冀教版七年级数学下册第十一章-因式分解单元测试试卷(含解析)

文档属性

名称 冀教版七年级数学下册第十一章-因式分解单元测试试卷(含解析)
格式 doc
文件大小 1.4MB
资源类型 试卷
版本资源 冀教版
科目 数学
更新时间 2022-11-29 18:54:17

图片预览

文档简介

中小学教育资源及组卷应用平台
冀教版七年级数学下册第十一章 因式分解单元测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题 ( http: / / www.21cnjy.com )目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。21世纪教育网版权所有
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列等式中,从左到右的变形是因式分解的是(  )
A.m(a+b)=ma+mb B.x2+3x+2=(x+1)(x+2)
C.x2+xy﹣3=x(x+y)﹣3 D.
2、下列各式从左到右的变形属于因式分解的是(  )
A.(x+2)(x﹣3)=x2﹣x﹣6 B.6xy=2x 3y
C.x2+2x+1=x(x+2)+1 D.x2﹣9=(x﹣3)(x+3)
3、下列分解因式正确的是( )
A. B.
C. D.
4、下列因式分解正确的是( ).
A. B.
C. D.
5、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
6、下列各式从左至右是因式分解的是( )
A. B.
C. D.
7、计算的值是(  )
A. B. C. D.2
8、把多项式因式分解得,则常数,的值分别为( )
A., B.,
C., D.,
9、下列各式从左到右进行因式分解正确的是(  )
A.4a2﹣4a+1=4a(a﹣1)+1 B.x2﹣2x+1=(x﹣1)2
C.x2+y2=(x+y)2 D.x2﹣4y=(x+4y)(x﹣4y)
10、如果x2+kx﹣10=(x﹣5)(x+2),则k应为(  )
A.﹣3 B.3 C.7 D.﹣7
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知a=,则a2﹣2a﹣3的值为_______.
2、下列因式分解正确的是________(填序号)
①; ②;
③; ④
3、分解因式:2x3﹣x2=_____.
4、因式分解:=___________.
5、把多项式2a3﹣2a分解因式的结果是___.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
(1)3a2﹣6ab+3b2
(2) (x+1)(x+2)(x+3)(x+4)+1
2、分解因式:
(1);
(2).
3、因式分解:(x2+2x)2﹣7(x2+2x)﹣8.
4、分解因式:.
5、分解因式
(1)(x2﹣3)2﹣2(x2﹣3)+1;
(2)m2(a﹣2)+(2﹣a).
-参考答案-
一、单选题
1、B
【解析】
【分析】
将多项式写成几个整式的积的形式叫做因式分解,根据因式分解的定义依次判断.
【详解】
解:m(a+b)=ma+mb是整式乘法,故选项A不符合题意;
x2+3x+2=(x+1)(x+2)是因式分解,故选项B符合题意;
x2+xy﹣3=x(x+y)﹣3不是因式分解,故选项C不符合题意;
不是因式分解,故选项D不符合题意;
故选:B.
【点睛】
此题考查了因式分解的定义,熟记定义并正确理解是解题的关键.
2、D
【解析】
【分析】
根据因式分解是把一个多项式化为几个整式的积的形式,可得答案.
【详解】
解:A、是整式的乘法,故此选项不符合题意;
B、不属于因式分解,故此选项不符合题意;
C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;
D、把一个多项式转化成几个整式积的形式,故此选项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义.解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别.【来源:21·世纪·教育·网】
3、C
【解析】
【分析】
根据因式分解的方法逐个判断即可.
【详解】
解:A. ,原选项错误,不符合题意;
B. ,原选项错误,不符合题意;
C. ,正确,符合题意;
D. ,原选项错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.
4、C
【解析】
【分析】
根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.
【详解】
解:A、,故本选项错误;
B、,故本选项错误;
C、,故本选项正确;
D、,故本选项错误.
故选:C.
【点睛】
本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.
5、D
【解析】
【分析】
根据因式分解的定义(把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解)、平方差公式()逐项判断即可得.21教育网
【详解】
解:A、等式右边不是整式积的形式,不是因式分解,则此项不符题意;
B、是整式的乘法运算,不是因式分解,则此项不符题意;
C、等式右边等于,与等式左边不相等,不是因式分解,则此项不符题意;
D、等式右边等于,即等式的两边相等,且等式右边是整式积的形式,是因式分解,则此项符合题意;
故选:D.
【点睛】
本题考查了因式分解的定义、整式的乘法运算,熟记因式分解的定义是解题关键.
6、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;
B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
C、,是整式的乘法,不是因式分解,故本选项不符合题意;
D、,是整式的乘法,不是因式分解,故本选项不符合题意.
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.21·世纪*教育网
7、B
【解析】
【分析】
直接找出公因式进而提取公因式,进行分解因式即可.
【详解】
解:.
故选:B
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
8、A
【解析】
【分析】
根据因式分解是恒等式,展开比较系数即可.
【详解】
∵=,
∴=,
∴n-2=5,m=-2n,
∴n=7,m=-14,
故选A.
【点睛】
本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.
9、B
【解析】
【分析】
因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分析判断即可21·cn·jy·com
【详解】
解:A. 4a2﹣4a+1=,故该选项不符合题意;
B. x2﹣2x+1=(x﹣1)2,故该选项符合题意;
C. x2+y2(x+y)2,故该选项不符合题意;
D. x2﹣4y(x+4y)(x﹣4y),故该选项不符合题意;
故选B
【点睛】
本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键.
10、A
【解析】
【分析】
根据多项式乘以多项式把等号右边展开,即可得答案.
【详解】
解:(x-5)(x+2)=x2-3x-10,
则k=-3,
故选:A.
【点睛】
本题主要考查了因式分解,关键是掌握x2+(p+q)x+pq=(x+p)(x+q).
二、填空题
1、-2
【解析】
【分析】
将所求算式因式分解,再将代入,整理,最后利用平方差公式计算即可.
【详解】
解: ,
将代入得:

