冀教版七年级数学下册第十一章-因式分解综合训练练习题(精选)(含解析)

文档属性

名称 冀教版七年级数学下册第十一章-因式分解综合训练练习题(精选)(含解析)
格式 doc
文件大小 1.8MB
资源类型 试卷
版本资源 冀教版
科目 数学
更新时间 2022-11-29 18:58:26

图片预览

文档简介

中小学教育资源及组卷应用平台
冀教版七年级数学下册第十一章 因式分解综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相 ( http: / / www.21cnjy.com )应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21cnjy.com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列多项式能使用平方差公式进行因式分解的是( )
A. B. C. D.
2、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
3、把多项式因式分解得,则常数,的值分别为( )
A., B.,
C., D.,
4、下列各式中,能用平方差公式分解因式的是(  )
A.﹣a2﹣b2 B.﹣a2+b2 C.a2+(﹣b)2 D.a3﹣ab3
5、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)
6、下列因式分解正确的是(  )
A.a2+1=a(a+1) B.
C.a2+a﹣5=(a﹣2)(a+3)+1 D.
7、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).
A.勤学 B.爱科学 C.我爱理科 D.我爱科学21世纪教育网版权所有
8、下列因式分解正确的是( )
A.16m2-4=(4m+2)(4m-2) B.m4-1=(m2+1)(m2-1)
C.m2-6m+9=(m-3)2 D.1-a2=(a+1)(a-1)
9、多项式分解因式的结果是( )
A. B.
C. D.
10、下列各式从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:﹣8a3b+8a2b2﹣2ab3=_____.
2、分解因式:__________.
3、(________)(________);
4、因式分解:2a2﹣4ab+2b2=_____.
5、单项式4m2n2与12m3n2的公因式是________.
三、解答题(5小题,每小题10分,共计50分)
1、下面是某同学对多项式进行因式分解的过程.
解:设
原式(第一步)
第二步)
(第三步)
(第四步)
(1)该同学第二步到第三步运用了因式分解的______.
A.提取公因式 B.两数和乘以两数差公式
C.两数和的完全平方公式 D. 两数差的完全平方公式
(2)该同学因式分解的结果是否彻底?_____(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果______.www.21-cn-jy.com
(3)请你模仿以上方法尝试对多项式进行因式分解.
2、材料1:对于一个四位自然数,如果满足各数位上的数字均不为,它的百位上的数字比千位上的数字大,个位上的数字比十位上的数字大,则称为“满天星数”.对于一个“满天星数”,同时将的个位数字交换到十位、十位数字交换到百位、百位数字交换到个位,得到一个新的四位数,规定:.2·1·c·n·j·y
例如:,因为,,所以是“满天星数”;将的个位数字交换到十位,将十位数字交换到百位,将百位数字交换到个位,得到,.
材料2:对于任意四位自然数(、、、是整数且,),规定:.
根据以上材料,解决下列问题:
(1)请判断、是不是“满天星数”,请说明理由;如果是,请求出对应的的值;
(2)已知、是“满天星数”,其中的千位数字为(是整数且),个位数字为;的百位数字为,十位数字为(是整数且).若能被整除且,求的值.
3、分解因式:
4、分解因式:2a2-8ab+8b2.
5、因式分解:
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.
【详解】
解:A、,不能进行因式分解,不符合题意;
B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;
C、,不能使用平方差公式进行因式分解,不符合题意;
D、,不能进行因式分解,不符合题意;
故选:B.
【点睛】
本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).www-2-1-cnjy-com
2、D
【解析】
【分析】
根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.21*cnjy*com
【详解】
解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;
B、是整式的乘法运算,不是因式分解,则此项不符题意;
C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;
D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.
3、A
【解析】
【分析】
根据因式分解是恒等式,展开比较系数即可.
【详解】
∵=,
∴=,
∴n-2=5,m=-2n,
∴n=7,m=-14,
故选A.
【点睛】
本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.
4、B
【解析】
【分析】
能用平方差公式分解因式的式子必须是两项是平方项,符号为异号.
【详解】
解:A、两项的符号相同,不能用平方差公式分解因式;故此选项错误;
B、,能用平方差公式分解因式,故此选项正确;
C、两项的符号相同,不能用平方差公式分解因式,故此选项错误;
D.提公因式后不是平方差形式,故不能用平方差公式因式分解,故此选项错误.
故选B.
【点睛】
本题考查了平方差公式分解因式,熟记平方差公式结构两项式,异号,平方项(或变性后具备平方项)是解题的关键.21教育网
5、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.【来源:21·世纪·教育·网】
6、D
【解析】
【分析】
根据因式分解的定义严格判断即可.
【详解】
∵+1≠a(a+1)
∴A分解不正确;
∵,不是因式分解,
∴B不符合题意;
∵(a﹣2)(a+3)+1含有加法运算,
∴C不符合题意;
∵,
∴D分解正确;
故选D.
【点睛】
本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.
7、C
【解析】
【分析】
利用平方差公式,将多项式进行因式分解,即可求解.
【详解】
解:
∵、、、依次对应的字为:科、爱、我、理,
∴其结果呈现的密码信息可能是我爱理科.
故选:C
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.
8、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解.21·cn·jy·com
【详解】
解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;
B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;
C、m2-6m+9=(m-3)2,故该选项正确;
D、1-a2=(a+1)(1-a),故该选项错误;
故选:C.
【点睛】
本题考查了因式分解的意义,属 ( http: / / www.21cnjy.com )于基础题,关键是掌握因式分解的定义.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
9、B
【解析】
【分析】
先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).
【详解】
解:ax2-ay2
=a(x2-y2)
=a(x+y)(x-y).
故选:B.
【点睛】
本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.
10、B
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:、是单项式的乘法,不是因式分解,故本选项不符合题意;
、是因式分解,利用了完全平方差公式进行了因式分解,故本选项符合题意;
、是整式的乘法,不是因式分解,故本选项不符合题意;
、因式分解错误,故本选项不符合题意;
故选:B.
【点睛】
本题考查了因式分解的定义,解题的关键是能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.【来源:21cnj*y.co*m】
二、填空题
1、﹣2ab(2a﹣b)2
【解析】
【分析】
先提取公因式-2ab,再对余下的多项式利用完全平方公式继续分解.
【详解】
解:原式=﹣2ab(4a2﹣4ab+b2)
=﹣2ab(2a﹣b)2,
故答案为:﹣2ab(2a﹣b)2.
【点睛】
本题考查提公因式法,公式法分解因式,解题的关键在于提取公因式后要继续进行二次分解因式.
2、
【解析】
【分析】
没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方公式进行因式分解.【出处:21教育名师】
【详解】
解:,
故答案为:.
【点睛】
本题主要考查利用完全平方公式分解因式,熟记公式结构是解题的关键.
3、;;;;;
【解析】
【分析】
利用十字相乘法进行因式分解即可得.
【详解】
解:;





