冀教版七年级数学下册第九章-三角形综合测评试卷(含解析)

文档属性

名称 冀教版七年级数学下册第九章-三角形综合测评试卷(含解析)
格式 doc
文件大小 1.7MB
资源类型 试卷
版本资源 冀教版
科目 数学
更新时间 2022-11-29 18:45:42

图片预览

文档简介

中小学教育资源及组卷应用平台
冀教版七年级数学下册第九章 三角形综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应 ( http: / / www.21cnjy.com )的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21教育网
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、有下列长度的三条线段,其中能组成三角形的是( )
A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,17
2、以下列长度的各组线段为边,能组成三角形的是( )
A.,, B.,,
C.,, D.,,
3、如图所示,一副三角板叠放在一起,则图中等于( )
( http: / / www.21cnjy.com / )
A.105° B.115° C.120° D.135°
4、如图,是的中线,,则的长为( )
( http: / / www.21cnjy.com / )
A. B. C. D.
5、一把直尺与一块三角板如图放置,若,则( )
( http: / / www.21cnjy.com / )
A.120° B.130° C.140° D.150°
6、如图, AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是(  )
( http: / / www.21cnjy.com / )
A.6 B.5 C.4 D.3
7、下列叙述正确的是( )
A.三角形的外角大于它的内角 B.三角形的外角都比锐角大
C.三角形的内角没有小于60°的 D.三角形中可以有三个内角都是锐角
8、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为(  )www.21-cn-jy.com
( http: / / www.21cnjy.com / )
A.40° B.45° C.50° D.60°
9、下列四个图形中,线段BE是△ABC的高的是(  )
A. ( http: / / www.21cnjy.com / ) B. ( http: / / www.21cnjy.com / )
C. ( http: / / www.21cnjy.com / ) D. ( http: / / www.21cnjy.com / )
10、如图,把△ABC绕顶点C按顺时 ( http: / / www.21cnjy.com )针方向旋转得到△A′B′C′,当A′B′⊥AC,∠A=50°,∠A′CB=115°时,∠B′CA的度数为(  )2·1·c·n·j·y
( http: / / www.21cnjy.com / )
A.30° B.35° C.40° D.45°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知△ABC,通过测量、计算得△ABC的面积约为________cm2(结果保留一位小数).
( http: / / www.21cnjy.com / )
2、如图,将△ABC平移到△A’B’C’的位置(点B’在AC边上),若∠B=55°,∠C=100°,则∠AB’A’的度数为_____°.2-1-c-n-j-y
( http: / / www.21cnjy.com / )
3、如图,在△ABC中,D是AC延长线上一点,∠A=50°,∠B=70°,则∠BCD=__________°.
( http: / / www.21cnjy.com / )
4、在△ABC中,三边为、、,如果,,,那么的取值范围是_____.
5、古希腊七贤之一,著名哲学家泰勒斯(,公元前6世纪)最早从拼图实践中发现了“三角形内角和等于”,但这种发现完全是经验性的,泰勒斯并没有给出严格的证明.之后古希腊数学家毕达哥拉斯、欧几里得、普罗科拉斯等相继给出了基于平行线性质的不同的证明.其中欧几里得利用辅助平行线和延长线,通过一组同位角和内错角证明了该定理.请同学们帮助欧几里得将证明过程补充完整.【版权所有:21教育】
已知:如图,在中,
试说明:.
解:延长线段至点,并过点作.
因为(已作),
所以( ),( ).
因为( ),
所以 ( ).
( http: / / www.21cnjy.com / )
三、解答题(5小题,每小题10分,共计50分)
1、已知:AD//BC,点P为直线AB上一动点,点M在线段BC上,连接MP,∠BAD=α,∠APM=β,∠PMC=γ.21*cnjy*com
( http: / / www.21cnjy.com / )
(1)如图1,当点P在线段AB上时,若MP⊥AB,α=120°,则γ=   ;
(2)如图2,当点P在AB的延长线上时,写出α、β与γ之间的数量关系,并说明理由;
(3)如图3,当点P在BA的延长线上时,请画出图形,证明出α、β与γ之间的数量关系.
2、如图,在△ABC中,A ( http: / / www.21cnjy.com )D⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.21*cnjy*com
( http: / / www.21cnjy.com / )
3、如图,在△ABC中,AD ( http: / / www.21cnjy.com )平分∠BAC,P为线段AD上一点,PE⊥AD交BC的延长线于点E,若∠B=35°,∠ACB=75°,求∠E的度数.
( http: / / www.21cnjy.com / )