故答案为:-2.
【点睛】
本题考查因式分解,代数式求值以及平方差公式.利用整体代入的思想是解答本题的关键.
2、①④##④①
【解析】
【分析】
根据因式分解的提公因式法及公式法对各式子计算即可得.
【详解】
解:①,正确;
②,计算错误;
③,计算错误;
④,正确;
故答案为:①④.
【点睛】
题目主要考查因式分解的方法:提公因式法和公式法,熟练掌握两种方法是解题关键.
3、x2(2x﹣1)
【解析】
【分析】
根据提公因式法分解.
【详解】
解:2x3﹣x2=x2(2x﹣1),
故答案为:x2(2x﹣1).
【点睛】
此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式、十字相乘)是解题的关键.21cnjy.com
4、
【解析】
【分析】
先提公因式,再利用完全平方公式分解即可.
【详解】
解:
=
=
故答案为:
【点睛】
本题考查了提公因式法和公式法分解因式,解题的关键是掌握完全平方公式.
5、
【解析】
【分析】
直接利用提取公因式法分解因式,进而利用平方差公式分解因式即可.
【详解】
解:2a3﹣2a
=
=;
故答案为2a(a+1)(a-1)
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
三、解答题
1、(1);(2).
【解析】
【分析】
(1)先提取公因式,然后利用公式法进行因式分解即可;
(2)先利用乘法交换律进行变换,然后根据多项式乘以多项式分两组计算,将看作一个整体,继续进行多项式乘法运算,最后运用公式法进行因式分解即可.www.21-cn-jy.com
【详解】
解:(1),


(2),




【点睛】
题目主要考查因式分解的方法提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解题关键.
2、(1);(2)
【解析】
【分析】
(1)先提取公因式,然后再根据平方差公式进行因式分解即可;
(2)先利用完全平方公式展开,然后合并同类项,进而再因式分解即可.
【详解】
解:(1)原式=;
(2)原式=.
【点睛】
本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.
3、(x﹣2)(x+4)(x+1)2
【解析】
【分析】
将x2+2x视为整体,利用十字相乘法因式分解,再结合因式分解与完全平方公式解题.
【详解】
解:原式=(x2+2x﹣8)(x2+2x+1)=(x﹣2)(x+4)(x+1)2.
【点睛】
本题考查因式分解,是重要考点,难度一般,掌握相关知识是解题关键.
4、
【解析】
【分析】
先提取公因式,然后再利用完全平方公式进行分解因式即可.
【详解】
解:原式.
【点睛】
本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.
5、 (1)(x+2)2(x﹣2)2
(2)(a﹣2)(m﹣1)(m+1)
【解析】
【分析】
(1)把(a2﹣3)看作一个整体用完全平方公式因式分解,再用平方差公式因式分解;
(2)先把m2(a﹣2)+(2﹣a)化为m2(a﹣2)﹣(a﹣2)的形式,然后提取公因式,再用平方差公式因式分解.2·1·c·n·j·y
(1)
解:(1)(x2﹣3)2﹣2(x2﹣3)+1
=(x2﹣3﹣1)2
=(x+2)2(x﹣2)2;
(2)
解:m2(a﹣2)+(2﹣a)
=m2(a﹣2)﹣(a﹣2)
=(a﹣2)(m2﹣1)
=(a﹣2)(m﹣1)(m+1).
【点睛】
本题考查了因式分解,解题根据是熟练运用公式法和提取公因式法进行因式分解.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)