中小学教育资源及组卷应用平台
冀教版七年级数学下册第九章 三角形难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定 ( http: / / www.21cnjy.com )区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21·cn·jy·com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点D、E分别在∠ABC的边BA、B ( http: / / www.21cnjy.com )C上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )21*cnjy*com
( http: / / www.21cnjy.com / )
A.42° B.48° C.52° D.58°
2、下列各图中,有△ABC的高的是( )
A. B.
C. D.
3、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
4、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?( )
( http: / / www.21cnjy.com / )
A.0根 B.1根 C.2根 D.3根
5、如图,一扇窗户打开后,用窗钩AB可将其固定( )
( http: / / www.21cnjy.com / )
A.三角形的稳定性 B.两点之间线段最短
C.四边形的不稳定性 D.三角形两边之和大于第三边
6、下列叙述正确的是( )
A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
7、已知三角形的两边长分别是3cm和7cm,则下列长度的线段中能作为第三边的是( )
A.3cm B.4cm C.7cm D.10cm
8、下列各组线段中,能构成三角形的是( )
A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、6
9、如图,,,则的度数是( )
( http: / / www.21cnjy.com / )
A.55° B.35° C.45° D.25°
10、如图,将一个含有30°角的直角三角板放置在两条平行线a,b上,若,则的度数为( )21cnjy.com
( http: / / www.21cnjy.com / )
A.85° B.75° C.55° D.95°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,CD平分∠ACB.若∠A=70°,∠B=50°,则∠ADC=_____度.
( http: / / www.21cnjy.com / )
2、已知中,,高和所在直线交于,则的度数是________.
3、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.
( http: / / www.21cnjy.com / )
4、不等边△ABC的两条高的长度分别为4和12,若第三条高也为整数,那么它的长度最大值是_________
5、如图,AD是△ABC的中线,BE是△ABD的中线,若△ABC的面积为24 cm2,则△ABE的面积为________cm2
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、如图,∠B=45°,∠A+15°=∠1,∠ACD=60°.求证:AB∥CD.
( http: / / www.21cnjy.com / )
2、如图,点E为直线AB上一点,∠CAE=2∠B,BC平分∠ACD,求证:AB∥CD.
( http: / / www.21cnjy.com / )
3、已知,如图,在△ABC中,AH平分∠BAC交BC于点H,D、E分别在CA、BA 的延长线上,DB∥AH,∠D=∠E.
( http: / / www.21cnjy.com / )
(1))求证:DB∥EC;
(2)若∠ABD=2∠ABC,∠DAB比∠AHC大5°.求∠D的度数.
4、如图,点C,B分别在直线MN,PQ上,点A在直线MN,PQ之间,MN∥PQ.
(1)如图1,求证:∠A=∠MCA+∠PBA;
(2)如图2,过点C作CD∥AB,点E在PQ上,∠ECM=∠ACD,求证:∠A=∠ECN;
(3)在(2)的条件下,如图3,过点B作PQ的垂线交CE于点F,∠ABF的平分线交AC于点G,若∠DCE=∠ACE,∠CFB=∠CGB,求∠A的度数.
( http: / / www.21cnjy.com / )
5、如图,在△ABC中,点D为∠ABC的平分线BD上一点,连接AD,过点D作EF∥BC交AB于点E,交AC于点F.
( http: / / www.21cnjy.com / )
(1)如图1,若AD⊥BD于点D,∠BEF=120°,求∠BAD的度数;
(2)如图2,若∠ABC=α,∠BDA=β,求∠FAD十∠C的度数(用含α和β的代数式表示).
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.
【详解】
解:∵,
∴,
∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.
2、B
【解析】
【分析】
利用三角形的高的定义可得答案.
【详解】
解:∵选项B是过顶点C作的AB边上的高,
∴有△ABC的高的是选项B,
故选:B.
【点睛】
此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.【来源:21·世纪·教育·网】
3、A
【解析】
【分析】
根据题意设,根据三角形内角和公式定理,进而表示出,进而根据三角形内角和定理根据即可求解
【详解】
解:∵∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,设,
∴
即
故选A
【点睛】
本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.
4、B
【解析】
【分析】
根据三角形的稳定性即可得.
【详解】
解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:
( http: / / www.21cnjy.com / )或 ( http: / / www.21cnjy.com / )
故选:B.
【点睛】
本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.
5、A
【解析】
【分析】
由三角形的稳定性即可得出答案.
【详解】
一扇窗户打开后,用窗钩AB可将其固定,
故选:A.
【点睛】
本题考查了三角形的稳定性,加上窗钩AB构成了△AOB,而三角形具有稳定性是解题的关键.
6、D
【解析】
【分析】
结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
【详解】
解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
故选D
【点睛】
本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.21教育网
7、C
【解析】
【分析】
设三角形第三边的长为x cm,再根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.
【详解】
解:设三角形的第三边是xcm.则
7-3<x<7+3.
即4<x<10,
四个选项中,只有选项C符合题意,
故选:C.
