形三个内角的比为1:2:3,
∴设三角形的三个内角分别为x,2x,3x,
∴x+2x+3x=180°,解得x=30°.
∴这个三角形最小的内角的度数是30°.
故答案为:30°.
【点睛】
本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.
5、7
【解析】
【分析】
绝对值与平方的取值均0,可知,,可得a、b的值,根据三角形三边关系求出c的取值范围,进而得到c的值.www-2-1-cnjy-com
【详解】
解:
,
由三角形三边关系可得
为奇数
故答案为:7.
【点睛】
本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.
三、解答题
1、.
【解析】
【分析】
先由直角三角形两锐角互余得到∠B=40°,在 ( http: / / www.21cnjy.com )三角形△ABC 中,由内角和定理求得∠BAE=30°,由角平分线定义得出 ∠BAC=60°,即可求得∠ACD .21教育网
【详解】
解:为的高,
.
.
在中,.
为的角平分线,
.
.
【点睛】
此题考查三角形内角和定理、角平分线定义和直角三角形两锐角互余等,掌握定义和定理是解答此题的关键.
2、∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90
【解析】
【分析】
根据题意利用AB∥CD得∠ABC+∠BCD=180;等式的性质得∠DBC+∠ACB=(∠ABC+∠ACD),进而由三角形内角和为180°得∠BOC=90°.2-1-c-n-j-y
【详解】
解:∵AB∥CD(已知),
∴∠ABC+∠BCD=180°(两直线平行,同旁内角互补),
∵BD平分∠ABC,AC平分∠BCD(已知),
∴∠DBC=∠ABC,∠ACB=∠BCD(角平分线定义),
∴∠DBC+∠ACB=(∠ABC+∠BCD)(等式性质),
即∠DBC+∠ACB=90°,
∴∠DBC+∠ACB+∠BOC=180°(三角形内角和等于180°),
∴∠BOC=90°(等式性质),
故答案为:∠BCD,两直线平行,同旁内角互补,∠ABC+∠BCD,90,三角形内角和等于180°,90.
【点睛】
本题考查平行线的性质,等式的性质,三角形内角和定理,角平分线的性质等,解题的关键是掌握相关性质的应用.21*cnjy*com
3、两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换
【解析】
【分析】
根据平行线的性质和平角度数等于180°求解即可.
【详解】
解:证明:作BC的延长线CD,过点C作射线CE BA.
∵CE BA(辅助线)
∴∠B=∠ECD(两直线平行,同位角相等)
∠A=∠ACE(两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°(平角等于180°)
∴∠A+∠B+∠ACB=180°(等量代换)
( http: / / www.21cnjy.com / )
故答案为:两直线平行,同位角相等;两直线平行,内错角相等;平角等于180°;等量代换.
【点睛】
此题考查了证明三角形的内角和等于180°,平行线的性质以及平角度数等于180°,解题的关键是熟练掌握平行线的性质以及平角度数等于180°.【来源:21cnj*y.co*m】
4、见解析
【解析】
【分析】
由三角形内角和定理和已知条件求出∠A=60°,得出∠ACD=∠A,即可得出AB∥CD.
【详解】
证明:∵∠A+∠B+∠1=180°,∠A+15°=∠1,
∴∠A+45°+∠A+15°=180°,
解得:∠A=60°,
∵∠ACD=60°,
∴∠ACD=∠A,
∴AB∥CD.
【点睛】
本题考查了平行线的判定方法、三角形内角和定理;熟练掌握平行线的判定方法,由三角形内角和定理求出∠A是解决问题的关键.【出处:21教育名师】
5、见解析
【解析】
【分析】
连接,,再根据三角形的三边关系即可得出结论.
【详解】
连接,,
( http: / / www.21cnjy.com / )
,,
.
当且仅当CD过圆心O时,取“=”号,
.
【点睛】
本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)