故答案为:;;;;;.
【点睛】
本题考查了利用十字相乘法进行因式分解,熟练掌握十字相乘法是解题关键.二次三项式,若存在 ,则.21·世纪*教育网
4、
【解析】
【分析】
先提取公因式2,再利用完全平方公式计算可得.
【详解】
解:原式=.
故答案为:
【点睛】
本题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
5、4m2n2
【解析】
【分析】
找到系数的公共部分,再找到因式的公共部分即可.
【详解】
解:由于4和12的公因数是4,m2n2和m3n2的公共部分为m2n2,
所以4m2n2与12m3n2的公因式是4m2n2.
故答案为4m2n2.
【点睛】
本题主要考查公因式,熟练掌握如何去找公因式是解题的关键.
三、解答题
1、 (1)C
(2)不彻底 ,
(3)
【解析】
【分析】
(1)先根据多项式乘以多项式计算,再用完全平方公式因式分解计算即可
(2)利用完全平方公式因式分解即可
(3)模仿给出的步骤,进行因式分解即可
(1)
∵,
∴运用了两数和的完全平方公式.
故选C.
(2)
∵,
∴因式分解不彻底.
故答案为:不彻底,.
(3)

解:设,
则原式

【点睛】
本题考查因式分解、完全平方公式、多项式乘以多项式以及幂的乘方.理解题意,利用换元法是解题的关键.
2、 (1)不是“满天星数”,是“满天星数”,
(2)
【解析】
【分析】
(1)根据定义进行判断即可,并按计算即可;
(2)根据定义分别用代数式表示出数,进而根据整除以及求得二元一次方程的整数解即可求得的值,进而求得,根据(1)的方法求得的值.2-1-c-n-j-y
(1)
解:不是“满天星数”,是“满天星数”,理由如下,
根据定义, 的百位数为4,千位数为2,百位比千位上的数字大2,则2467不是“满天星数”;
的百位数是4,千位数是3,百位比千位上的数字大1,十位上的数字是8,个为上的数字是9,个位上的数字比十位上的数值大1,符合定义,故是“满天星数”,【版权所有:21教育】
(2)
、是“满天星数”,的千位数字为(是整数且),个位数字为;

的百位数字为,十位数字为(是整数且).

能被整除且,

能被整除
,,

或或


【点睛】
本题考查了新定义运算,因式分解,求二元一次方程的特殊解,理解新定义是解题的关键.
3、
【解析】
【分析】
利用分组分解法分解因式即可.
【详解】
解:,
=,
=,
=.
【点睛】
本题考查了因式分解,解题关键是恰当对多项式进行分组,熟练运用提取公因式和公式法进行分解.
4、2(a-2b)2
【解析】
【分析】
先提取公因式2,再利用完全平方公式因式分解.
【详解】
解:2a2-8ab+8b2
=2(a2-4ab+4b2)
=2(a-2b)2.
【点睛】
本题考查了整式的因式分解,掌握因式分解的完全平方公式是解决本题的关键.
5、
【解析】
【分析】
根据题意先提取公因式,进而利用完全平方差公式即可进行因式分解.
【详解】
解:
【点睛】
本题考查因式分解,注意掌握因式分解的常见方法有提取公因式法、公式法、十字交叉相乘法、分组分解法等.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)