4、如图,已知△ABC的高AD和角平分线AE,∠B=26°,∠ACD=56°,求
( http: / / www.21cnjy.com / )
(1)∠CAD的度数;
(2)∠AED的度数.
5、如图,已知:DE//BC,CD是∠ACB的平分线,∠B=80°,∠A=50°,求:∠EDC与∠BDC的度数.
( http: / / www.21cnjy.com / )
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.
【详解】
解:根据三角形的三边关系,得,
、,不能够组成三角形,不符合题意;
、,不能够组成三角形,不符合题意;
、,能够组成三角形,符合题意;
、,不能组成三角形,不符合题意;
故选:C.
【点睛】
此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.
2、C
【解析】
【分析】
根据三角形三条边的关系计算即可.
【详解】
解:A. ∵2+4=6,∴,,不能组成三角形;
B. ∵2+5<9,∴,,不能组成三角形;
C. ∵7+8>10,∴,,能组成三角形;
D. ∵6+6<13,∴,,不能组成三角形;
故选C.
【点睛】
本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.
3、A
【解析】
【分析】
根据直角三角板各角的度数和三角形外角性质求解即可.
【详解】
解:如图,∠C=90°,∠DAE=45°,∠BAC=60°,
∴∠CAO=∠BAC-∠DAE=60°-45°=15°,
∴=∠C+∠CAO=90°+15°=105°,
故选:A.
( http: / / www.21cnjy.com / )
【点睛】
本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.
4、B
【解析】
【分析】
直接根据三角形中线定义解答即可.
【详解】
解:∵是的中线,,
∴BM= ,
故选:B.
【点睛】
本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.
5、B
【解析】
【分析】
由BC∥ED,得到∠2=∠CBD,由三角形外角的性质得到∠CBD=∠1+∠A=130°,由此即可得到答案.
【详解】
解:如图所示,由题意得:∠A=90°,BC∥EF,
∴∠2=∠CBD,
又∵∠CBD=∠1+∠A=130°,
∴∠2=130°,
故选B.
( http: / / www.21cnjy.com / )
【点睛】
本题主要考查了三角形外角的性质,平行线的性质,熟知相关知识是解题的关键.
6、D
【解析】
【分析】
过D作DF⊥AC于F,根据角平分线性质求出DF=DE=2,根据S△ADB+S△ADC=7和三角形面积公式求出即可.21世纪教育网版权所有
【详解】
解:过D作DF⊥AC于F,
( http: / / www.21cnjy.com / )
∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,
∴DE=DF=2,
∵S△ABC=7,
∴S△ADB+S△ADC=7,
∴×AB×DE+×AC×DF=7,
∴×4×2+×AC×2=7,
解得:AC=3.
故选D .
【点睛】
本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.【出处:21教育名师】
7、D
【解析】
【分析】
结合直角三角形,钝角三角形,锐角三角形的内角与外角的含义与大小逐一分析即可.
【详解】
解:三角形的外角不一定大于它的内角,锐角三角形的任何一个外角都大于内角,故A不符合题意;
三角形的外角可以是锐角,不一定比锐角大,故B不符合题意;
三角形的内角可以小于60°,一个三角形的三个角可以为: 故C不符合题意;
三角形中可以有三个内角都是锐角,这是个锐角三角形,故D符合题意;
故选D
【点睛】
本题考查的是三角形的的内角与外角的含义与大小,掌握“直角三角形,钝角三角形,锐角三角形的内角与外角”是解本题的关键.21·cn·jy·com
8、C
【解析】
【分析】
根据三角形内角和定理确定,然后利用平行线的性质求解即可.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C.
【点睛】
题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.
9、D
【解析】
【分析】
根据三角形高的画法知,过点作边上的高,垂足为,其中线段是的高,再结合图形进行判断.
【详解】
解:线段是的高的图是选项.
故选:D.
【点睛】
本题主要考查了三角形的高,解题的关键是掌握三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.21·世纪*教育网
10、B
【解析】
【分析】
由旋转的性质可得∠A′=∠A=50°,∠BCB'=∠ACA',由直角三角形的性质可求∠A′CA=40°,即可求解.www-2-1-cnjy-com
【详解】
解:根据旋转的性质可知∠A′=∠A=50°,∠BCB'=∠ACA',
∴∠A′CA=90°﹣50°=40°,
∴∠BCB′=∠A′CA=40°,
∴∠B′CA=∠A′CB﹣∠A′CA﹣∠BCB′=115°﹣40°﹣40°=35°.
故选:B.
【点睛】
本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.
二、填空题
1、3.9
【解析】
【分析】
过点A作AD⊥BC的延长线于点D,测量出BC,AD的长,再利用三角形的面积公式即可求出△ABC的面积.
【详解】
解:过点C作CD⊥AB的延长线于点D,如图所示.
( http: / / www.21cnjy.com / )
经过测量,BC=2.2cm,AD=3.5cm,
∴S△ABC=AB CD=×2.2×3.5=3.85≈3.9(cm2).