【点睛】
本题主要考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.www.21-cn-jy.com
8、C
【解析】
【分析】
根据三角形的三边关系定理逐项判断即可得.
【详解】
解:三角形的三边关系定理:任意两边之和大于第三边.
A、,不能构成三角形,此项不符题意;
B、,不能构成三角形,此项不符题意;
C、,能构成三角形,此项符合题意;
D、,不能构成三角形,此项不符题意;
故选:C.
【点睛】
本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.
9、D
【解析】
【分析】
根据三角形的内角和定理和对顶角相等求解即可.
【详解】
解:设AD与BC相交于O,则∠COD=∠AOB,
∵∠C+∠COD+∠D=180°,∠A+∠AOB=∠B=180°,∠C=∠A=90°,
∴∠D=∠B=25°,
故选:D.
( http: / / www.21cnjy.com / )
【点睛】
本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.
10、A
【解析】
【分析】
由平行线的性质,得,然后由三角形外角的性质,即可求出答案.
【详解】
解:由题意,如图,
( http: / / www.21cnjy.com / )
∵,
∴,
∵,
∴;
故选:A
【点睛】
本题考查了三角形的外角性质,平行线的性质,解题的关键是掌握所学的知识,正确求出.
二、填空题
1、80
【解析】
【分析】
首先根据三角形的内角和定理求得∠BCA=180°-∠A-∠B=60°,再根据角平分线的概念,得∠ACD=∠BCA=30°,最后根据三角形ADC的内角和来求∠ADC度数.21世纪教育网版权所有
【详解】
解:∵在△ABC中,∠A=70°,∠B=50°,
∴∠BCA=180°-∠B-∠C=60°;
又∵CD平分∠BCA,
∴∠DCA=∠BCA=30°,
∴∠ADC=180°-70°-30°=80°.
故答案为:80.
【点睛】
本题主要考查了三角形的内角和定理以及角平分线的概念.解题的关键是找到已知角与所求角之间的数量关系.
2、45°或135°
【解析】
【分析】
分两种情况讨论:①如图1,为锐角三角形,由题意知, ,,,,代值计算求解即可;②如图2,为钝角三角形,由题意知,在中,,,,代值计算求解即可.2·1·c·n·j·y
【详解】
解:由题意知
①如图1所示,为锐角三角形
( http: / / www.21cnjy.com / )
∵,
∴,
∵
∴
∵
∴;
②如图2所示,为钝角三角形
( http: / / www.21cnjy.com / )
∵,
∴
在中,,
∴;
综上所述,的值为或
故答案为:或.
【点睛】
本题考查了三角形的高,三角形的内角和定理.解题的关键在于正确求解角度.
3、120
【解析】
【分析】
根据三角形的外角性质,可得 ,即可求解.
【详解】
解:∵ 是 的外角,
∴ ,
∵∠A=50°,∠B=70°,
∴ .
故答案为:120
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
4、5
【解析】
【分析】
根据三角形三边关系及三角形面积相等即可求出要求高的整数值.
【详解】
解:因为不等边△ABC的两条高的长度分别为4和12,根据面积相等可设 △ABC的两边长为3x,x;
因为 3x×4=12×x(2倍的面积),面积S=6x,
因为知道两条边的假设长度,根据两边之和大于第三边,两边之差小于第三边可得:2x<第三边长度<4x,
因为要求高的最大长度,所以当第三边最短时,在第三边上的高就越长,
S=×第三边的长×高,6x>×2x×高,6x<×4x×高,
∴6>高>3,
∵是不等边三角形,且高为整数,
∴高的最大值为5,
故答案为:5.
【点睛】
本题考查了三角形三边关系及三角形的面积,难度较大,关键是掌握三角形任意两边之和大于第三边,三角形的任意两边差小于第三边.21·世纪*教育网
5、6
【解析】
【分析】
中线将三角形分成两个面积相等的三角形,可知,计算求解即可.
【详解】
解:由题意知
∴
∵
∴
故答案为:6.
【点睛】
本题考查了三角形的中线.解题的关键在于理解中线将三角形分成两个面积相等的三角形.
三、解答题
1、见解析
【解析】
【分析】
由三角形内角和定理和已知条件求出∠A=60°,得出∠ACD=∠A,即可得出AB∥CD.
【详解】
证明:∵∠A+∠B+∠1=180°,∠A+15°=∠1,
∴∠A+45°+∠A+15°=180°,
解得:∠A=60°,
∵∠ACD=60°,
∴∠ACD=∠A,
∴AB∥CD.
【点睛】
本题考查了平行线的判定方法、三角形内角和定理;熟练掌握平行线的判定方法,由三角形内角和定理求出∠A是解决问题的关键.www-2-1-cnjy-com
2、见解析
【解析】
【分析】
根据三角形外角的性质,可得∠B=∠ACB,再由BC平分∠ACD,可得∠B=∠DCB,即可求证.
【详解】
证明:∵∠CAE=∠ACB+∠B,∠CAE=2∠B,
∴∠B=∠ACB,
又∵BC平分∠ACD,
∴∠ACB=∠DCB,
∴∠B=∠DCB,
∴AB∥CD(内错角相等,两直线平行).
