中小学教育资源及组卷应用平台
冀教版七年级数学下册第十一章 因式分解必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指 ( http: / / www.21cnjy.com )定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21·cn·jy·com
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式中能用平方差公式计算的是( )
A.(x+y)(y﹣x) B.(x+y)(y+x)
C.(x+y)(﹣y﹣x) D.(x﹣y)(y﹣x)
2、下列从左到右的变形属于因式分解的是( )
A.x2+2x+1=x(x+2)+1 B.﹣7ab2c3=﹣abc 7bc2
C.m(m+3)=m2+3m D.2x2﹣5x=x(2x﹣5)
3、下列因式分解正确的是( )
A.x2-4x+4=x(x-4)+4 B.9-6(m-n)+(n-m)2=(3-m+n)2
C.4x2+2x+1=(2x+1)2 D.x4-y4=(x2+y2)(x2-y2)
4、因式分解a2b﹣2ab+b正确的是( )
A.b(a2﹣2a) B.ab(a﹣2) C.b(a2﹣2a+1) D.b(a﹣1)2
5、已知x2+x﹣6=(x+a)(x+b),则( )
A.ab=6 B.ab=﹣6 C.a+b=6 D.a+b=﹣6
6、下列各式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
7、下列各式中,从左到右的变形是因式分解的是( )
A.2a2﹣2a+1=2a(a﹣1)+1 B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣4xy+4y2=(x﹣2y)2 D.x2+1=x(x+)
8、已知m=1﹣n,则m3+m2n+2mn+n2的值为( )
A.﹣2 B.﹣1 C.1 D.2
9、下列从左边到右边的变形,属于因式分解的是( )
A.x2﹣x﹣6=(x+2)(x﹣3) B.x2﹣2x+1=x(x﹣2)+1
C.x2+y2=(x+y)2 D.(x+1)(x﹣1)=x2﹣1
10、下列各式从左到右的变形属于因式分解的是( )
A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x 3y
C.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:__________.
2、已知a+b=4,ab=1,则a3b+2a2b2+ab3的值为________________.
3、分解因式:2x3﹣x2=_____.
4、在实数范围内因式分解:x2﹣6x+1=_____.
5、因式分解:ax2-2ax+a=_____.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
(1)
(2)
(3)
2、分解因式:
(1)﹣9x3y+6x2y2﹣xy3
(2)(x2+4)2﹣16x2
3、因式分解:(x2+9)2﹣36x2.
4、因式分解:
(1)
(2)
(3).
5、因式分解
(1)
(2)
-参考答案-
一、单选题
1、A
【解析】
【分析】
能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.
【详解】
解:A、(x+y)(y﹣x)=不符合平方差公式的特点,故本选项符合题意;
B、(x+y)(y+x),不符合平方差公式的特点,不能用平方差公式计算,故本选项不合题意;
C、(x+y)(﹣y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;
D、(x﹣y)(y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;
故选A.
【点睛】
本题考查的是应用平方差公式进行计算的能力,掌握平方差公式的结构特征是正确解题的关键.
2、D
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.由定义判断即可.
【详解】
解:A.x2+2x+1=(x+1)2,故A不符合题意;
B.-7ab2c3是单项式,不存在因式分解,故B不符合题意;
C.m(m+3)=m2+3m是单项式乘多项式,故C不符合题意;
D.2x2-5x=x(2x-5)是因式分解,故D符合题意;
故选:D.
【点睛】
本题考查因式分解的意义,熟练掌握因式分解的定义,能够根据所给形式判断是否符合因式分解的变形是解题的关键.2·1·c·n·j·y
3、B
【解析】
【分析】
利用公式法进行因式分解判断即可.
【详解】
解:A、,故A错误,
B、9-6(m-n)+(n-m)2=(3-m+n)2,故B正确,
C、4x2+2x+1,无法因式分解,故C错误,
D、,因式分解不彻底,故D错误,
故选:B.
【点睛】
本题主要是考查了利用公式法进行因式分解,一定要熟练掌握完全平方公式和平方差公式的形式,另外因式分解一定要彻底.【来源:21·世纪·教育·网】
4、D
【解析】
【分析】
先提取公因式,再用完全平方公式分解因式即可.
【详解】
解:a2b﹣2ab+b
=b(a2﹣2a+1)
=b(a﹣1)2.
故选:D.
【点睛】
本题考查的是因式分解,掌握“提公因式与公式法分解因式”是解本题的关键. 注意分解因式要彻底.
5、B
【解析】
【分析】
先利用十字相乘法去掉括号,再根据等式的性质得a+b=1,ab=﹣6.
【详解】
解:∵x2+x﹣6=(x+a)(x+b),
∴x2+x﹣6=x2+(a+b)x+ab,
∴a+b=1,ab=﹣6;
故选:B.
【点睛】
本题考查了十字相乘法分解因式,掌握运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,这是解题关键.21·世纪*教育网
6、C
【解析】
【分析】
根据因式分解的定义判断即可.
【详解】
解:因式分解即把一个多项式化成几个整式的积的形式.