故答案为:3.9.
【点睛】
本题考查了三角形的面积,牢记三角形的面积等于底边长与高线乘积的一半是解题的关键.
2、25
【解析】
【分析】
先根据三角形内角和定理求出∠A=25°,然后根据平移的性质得到,则.
【详解】
解:∵∠B=55°,∠C=100°,
∴∠A=180°-∠B-∠C=25°,
由平移的性质可得,
∴,
故答案为:25.
【点睛】
本题主要考查了三角形内角和定理,平移的性质,平行线的性质,解题的关键在于能够熟练掌握平移的性质.
3、120
【解析】
【分析】
根据三角形的外角性质,可得 ,即可求解.
【详解】
解:∵ 是 的外角,
∴ ,
∵∠A=50°,∠B=70°,
∴ .
故答案为:120
【点睛】
本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.
4、4<x<28
【解析】
【分析】
根据三角形三边的关系:两边之和大于第三边,两边之差小于第三边解答即可;
【详解】
解:由题意得:
解得:4<x<28.
故答案为:4<x<28
【点睛】
本题考查了三角形三边的关系,熟练掌握三角形三边的关系是解题的关键.
5、两直线平行,内错角相等;两直线平行,同位角相等;平角的定义;A;B;等量代换;见解析
【解析】
【分析】
根据平行线的性质以及平角的定义可解决问题.
【解答】
解:延长线段至点,并过点作.
因为(已作),
所以(两直线平行,内错角相等),(两直线平行,同位角相等).
因为(平角的定义),
所以(等量代换).
故答案为:两直线平行,内错角相等;两直线平行,同位角相等;平角的定义;;;等量代换.
【点评】
本题考查三角形内角和定理的推理过程,掌握平行线的性质是解题关键.
三、解答题
1、 (1)150°
(2)γ=α+β,理由见解析
(3)图形见解析,α、β与γ之间的数量关系为:α+γ-β=180°
【解析】
【分析】
(1)由AD//BC,α=120°可求出∠B=60°,由MP⊥AB得到∠MPB=90°,最后由γ=∠MPB+∠B=150°即可求解;21cnjy.com
(2)由AD//BC得到∠CBP=α,再由γ=∠CBP+∠P=α+β即可求解;
(3)画出图形,由AD//BC, ( http: / / www.21cnjy.com )得到∠CMN=∠DNP=γ,∠PNA=180°-∠DNP=180°-γ,再在△PNA中,由三角形外角定理即可求解.【来源:21cnj*y.co*m】
(1)
解:如下图所示:
( http: / / www.21cnjy.com / )
∵AD//BC,α=120°,
∴∠B=60°,
∵MP⊥AB,
∴∠MPB=90°,
∴γ=∠MPB+∠B=90°+60°=150°.
故答案是:150°;
(2)
解:如下图所示:
( http: / / www.21cnjy.com / )
∵AD//BC,
∴∠CBP=∠DAB=α,
△MBP中,由三角形外角定理可知:∠CMP=∠CBP+∠P,
∴γ=α+β.
(3)
解:当点P在BA的延长线上时,图形如下所示,α、β与γ之间的数量关系为:
( http: / / www.21cnjy.com / )
∵AD//BC,
∴∠CMN=∠DNP=γ,
∴∠PNA=180°-∠DNP=180°-γ,
△PNA中,由三角形外角定理可知:∠DAB=∠PNA+∠P,
∴α=180°-γ+β,
故α、β与γ之间的数量关系为:α+γ-β=180°.
【点睛】
本题考查了平行线的性质,三角形的外角的性质,平角的定义,是基础题,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.
2、∠AFB=40°.
【解析】
【分析】
由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.
【详解】
解:∵AD⊥BE,
∴∠ADC=90°,
∵∠DAC=10°,
∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,
∵AE是∠MAC的平分线,BF平分∠ABC,
∴,
又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,
∴∠AFB=∠MAE﹣∠ABF=.
【点睛】
本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.
3、
【解析】
【分析】
根据三角形内角和的性质求得的度数,再根据角平分线求得的度数,利用三角形外角性质求得的度数,从而求得的度数.
【详解】
解:∵,,
∴,
∵AD平分∠BAC,
∴,
∴,
∵PE⊥AD,
∴,
∴.
【点睛】
此题考查了三角形内角和的性质,三角形外角的性质以及角平分线的性质,解题的关键是灵活利用相关性质进行求解.21教育名师原创作品
4、 (1)34°
(2)41°
【解析】
【分析】
(1)根据三角形内角和可得的度数;
(2)先根据三角形外角性质计算出,再根据角平分线定义得到,接着再利用三角形外角性质得到.
(1)
解:在中,,,

(2)
解:在中,,

平分,


【点睛】
本题考查角形内角和定理,解题的关键是掌握三角形内角和是,合理使用三角形外角性质计算角度.
5、∠BDC=75°,∠EDC =25°
【解析】
【分析】
先根据三角形内角和定理求出∠ACB =50°,再由角平分线的定义求出,则由三角形内角和定理可求出∠BDC=180°-∠B-∠BCD=75°,再由平行线的性质即可得到∠EDC=∠BCD=25°.【来源:21·世纪·教育·网】
【详解】
解:∵∠A=50°,∠B=80°,
∴∠ACB=180°-∠A-∠B=50°,
∵CD平分∠ACB,
∴,
∴∠BDC=180°-∠B-∠BCD=75°,
∵DE∥BC,
∴∠EDC=∠BCD=25°.
【点睛】
本题主要考查了三角形内角和定理,角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)