【点睛】
本题主要考查了平行线的判定,三角形外角的性质,角平分线的定义,熟练掌握平行线的判定定理,三角形外角的性质定理是解题的关键.2-1-c-n-j-y
3、(1)见解析;(2)50°
【解析】
【分析】
(1)根据平行线的性质可 ( http: / / www.21cnjy.com )得∠D=∠CAH,根据角平分线的定义可得∠BAH=∠CAH,再根据已知条件和等量关系可得∠BAH=∠E,再根据平行线的判定即可求解;21*cnjy*com
(2)可设∠ABC=x,则 ( http: / / www.21cnjy.com )∠ABD=2x,则∠BAH=2x,可得∠DAB=180° 4x,可得∠AHC=175° 4x,可得175° 4x=3x,解方程求得x,进一步求得∠D的度数.【来源:21cnj*y.co*m】
【详解】
(1)证明:∵DBAH,
∴∠D=∠CAH,
∵AH平分∠BAC,
∴∠BAH=∠CAH,
∵∠D=∠E,
∴∠BAH=∠E,
∴AHEC,
∴DBEC;
(2)解:设∠ABC=x,则∠ABD=2x,∠BAH=2x,
∠DAB=180° 4x,
∠DAB比∠AHC大5°
∠AHC=175° 4x,
DBAH,
即:175° 4x=3x,
解得x=25°,
则∠D=∠CAH=∠BAH=∠ABD=2x=50°.
【点睛】
考查了三角形内角和定理,平行线的判定与性质,求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.【出处:21教育名师】
4、(1)见解析;(2)见解析;(3)72°.
【解析】
【分析】
(1)过点A作平行线,证出三条直线互相平行,由平行得出与∠ACM和∠ABP相等的角即可得出结论;
(2)由CD∥AB,可得同旁内角互补,再结合∠ECM与∠ECN的邻补角关系,可得结论;
(3)延长CA交PQ于点H ( http: / / www.21cnjy.com ),先证明∠MCA=∠ACE=∠ECD,∠ABP=∠NCD,再设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,从而∠CFB=270-2x,列出方程解得x值,则不难求得答案.
【详解】
解:(1)证明:过点A作AD∥MN,
( http: / / www.21cnjy.com / )
∵MN∥PQ,AD∥MN,
∴AD∥MN∥PQ,
∴∠MCA=∠DAC,∠PBA=∠DAB,
∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,
即:∠A=∠MCA+∠PBA;
(2)∵CD∥AB,
∴∠A+∠ACD=180°,
∵∠ECM+∠ECN=180°,
又∠ECM=∠ACD,
∴∠A=∠ECN;
( http: / / www.21cnjy.com / )
(3)如图,延长CA交PQ于点H,
( http: / / www.21cnjy.com / )
∵∠ECM=∠ACD,∠DCE=∠ACE,
∴∠MCA=∠ACE=∠ECD,
∵MN∥PQ,
∴∠MCA=∠AHB,
∵∠CAB=∠AHB+∠PBA,且由(2)知∠CAB=∠ECN,
∴∠ABP=∠NCD,
设∠MCA=∠ACE=∠ECD=x,
由(1)可知∠CFB=∠FCN+∠FBQ,
∴∠CFB=270-2x,
由(1)可知∠CGB=∠MCG+∠GBP,
∴∠CGB=135° x,
∴270° 2x= (135° x) ,
解得:x=54°,
∴∠AHB=54°,
∴∠ABP=∠NCD=180°-54°×3=18°,
∴∠CAB=54°+18°=72°.
【点睛】
本题考查了平行线的性质及一元一次方程在计算问题中的应用,三角形的内角和定理以及三角形的外角性质,理清题中的数量关系并正确列式是解题的关键.【版权所有:21教育】
5、(1)60°;(2)β-α.
【解析】
【分析】
(1)根据平行线的性质和平角的定义可得∠EB ( http: / / www.21cnjy.com )C=60°,∠AEF=60°,根据角平分线的性质和平行线的性质可得∠EBD=∠BDE=∠DBC=30°,再根据三角形内角和定理可求∠BAD的度数;
(2)过点A作AG∥BC,则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,依此即可求解.21教育名师原创作品
【详解】
解:(1)∵EF∥BC,∠BEF=120°,
∴∠EBC=60°,∠AEF=60°,
又∵BD平分∠EBC,
∴∠EBD=∠BDE=∠DBC=30°,
又∵∠BDA=90°,
∴∠EDA=60°,
∴∠BAD=60°;
(2)如图2,过点A作AG∥BC,
( http: / / www.21cnjy.com / )
则∠BDA=∠DBC+∠DAG=∠DBC+∠FAD+∠FAG=∠DBC+∠FAD+∠C=β,
则∠FAD+∠C=β-∠DBC=β-∠ABC=β-α.
【点睛】
考查了三角形内角和定理,平行线的性质,角平分线的性质,准确识别图形是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)