A. ,不是几个整式的积的形式,A选项不是因式分解;
B. ,不是几个整式的积的形式,B选项不是因式分解
C. ,符合因式分解的定义,C是因式分解.
D. ,不是几个整式的积的形式,D选项不是因式分解;
故选C
【点睛】
本题考查了因式分解的定义, ( http: / / www.21cnjy.com )把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.www-2-1-cnjy-com
7、C
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.从左到右的变形不属于因式分解,故本选项不符合题意;
B.从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;
C.从左到右的变形属于因式分解,故本选项符合题意;
D.等式的右边是分式与整式的积,即从左到右的变形不属于因式分解,故本选项不符合题意;
故选:C.
【点睛】
此题主要考查因式分解的识别,解题的关键是熟知因式分解的意义,把一个多项式转化成几个整式积的形式.
8、C
【解析】
【分析】
先化简代数式,再代入求值即可;
【详解】
∵m=1﹣n,
∴m+n=1,
∴m3+m2n+2mn+n2
=m2(m+n)+2mn+n2
=m2+2mn+n2
=(m+n)2
=12
=1,
故选:C.
【点睛】
本题主要考查了代数式求值,准确计算是解题的关键.
9、A
【解析】
【分析】
把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.
【详解】
解:x2﹣x﹣6=(x+2)(x﹣3)属于因式分解,故A符合题意;
x2﹣2x+1=x(x﹣2)+1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;
x2+y2=(x+y)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;
(x+1)(x﹣1)=x2﹣1是整式的乘法运算,不是因式分解,故D不符合题意;
故选A
【点睛】
本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.
10、D
【解析】
【分析】
根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.
【详解】
解:A、是整式的乘法,故此选项不符合题意;
B、不属于因式分解,故此选项不符合题意;
C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;
D、把一个多项式转化成几个整式积的形式,故此选项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.21cnjy.com
二、填空题
1、
【解析】
【分析】
先提出公因式,再利用平方差公式分解,即可求解.
【详解】
解:.
故答案为:
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法,并会灵活选用合适的方法解答是解题的关键.2-1-c-n-j-y
2、16
【解析】
【分析】
先提取公因式ab,然后再用完全平方公式因式分解,最后代入计算即可.
【详解】
解:a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2
=1×42
=16.
故答案是16.
【点睛】
本题主要考查了因式分解的应用,掌握运用提取公因式法和完全平方公式因式分解是解答本题的关键.
3、x2(2x﹣1)
【解析】
【分析】
根据提公因式法分解.
【详解】
解:2x3﹣x2=x2(2x﹣1),
故答案为:x2(2x﹣1).
【点睛】
此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式、十字相乘)是解题的关键.21世纪教育网版权所有
4、
【解析】
【分析】
将该多项式拆项为,然后用平方差公式进行因式分解.
【详解】
.
故答案为:.
【点睛】
本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.
5、
【解析】
【分析】
提取公因式后,用完全平方公式因式分解即可.
【详解】
原式=
=
故答案为:.
【点睛】
本题考查了因式分解,因式分解是初中数学的重要 ( http: / / www.21cnjy.com )内容之一.选择正确的分解方法是学好因式分解的关键.因式分解的题目多以填空题或选择题的形式考查提公因式法和公式法的综合运用.因式分解的基本思路是:一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解.如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式.同时,因式分解要彻底,要分解到不能分解为止.因式分解常见技巧:局部不符看整体,整体不符局部,实在不行看变形.
三、解答题
1、 (1)2a(a2+3b);
(2)5(x+y)(x﹣y);
(3)﹣3(x﹣y)2.
【解析】
【分析】
(1)直接提公因式2a即可;
(2)先提公因式,再利用平方差公式即可;
(3)先提公因式,再利用完全平方公式即可.
(1)
解:=2a(a2+3b);
(2)
解:(2)原式=5(x2﹣y2)
=5(x+y)(x﹣y);
(3)
解:(3)原式=﹣3(x2﹣2xy+y2)
=﹣3(x﹣y)2.
【点睛】
本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.
2、 (1)
(2)
【解析】
【分析】
(1)先提出公因式,再利用完全平方公式因式分解,即可求解;
(2)先用平方差公式因式分解,再利用完全平方公式因式分解,即可求解.
(1)
解: ;
(2)
解:
.
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并灵活选用合适的方法进行解答是解题的关键.21教育网
3、
【解析】
【分析】
利用平方差公式和完全平方公式分解因式即可.
【详解】
解:
.
【点睛】
本题主要考查了分解因式,解题的关键在于能够熟练掌握完全平方公式和平方差公式.
4、 (1)
(2)
(3)
【解析】
【分析】
(1)首先提取公因式3,再用平方差公式进行二次分解即可;
(2)首先提取公因式x,再用完全平方公式进行二次分解即可;
(3)首先用平方差公式进行分解,再用完全平方公式进行二次分解即可.
(1)
解:;
(2)
解:原式;
(3)
解:原式.
【点睛】
本题考查了用提公因式法和 ( http: / / www.21cnjy.com )公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.www.21-cn-jy.com
5、(1);(2)
【解析】
【分析】
(1)由题意提取公因式ab,进而利用平方差公式进行因式分解;
(2)根据题意先利用平方差公式进行运算,进而利用完全平方公式进行因式分解.
【详解】
解:(1)原式
(2)原式
【点睛】
本题考查分解因式,熟练掌握利用提取公因式法和公式法进行因式分解是解题的关键.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)